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This note records a proof of Proposition 0.1 below, on a decomposition of matroid
Stanley-Reisner rings into pure Boij-Söderberg tables. We take the fundamental
pure tables to be the vectors πd ∈ QZ2

indexed by sequences of positive integers
d = (d0, . . . , dc), such that the only nonzero components of πd are

(πd)idi
=

(−1)i∏
j 6=i(dj − di)

.

We will always have d0 = 0. We also write {eij} for the standard basis for the
space QZ2

of Betti tables.
Let S = k[x1, . . . , xn]. If ∆ is a simplicial complex on [n] = {1, . . . , n}, then

I∆ ⊆ S will denote its Stanley-Reisner ideal. Matroids on the ground set [n] are
interpreted as certain simplicial complexes on the vertices [n], whose faces are the
independent sets: thus the rank of M is its dimension plus one. We use matroidal
notation for operations on these complexes: for instance we denote restriction of
the complex ∆ to a set A by ∆|A.

For concision, let C(M) be the set of maximal chains of flats of a matroid M . If
the ground set of M is [n], this is the set of tuples F = (F0, . . . , Frk M ) in which

∅ = F0 ( · · · ( Frk M = [n]

are all flats.

Proposition 0.1. If M is a matroid on [n] of rank r with no coloops, then the
Betti table of the Stanley-Reisner ring S/IM is given by

(0.1) β(S/IM ) =
∑

F∈C(M)

(
n−r∏
i=1

|Fi| − |Fi−1|

)
· πn−|Fn−r|,...,n−|F0|

Proof. We will use Hochster’s formula [1, Corollary 5.12], in the following form:

βij(S/IM ) =
∑

A ⊆ [n]
|A| = j

dim H̃j−i−1(M |A,k).

These restrictions M |A of the matroid M are themselves matroids and are therefore
Cohen-Macaulay, and so dim H̃j−i−1(M |A,k) is only nonzero if j− i−1 is equal to
the dimension of M |A, i.e. if j−i = rkM (A). The dimension of the top-dimensional
homology of M |A is the Tutte evaluation TM |A(0, 1). So the above sum may be
recast

β(S/IM ) =
∑

A⊆[n]

TM |A(0, 1) e|A|−rkM (A),|A|.
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Changing to the dual matroid, and writing F = [n] \ A, this is

(0.2) β(S/IM ) =
∑

F⊆[n]

TM∗/F (1, 0) en−r−rkM∗ (F ),n−|F |.

Let us now turn to the right side of (0.1). Expanding the definition of the πd,
this is ∑

F

n−r∑
i=0

en−r−i,n−|Fi|(−1)n−r−1

∏n−r
j=1 |Fj | − |Fj−1|∏

j 6=i |Fj | − |Fi|
.

We recast this as a sum over the various flats F := Fi of M∗ that occur in the
chains F, breaking up the remaining summation into the subchain of F before the
ith position and the subchain after. Note that i = rkM∗(F ). What results is

∑
F a flat

en−r−rkM∗ (F ),n−|F |

 ∑
G∈C(M∗|F )

rk M∗|F∏
j=1

|Gj | − |Gj−1|
|F | − |Gj−1|

 ∑
H∈C(M∗/F )

rk M∗/F∏
j=1

|Hj | − |Hj−1|
|Hj |

 .

We now compare this sum to (0.2). First of all, the terms of (0.2) for which F
is not a flat of M∗ make no contribution, as then M∗/F contains a loop, making
TM∗/F (1, 0) equal to 0. We are thus done in view of the equations in Lemma 0.2 for
the two parenthesized factors. (M∗|F is loopfree because M∗ is; M∗/F is because
F is a flat.) �

Lemma 0.2. Let M be a matroid on ground set [n] with no loops. Then

(a)
∑

F∈C(M)

rk M∏
j=1

|Fj | − |Fj−1|
n − |Fj−1|

= 1.

(b)
∑

F∈C(M)

rk M∏
j=1

|Fj | − |Fj−1|
|Fj |

= TM (1, 0).

Proof. In both cases the proof will be inductive on the rank of M , by taking sub-
chains of length one less and passing to an appropriate minor of M . The rank 0
base cases are trivial.

For (a), we extract the j = 1 term of the product, giving

∑
F a rank 1 flat

 |F |
n

∑
G∈C(M/F )

rk M−1∏
i=1

|Gi| − |Gi−1|
(n − |F |) − |Gi−1|


=

∑
F a rank 1 flat

|F |
n

· 1

by induction. Since the rank 1 flats partition [n], the sum above equals 1 as desired.
For (b), we begin by noting that TM (1, 0) is the Möbius function evaluation

(−1)rk Mµ(∅, [n]) in the lattice of flats of M . (This follows from the Crosscut The-
orem [2, Corollary 3.9.4], since by the corank-nullity expansion of Tutte, TM (1, 0)
counts spanning sets of M with alternating sign.)
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Using the induction, we extract the j = rk M term of the product and have∑
F a hyperplane

n − |F |
n

∑
G∈C(M |F )

rk M−1∏
j=1

|Gj | − |Gj−1|
|Gj |


=

∑
F a hyperplane

n − |F |
n

· (−1)rk M−1µ(∅, F )

=
1
n

∑
a∈[n]

∑
F 63 a a hyperplane

(−1)rk M−1µ(∅, F )

=
1
n

∑
a∈[n]

(−1)rk Mµ(∅, [n])

= (−1)rk Mµ(∅, [n]),

where the second-last equality is Weisner’s theorem [2, Corollary 3.9.3]. �

[[Eliminate the no-coloops restriction. Is this better framed in terms of the cover
ideal, and does it then go through for non-matroids? Are there connections between
the product on Boij-Söderberg tables and my Hopf structures with Derksen?]]
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