K-classes for matroids and equivariant localization

Alex Fink¹ David Speyer²

¹North Carolina State University

²University of Michigan

arXiv:1004.2403

FPSAC 2011

Overview

If you remember one thing...

You can get the Tutte polynomial of an arbitrary matroid via algebraic geometry.

Outline:

- Setup: matroids and torus orbits on the Grassmannian;
 valuations and K-theory
- A K-theoretic matroid invariant
- Invariants that factor through it, incl. Tutte
- Equivariant localization
- Some ingredients of proofs

Matroids as polytopes

Definition (Edmonds; Gelfand-Goresky-MacPherson-Serganova)

A matroid M on the ground set [n] is a polytope in \mathbb{R}^n such that

- every vertex (basis) of M lies in $\{0,1\}^n$;
- every edge of M is parallel to $e_i e_i$ for some $i, j \in [n]$.

The edges are the exchanges between the bases.

M lies in $\{\sum_{i=1}^{n} x_i = r\}$ for some r, the rank.

Matroid toric varieties on the Grassmannian

The Grassmannian is

 $G(r, n) = \{\text{configs of } n \text{ vectors spanning } \mathbb{C}^r\}/GL_r.$

 $T:=(\mathbb{C}^*)^n \curvearrowright G(r,n)$ by scaling the vectors.

If $x_M \in G(r, n)$ represents M, the orbit closure $\overline{Tx_M} \subseteq G(r, n)$ is the toric variety of M.

Toric degenerations \mathcal{D} of $\overline{Tx_M} \longleftrightarrow$ certain matroid subdivisions Σ .

Components of $\mathcal D$ are toric varieties of facets of Σ .

Ditto intersections.

Matroid toric varieties on the Grassmannian

The Grassmannian is

 $G(r, n) = \{\text{configs of } n \text{ vectors spanning } \mathbb{C}^r\}/GL_r.$

 $T := (\mathbb{C}^*)^n \curvearrowright G(r, n)$ by scaling the vectors.

If $x_M \in G(r, n)$ represents M, the orbit closure $\overline{Tx_M} \subseteq G(r, n)$ is the toric variety of M.

Toric degenerations \mathcal{D} of $\overline{Tx_M} \longleftrightarrow$ certain matroid subdivisions Σ .

Components of \mathcal{D} are toric varieties of facets of Σ . Ditto intersections.

Matroid valuations

A matroid valuation *f* is a function that is additive with inclusion-exclusion in matroid subdivisions.

E.g.
$$f() = f() + f() - f()$$
.

Examples

- Lattice point count.
- ▶ the Tutte polynomial, $M \mapsto T_M \in \mathbb{Z}[x, y]$. (Not obvious!)

The Tutte polynomial is

$$T_M = \sum_{S \subseteq [n]} (x-1)^{\operatorname{corank}(S)} (y-1)^{\operatorname{nullity}(S)}.$$

Matroid valuations

A matroid valuation *f* is a function that is additive with inclusion-exclusion in matroid subdivisions.

E.g.
$$f() = f() + f() - f()$$
.

Examples

- Lattice point count.
- ▶ the Tutte polynomial, $M \mapsto T_M \in \mathbb{Z}[x, y]$. (Not obvious!)

The Tutte polynomial is

$$T_M = \sum_{S \subseteq [n]} (x-1)^{\operatorname{corank}(S)} (y-1)^{\operatorname{nullity}(S)}.$$

K-theory: a valuation from algebraic geometry

We use the K-theory ring $K_0(X)$ and the T-equivariant K-theory ring $K_0^T(X)$.

The class of $Y \subseteq X$ is denoted $[Y] \in K_0(X)$, resp. $[Y]^T \in K_0^T(X)$. $[Y]^T$ determines [Y].

Facts

- $[\cdot]^T$ is additive with inclusion-exclusion over components.
- $ightharpoonup [\cdot]^T$ is unchanged by toric degenerations.

Theorem 1 (Speyer)

There is a valuation $Y: \{matroids\} \to K_0^T(G(r, n))$ such that $Y(M) = [\overline{Tx_M}]^T$ for M representable.

K-theory: a valuation from algebraic geometry

We use the K-theory ring $K_0(X)$ and the T-equivariant K-theory ring $K_0^T(X)$. The class of $Y \subseteq X$ is denoted $[Y] \in K_0(X)$, resp. $[Y]^T \in K_0^T(X)$. $[Y]^T$ determines [Y].

Facts

- $[\cdot]^T$ is additive with inclusion-exclusion over components.
- $ightharpoonup [\cdot]^T$ is unchanged by toric degenerations.

Theorem 1 (Speyer)

There is a valuation $Y : \{matroids\} \to K_0^T(G(r, n))$ such that $Y(M) = [\overline{Tx_M}]^T$ for M representable.

K-theory: a valuation from algebraic geometry

We use the K-theory ring $K_0(X)$ and the T-equivariant K-theory ring $K_0^T(X)$.

The class of $Y \subseteq X$ is denoted $[Y] \in K_0(X)$, resp. $[Y]^T \in K_0^T(X)$. $[Y]^T$ determines [Y].

Facts

- $[\cdot]^T$ is additive with inclusion-exclusion over components.
- $ightharpoonup [\cdot]^T$ is unchanged by toric degenerations.

Theorem 1 (Speyer)

There is a valuation $Y: \{matroids\} \to K_0^T(G(r, n))$ such that $Y(M) = [\overline{Tx_M}]^T$ for M representable.

Theorem 2 (FS)

The Tutte polynomial factors through Y.

valuative

positive ...

Fink & Spever

Theorem 2 (FS)

The Tutte polynomial factors through Y. So do the Ehrhart polynomial, and Speyer's invariant h.

Speyer: How many faces can a matroid subdivision have?

Construct $h: \{\text{matroids}\} \to \mathbb{Z}[t]$:

valuative (proved)

positive . . . (open in general)

Then $h(uniform\ matroid)$ is an upper bound for the f-vector.

 $h(\prod \text{ of } k \text{ series-parallels}) = (-t)^k.$

Example

are products of series-parallels, so

$$= -2t + t^2.$$

Theorem 2 (FS)

The Tutte polynomial factors through Y. So do the Ehrhart polynomial, and Speyer's invariant h.

Speyer: How many faces can a matroid subdivision have?

Construct $h: \{\text{matroids}\} \to \mathbb{Z}[t]$:

valuative (proved)

positive . . . (open in general)

Then $h(uniform\ matroid)$ is an upper bound for the f-vector.

 $h(\prod \text{ of } k \text{ series-parallels}) = (-t)^k.$

Example

are products of series-parallels, so

Theorem 2 (FS)

The Tutte polynomial factors through Y. So do the Ehrhart polynomial, and Speyer's invariant h.

Speyer: How many faces can a matroid subdivision have?

Construct $h: \{\text{matroids}\} \to \mathbb{Z}[t]$:

valuative (proved)

positive . . . (open in general)

Then $h(uniform\ matroid)$ is an upper bound for the f-vector.

 $h(\prod \text{ of } k \text{ series-parallels}) = (-t)^k.$

Example

are products of series-parallels, so $h(^{\ell})$

$$=-2t+t^{2}$$
.

Equivariant localization

Technique: Equivariant localization (Goresky-Kottwitz-MacPherson)

If X is nice & has an action of a big enough torus T, e.g. G(r, n), $K_0^T(X)$ can be constructed from its moment graph Γ .

- ▶ $V(\Gamma) = \{T\text{-fixed points of }X\}.$
- ► $E(\Gamma) = \{ \text{1-dimensional } T\text{-orbits of } X \}.$ Their closures $\cong \mathbb{P}^1 = T \cup \{0, \infty\}$. endpoints

The *T*-action on an edge factors through a character χ . Keep χ as an edge label.

Equivariant localization

Technique: Equivariant localization (Goresky-Kottwitz-MacPherson)

If X is nice & has an action of a big enough torus T, e.g. G(r, n), $K_0^T(X)$ can be constructed from its moment graph Γ .

- ▶ $V(\Gamma) = \{T\text{-fixed points of }X\}.$
- ► $E(\Gamma) = \{ \text{1-dimensional } T\text{-orbits of } X \}.$ Their closures $\cong \mathbb{P}^1 = T \cup \{0, \infty\}$. endpoints

The T-action on an edge factors through a character χ . Keep χ as an edge label.

Equivariant localization for G(r, n)

For G(r, n), Γ is the union of all 1-skeleta of matroids.

- ▶ $V(\Gamma) \longleftrightarrow r$ -subsets of n.
- ▶ $E(\Gamma) \longleftrightarrow$ exchanges $(S, S \setminus \{i\} \cup \{j\})$, with labels t_i/t_i .

Equivariant localization: the K-theory ring

$$K_0^T(\text{point}) = \mathbb{Z}[\text{Char } T] = \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}].$$

Theorem (GKM, ...)

 $K_0^T(X)$ equals {functions $V(\Gamma) \to K_0^T(pt)$:

 $f(v) \cong f(w) \pmod{1-\chi}$ for $v \xrightarrow{\chi} w$ an edge of Γ }.

$$[\mathcal{O}(1)]^T(X_S) = t^S := \prod_{i \in S} t_i.$$

Equivariant localization: the *K*-theory ring

$$K_0^T(\text{point}) = \mathbb{Z}[\text{Char } T] = \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}].$$

Theorem (GKM, ...)

$$K_0^T(X)$$
 equals {functions $V(\Gamma) \to K_0^T(\mathrm{pt})$:

 $f(v) \cong f(w) \pmod{1-\chi}$ for $v \xrightarrow{\chi} w$ an edge of Γ }.

Example

There's a class $[\mathcal{O}(1)]$ on G(r, n).

$$[\mathcal{O}(1)]^T(x_{\mathcal{S}}) = t^{\mathcal{S}} := \prod_{i \in \mathcal{S}} t_i.$$

Classes of toric varieties on the moment graph

Near fixed points, the toric variety of $M \cong$ toric varieties of tangent cones Cone_S(M).

The K-classes at points record multigraded Hilbert series, i.e. lattice point g.f.s of $Cone_S(M)$.

The denominator always divides $\prod_{i \in S, i \notin S} (1 - t_i/t_i)$.

Proof of Theorem 1

Proposition

The equivariant K-class of $\overline{Tx_M}$ is

$$[\overline{Tx_M}]^T(x_S) = \underbrace{\left(\sum_{p \in \operatorname{Cone}_S(M) \cap \mathbb{Z}^n} t^p\right)}_{\text{lattice point g.f. of } \operatorname{Cone}_M(S)} \cdot \underbrace{\left(\prod_{i \in S, j \notin S} (1 - t_j/t_i)\right)}_{\text{denominator}}$$

Proof of Theorem 1.

The above is just polyhedral geometry. Do it for any matroid to construct Y(M).

Classes of toric varieties: example

Closer relations between our invariants

Theorem 2

The Tutte polynomial, the Ehrhart polynomial, and Speyer's invariant h factor through Y.

Theorem 2'

There is a linear map
$$f: K_0^T(G(r,n)) \to \mathbb{Z}[x,y]$$
 such that
$$f(Y(M)) = h_M(1 - (1-x)(1-y))$$
$$f(Y(M) \cdot [\mathcal{O}(1)]) = T_M(x,y)$$
$$f(Y(M) \cdot [\mathcal{O}(1)]^m)(0,0) = Ehrhart_M(m).$$

f is a pullback then a pushforward.

$$G(r,n) \leftarrow \mathcal{F}\ell(1,r,n-1;n) \rightarrow \mathbb{P}^{n-1} \times (\mathbb{P}^{n-1})^*$$

What happens equivariantly

There is an f^T , which becomes f non-equivariantly, such that

Proposition

$$f^{T}(Y(M)) = h_{M}(1 - (1 - x)(1 - y))$$

$$f^{T}(Y(M) \cdot [\mathcal{O}(1)]) = \sum_{S \subseteq [n]} t^{S}(x - 1)^{\operatorname{corank}(S)} (y - 1)^{\operatorname{nullity}(S)}$$

 $f^{T}(Y(M) \cdot [\mathcal{O}(1)]^{m})(0,0) = \text{lattice point g.f. of } mM.$

Note: f^T is **not** the equivariant pullback and pushforward!

Idea of proof: Rewrite in terms of the $Cone_S(M)$

To get at coefficients, flip all the cones' rays into a halfspace.

e.g.
$$\sum_{i\geq 0} t^i = \frac{1}{1-t} = -\sum_{i<0} t^i$$

What happens equivariantly

There is an f^T , which becomes f non-equivariantly, such that

Proposition

$$f^{T}(Y(M)) = h_{M}(1 - (1 - x)(1 - y))$$
$$f^{T}(Y(M) \cdot [\mathcal{O}(1)]) = \sum_{S \subseteq [n]} t^{S}(x - 1)^{\operatorname{corank}(S)} (y - 1)^{\operatorname{nullity}(S)}$$

 $f^{T}(Y(M) \cdot [\mathcal{O}(1)]^{m})(0,0) = \text{lattice point g.f. of } mM.$

Note: f^T is **not** the equivariant pullback and pushforward!

Idea of proof: Rewrite in terms of the $Cone_S(M)$.

To get at coefficients, flip all the cones' rays into a halfspace.

e.g.
$$\sum_{i>0} t^i = \frac{1}{1-t} = -\sum_{i<0} t^i$$

What next?

Question

Can we use geometric positivity on combinatorial conjectures? For instance:

- Speyer's conjecture for h?
- for Tutte: Merino-Welsh type conjectures on convexity?
- de Loera's conjectures on the Ehrhart polynomial?

Thank you!

What next?

Question

Can we use geometric positivity on combinatorial conjectures? For instance:

- Speyer's conjecture for h?
- for Tutte: Merino-Welsh type conjectures on convexity?
- de Loera's conjectures on the Ehrhart polynomial?

Thank you!

