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Overview

If you remember one thing. ..

You can get the Tutte polynomial of an arbitrary matroid
via algebraic geometry.

Outline:

» Setup: matroids and torus orbits on the Grassmannian;
valuations and K-theory

» A K-theoretic matroid invariant

» Invariants that factor through it, incl. Tutte
» Equivariant localization

» Some ingredients of proofs
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Matroids as polytopes

Definition (Edmonds; Gelfand-Goresky-MacPherson-Serganova)
A matroid M on the ground set [n] is a polytope in R" such that
» every vertex (basis) of M lies in {0,1}";
» every edge of M is parallel to e; — e; for some i/, j € [n].
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Matroid toric varieties on the Grassmannian

The Grassmannian is
G(r, n) = {configs of n vectors spanning C"}/GL,.
T :=(C*)" ~ G(r, n) by scaling the vectors.

If xyy € G(r,n) represents M,
the orbit closure Txy C G(r, n) is the toric variety of M.
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Matroid toric varieties on the Grassmannian

The Grassmannian is
G(r, n) = {configs of n vectors spanning C"}/GL,.
T :=(C*)" ~ G(r, n) by scaling the vectors.

If xyy € G(r,n) represents M,
the orbit closure Txy C G(r, n) is the toric variety of M.

Toric degenerations D of Txy, «—— certain matroid subdivisions X.

Components of D are toric varieties of facets of ¥.
Ditto intersections.

Schematic example

7

=Y —

S
degenerates to %
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Matroid valuations

A matroid valuation f is a function that is additive
with inclusion-exclusion in matroid subdivisions.

A 7\ 7\
E.g. f(@) =f )+ f(@) - f(L).
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Matroid valuations

A matroid valuation f is a function that is additive
with inclusion-exclusion in matroid subdivisions.

A 7\ 7\
E.g. f(@) =f )+ f(@) - f(L).

Examples
» Lattice point count.
» the Tutte polynomial, M — Ty, € Z[x,y]. (Not obvious!)

The Tutte polynomial is

TM — Z (X . 1)corank(S)(y 1 )nullity(S)‘
SCln]
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K-theory: a valuation from algebraic geometry

We use the K-theory ring Ky(X)

and the T-equivariant K-theory ring K (X).

The class of Y C X is denoted [Y] € Ky(X), resp. [Y] € KJ (X).
[Y]" determines [Y].
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K-theory: a valuation from algebraic geometry

We use the K-theory ring Ky(X)

and the T-equivariant K-theory ring Ky (X).

The class of Y C X is denoted [Y] € Ky(X), resp. [Y]T € KOT(X).
[Y]T determines [Y].

Facts

» []7 is additive with inclusion-exclusion over components.
» []” is unchanged by toric degenerations.
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K-theory: a valuation from algebraic geometry

We use the K-theory ring Ky(X)

and the T-equivariant K-theory ring Ky (X).

The class of Y C X is denoted [Y] € Ky(X), resp. [Y]T € KOT(X).
[Y]T determines [Y].

Facts

» []7 is additive with inclusion-exclusion over components.
» []” is unchanged by toric degenerations.

Theorem 1 (Speyer)

There is a valuation Y : {matroids} — K (G(r,n)) such that
Y(M) = [Txy]" for M representable.
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Invariants that factor through K-theory

Theorem 2 (FS)
The Tutte polynomial factors through Y.
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Invariants that factor through K-theory

Theorem 2 (FS)

The Tutte polynomial factors through Y.
So do the Ehrhart polynomial, and Speyer’s invariant h.
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Invariants that factor through K-theory

Theorem 2 (FS)

The Tutte polynomial factors through Y.
So do the Ehrhart polynomial, and Speyer’s invariant h.

Speyer: How many faces can a matroid subdivision have?
Construct h: {matroids} — Z[{]:

» valuative (proved)

> positive ... (open in general)
Then h(uniform matroid) is an upper bound for the f-vector.
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Invariants that factor through K-theory

Theorem 2 (FS)

The Tutte polynomial factors through Y.
So do the Ehrhart polynomial, and Speyer’s invariant h.

Speyer: How many faces can a matroid subdivision have?
Construct h: {matroids} — Z[{]:

» valuative (proved)

> positive ... (open in general)
Then h(uniform matroid) is an upper bound for the f-vector.
h([] of k series-parallels) = (—t)X.
Example

Ag@

are products of series-parallels, so h(@) = -2t + 12,
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Equivariant localization

Technique: Equivariant localization (Goresky-Kottwitz-MacPherson)
If X is nice & has an action of a big enough torus T, e.g. G(r. n),
KJ (X) can be constructed from its moment graph T.
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Equivariant localization

Technique: Equivariant localization (Goresky-Kottwitz-MacPherson)
If X is nice & has an action of a big enough torus T, e.g. G(r, n),
KJ (X) can be constructed from its moment graph T.

» V(I') = {T-fixed points of X}.
» E(I') = {1-dimensional T-orbits of X}.
Their closures =2 P' = TU {0,000} .
———
endpoints

The T-action on an edge factors through a character .
Keep x as an edge label.
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Equivariant localization for G(r, n)

{1,2}

For G(r, n), I is the union of all

1-skeleta of matroids. (1.3} {2.3}

» V(I) < r-subsets of n.
» E(I) — exchanges (S, S\ {i} U {j}), ¥

{2.4}
with labels £/t;. :

{3,4}
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Equivariant localization: the K-theory ring

K{ (point) = Z[Char T] = Z[t', ..., t5].

Theorem (GKM, ...)

KJ (X) equals {functions V(') — K (pt) :

f(v) = f(w) (mod 1 — y) for v——w an edge of I'}.
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Equivariant localization: the K-theory ring

K{ (point) = Z[Char T] = Z[t', ..., t5].
Theorem (GKM, ...)

KJ (X) equals {functions V(') — K (pt) :
f(v) = f(w) (mod 1 — y) for v——w an edge of I'}.
Example
There’s a class [O(1)] on G(r, n). tits
{1,2}
o1 =15 =]t
OM1( e ”
{1.3} {2,3}
{1,4} {2,4}
{3.4}
fraita
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Classes of toric varieties on the moment graph

Near fixed points,
the toric variety of M = toric varieties of tangent cones Coneg(M).

The K-classes at points record multigraded Hilbert series, i.e.
lattice point g.f.s of Coneg(M).

Example

Coneyq 4)(M) is simplicial, with g.f.
1
(1—/t)(1 - /t)(1 — /l)

The denominator always divides [[;cg jzs(1 — /1)
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Proof of Theorem 1

Proposition

The equivariant K -class of Txy, is

[Txm]” (xs) = ( > fp) ( 11 (11‘//ti)>

pEConeg(M)NZ" i€S,j¢S

lattice point g.f. of Coney(S)  denominator

Proof of Theorem 1.
The above is just polyhedral geometry. Do it for any matroid to
construct Y(M). O
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Classes of toric varieties: example

Example
1 — tsty/tits

{1,2}
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Closer relations between our invariants

Theorem 2

The Tutte polynomial, the Ehrhart polynomial, and Speyer’s
invariant h factor through Y .

Theorem 2’
There is a linear map f : K{ (G(r, n)) — Z[x, y] such that
f(Y(M)) = hu(1 — (1 = x)(1 = y))
FY(M) - [0(1)]) = Tm(x, y)
f(Y(M) - [O(1)]™)(0,0) = Ehrharty(m).

f is a pullback then a pushforward.

G(r,n) — Ft(1,r,n—1;n) — P 1 x (P"1)*
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What happens equivariantly

There is an fT, which becomes f non-equivariantly, such that
Proposition

fT(Y(M)) = hy(1 — (1 = x)(1 = y))
fT(Y(M) - [0(1)]) = Z £5(x — 1)corank(S) (), _ 1)nullity(S)
scinl
FT(Y(M) - [0(1)]™)(0,0) = lattice point g.f. of mM.

Note: fT is not the equivariant pullback and pushforward!
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What happens equivariantly

There is an fT, which becomes f non-equivariantly, such that

Proposition
FY(M) = hu(1 = (1 = x)(1 =)

fT(Y(M) - [0(1)]) = Z £5(x — 1)corank(S) (), _ 1)nullity(S)
SCin
FT(Y(M) - [0(1)]™)(0,0) = lattice point g.f. of mM.

Note: fT is not the equivariant pullback and pushforward!

Idea of proof: Rewrite in terms of the Coneg(M).

To get at coefficients, flip all the cones’ rays into a halfspace.

e.g.Zt’:&:—Zt"

i>0 i<0
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What next?

Question

Can we use geometric positivity on combinatorial conjectures?
For instance:

» Speyer’s conjecture for h?
» for Tutte: Merino-Welsh type conjectures on convexity?
» de Loera’s conjectures on the Ehrhart polynomial?
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What next?

Question

Can we use geometric positivity on combinatorial conjectures?
For instance:

» Speyer’s conjecture for h?

» for Tutte: Merino-Welsh type conjectures on convexity?
» de Loera’s conjectures on the Ehrhart polynomial?

Thank you!
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