
LOWEST WEIGHT MODULES OF Sp4(R) AND NEARLY HOLOMORPHIC

SIEGEL MODULAR FORMS

AMEYA PITALE, ABHISHEK SAHA, AND RALF SCHMIDT

Abstract. We undertake a detailed study of the lowest weight modules for the Hermitian

symmetric pair (G,K), where G = Sp4(R) and K is its maximal compact subgroup. In

particular, we determine K-types and composition series, and write down explicit differential
operators that navigate all the highest weight vectors of such a module starting from the

unique lowest-weight vector. By rewriting these operators in classical language, we show

that the automorphic forms on G that correspond to the highest weight vectors are exactly
those that arise from nearly holomorphic vector-valued Siegel modular forms of degree 2.

Further, by explicating the algebraic structure of the relevant space of n-finite automor-
phic forms, we are able to prove a structure theorem for the space of nearly holomorphic

vector-valued Siegel modular forms of (arbitrary) weight det` symm with respect to an ar-

bitrary congruence subgroup of Sp4(Q). We show that the cuspidal part of this space is
the direct sum of subspaces obtained by applying explicit differential operators to holomor-

phic vector-valued cusp forms of weight det`
′
symm′ with (`′,m′) varying over a certain set.

The structure theorem for the space of all modular forms is similar, except that we may
now have an additional component coming from certain nearly holomorphic forms of weight

det3 symm′ that cannot be obtained from holomorphic forms.

As an application of our structure theorem, we prove several arithmetic results concerning
nearly holomorphic modular forms that improve previously known results in that direction.

1. Introduction

1.1. Motivation. In a series of influential works [35, 36, 38, 39], Shimura defined the notion
of a nearly holomorphic function on a Kähler manifold K and proved various properties of
such functions. Roughly speaking, a nearly holomorphic function on such a manifold is a
polynomial of some functions r1, . . . rm on K (determined by the Kähler structure), over the
ring of all holomorphic functions. For example, if K = Hn, the symmetric space for the group
Sp2n(R), then ri are the entries of Im(Z)−1. When there is a notion of holomorphic modular
forms on K, one can define nearly holomorphic (scalar or vector-valued) modular forms by
replacing holomorphy by near-holomorphy in the definition of modular forms.

The prototype of a nearly holomorphic modular form in the simplest case when K equals
the complex upper-half plane H is provided by the function

f(z) :=

( ∑
(c,d) 6=(0,0)

(cz + d)−k|cz + d|−2s

)
s=0

. (1)

Here k is a positive even integer. The function f transforms like a modular form of weight k
with respect to SL2(Z). If k > 2, the function is holomorphic, but the case k = 2 involves a
non-holomorphic term of the form c

y , where c is a constant.
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More generally, special values of Eisenstein series1, and their restrictions to lower-dimensional
manifolds, provide natural examples of nearly holomorphic modular forms. On the other hand,
such restrictions of Eisenstein series appear in the theory of L-functions via their presence in
integrals of Rankin-Selberg type. Thus, the arithmetic theory of nearly holomorphic forms is
closely related to the arithmetic theory of L-functions. The theory was developed by Shimura
in substantial detail and was exploited by him and other authors to prove algebraicity and
Galois-equivariance of critical values of various L-functions. We refer the reader to the pa-
pers [2, 6, 3, 32, 37, 39] for some examples. The theory of nearly holomorphic modular forms
and the differential operators related to them has also been very fruitful in the study of p-adic
measures related to modular L-functions [5, 10, 28] and in the derivation of various arithmetic
identities [11, 24].

From now on, we restrict ourselves to the symplectic case, and we assume further that
the base field is Q. The relevant manifold K is then the degree n Siegel upper half space Hn
consisting of symmetric n by n matrices Z = X+iY with Y > 0. For each non-negative integer
p, we let Np(Hn) denote the space of all polynomials of degree ≤ p in the entries of Y −1 with
holomorphic functions on Hn as coefficients. The space N(Hn) =

⋃
p≥0N

p(Hn) is the space of

nearly holomorphic functions on Hn. Note that N0(Hn) is the space of holomorphic functions
on Hn.

Given any congruence subgroup Γ of Sp2n(Q) and any irreducible finite-dimensional rational
representation (η, V ) of GLn(C), we let Np

η (Γ) denote the space of functions F : Hn → V such
that

(1) F ∈ Np(Hn),

(2) F (γZ) = η(CZ +D)(F (Z)) for all γ =

[
A B
C D

]
∈ Γ.

(3) F satisfies the “no poles at cusps” condition. This condition states that the Fourier
expansion of F at any cusp is supported on the positive semi-definite matrices.2

The set Np
η (Γ) (which is clearly a complex vector-space) is known as the space of nearly

holomorphic vector-valued modular forms of weight η and nearly holomorphic degree p for
Γ. In the special case (η, V ) = (detk,C), we denote the space Np

η (Γ) by Np
k (Γ). We let

Np
η (Γ)◦ ⊂ Np

η (Γ) denote the subspace of cusp forms (the cusp forms can be defined in the
usual way via a vanishing condition at all cusps for degenerate Fourier coefficients). We also
denote Mη(Γ) = N0

η (Γ), Sη(Γ) = N0
η (Γ)◦, Nη(Γ) =

⋃
p≥0N

p
η (Γ) and Nη(Γ)◦ =

⋃
p≥0N

p
η (Γ)◦.

In the case n = 1, Shimura proved [36, Thm. 5.2] a complete structure theorem that describes
the set Np

k (Γ) precisely for every weight k and every congruence subgroup Γ of SL2(Z). For
simplicity, write Nk(Γ) =

⋃
p≥0N

p
k (Γ). Let R denote the classical weight-raising operator on⋃

kNk(Γ) that acts on elements of Nk(Γ) via the formula k
y + 2i ∂∂z . It can be easily checked

that R takes Np
k (Γ) to Np+1

k+2 (Γ). Then a slightly simplified version of the structure theorem of
Shimura says that N0(Γ) = C, and for k > 0,

Nk(Γ) = R
k−2
2 (CE2) ⊕

⊕
`≥1

R
k−`
2 (M`(Γ)) , Nk(Γ)◦ =

⊕
`≥1

R
k−`
2 (S`(Γ)) , (2)

where we understand Rv = 0 if v /∈ Z≥0, and where E2 denotes the weight 2 nearly holomorphic
Eisenstein series obtained by putting k = 2 in (1). For the refined structure theorem taking into

1The typical situation is as follows. Let E(z, s) be an appropriately normalized Eisenstein series on some
Hermitian symmetric space that converges absolutely for Re(s) > s0 and transforms like a modular form in the

variable z. Suppose that E(z, k) is holomorphic for some k ∈ Z. Then E(z, s′) is typically a nearly holomorphic

modular form for all s′ such that s0 < s′ ≤ k, s′ ∈ Z; see [36, Thm. 4.2].
2If n > 1, the “no poles at cusps” condition follows automatically from the previous two conditions by the

Koecher principle.
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account the nearly holomorphic degree, we refer the reader to [29], where we reprove Shimura’s
results using representation-theoretic methods.

Shimura used his structure theorem to prove that the cuspidal holomorphic projection map
from Nk(Γ) to Sk(Γ) has nice Aut(C)-equivariance properties, and he even extended these
results to the half-integral case [37, Prop. 9.4]. As an application, Shimura obtained many
arithmetic results for ratios of Petersson norms and critical values of L-functions.

In the case n > 1, Shimura showed [39, Prop. 14.2] that if the lowest weight of η is “large
enough” compared to the nearly holomorphic degree, then the space Np

η (Γ) is spanned by the
functions obtained by letting differential operators act on various spaces Mη′(Γ). Using this, he
was able to construct an analogue of the projection map under some additional assumptions.
But the arithmetic results thus obtained are weaker than those for n = 1.

There is another aspect in which the state of our understanding of nearly holomorphic
modular forms is unsatisfactory, namely that the precise meaning of these objects in the modern
language of automorphic forms on reductive groups, à la Langlands, has not been worked out.
Most work done so far for nearly holomorphic forms has been in the classical language. There
has been some work in interpeting these forms from the point of view of vector bundles and
sheaf theory, see [17, 18, 27, 42]. There has also been some work on interpreting the differential
operators involved in the language of Lie algebra elements, but this has been carried out
explicitly only in the case n = 1 [11, 15]. A detailed investigation from the point of view of
automorphic representations has so far been lacking in the case n > 1.

The objective of this paper is to address the issues discussed above in the case n = 2, i.e.,
when Γ is a congruence subgroup of Sp4(Q). The relevant η’s in this case are the representa-

tions det` symm for integers `,m with m ≥ 0, and it is natural to use N`,m(Γ) to denote the
corresponding space of nearly holomorphic forms. We achieve the following goals.

• We prove a structure theorem for N`,m(Γ) that is (almost) as complete and explicit as
the n = 1 case. As a consequence, we are able to prove arithmetic results for this space
(as well as for certain associated “isotypic projection” maps, and ratios of Petersson
inner products) that improve previously known results in this direction.

• We make a detailed study of the spaces N`,m(Γ) in the language of (g,K)-modules and
automorphic forms for the group Sp4(R). We analyze the K-types, weight vectors and
composition series, write down completely explicit operators from the classical as well
as Lie-theoretic points of view, explain exactly how nearly holomorphic forms arise in
the Langlands framework, and describe the automorphic representations attached to
them.

In the rest of this introduction we explain these results and ideas in more detail.

1.2. The structure theorem in degree 2. Let Γ be a congruence subgroup of Sp4(Q). In
order to prove a structure theorem for N`,m(Γ), it is necessary to have suitable differential
operators that generalize the weight-raising operator considered above. In fact, it turns out
that one needs four operators, which we term X+, U , E+ and D+.

Each of these four operators acts on the set
⋃
`,mN`,m(Γ). They take the subspace Np

`,m(Γ)

to the subspace Np1
`1,m1

(Γ), where the integers `1,m1, p1 are given by the following table.
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operator `1 m1 p1

X+ ` m+ 2 p+ 1

U `+ 2 m− 2 p+ 1

E+ `+ 1 m p+ 1

D+ `+ 2 m p+ 2

(3)

Note that, in the above list, E+ is the only operator that changes the parity of `. For the
explicit formulas for the above differential operators, see (85) – (92) of this paper. We note that
the operator D+ was originally studied by Maass in his book [25] in the case of scalar-valued
forms. The operator X+ (for both scalar and vector-valued forms) was already defined in [4],
where it was called δ`+m. Also, the operator U was considered by Satoh [34] (who called it
D) in the very special case m = 2. To the best of our knowledge, explicit formulas for the
operators (except in the cases mentioned above) had not been written out before this work.

More generally, if X+ denotes the free monoid consisting of finite strings of the above four
operators, then each element X ∈ X+ takes Np

`,m(Γ) to Np1
`1,m1

(Γ) for some integers `1,m1, p1

(uniquely determined by `, m, p and X) that can be easily calculated using the above table.
In particular, the non-negative integer v = p1 − p depends only on X; we call it the degree of
X. For example, the operator Dr

+U
s ∈ X+ takes the space Np

`,2s(Γ) to N2r+s+p
`+2s+2r,0(Γ) and has

degree 2r + s.
Let X, `, m, `1, m1, v be as above. We show that X has the following properties.

(1) (Lemma 4.1) For all γ ∈ GSp4(R)+, we have

(XF )|`1,m1
γ = X(F |`,mγ).

(2) (Lemma 4.15) X takes N`,m(Γ)◦ to N`1,m1
(Γ)◦ and takes the orthogonal complement

of N`,m(Γ)◦ to the orthogonal complement of N`1,m1
(Γ)◦.

(3) (Proposition 4.17) There exists a constant c`,m,X (depending only on `, m, X) such
that for all F,G in S`,m(Γ),

〈XF,XG〉 = c`,m,X〈F,G〉.
(4) (Proposition 5.6) For all σ ∈ Aut(C), we have

σ
((2π)−vXF ) = (2π)−vX(σF ).

We now state a coarse version of our structure theorem for cusp forms.

Theorem 1.1 (Structure theorem for cusp forms, coarse version). Let `,m be integers with

m ≥ 0. For each pair of integers `′,m′, there is a (possibly empty3) finite subset X
`,m
`′,m′ of X+

such that the following hold.

(1) Each element X ∈ X
`,m
`′,m′ acts injectively on M`′,m′(Γ) and takes this space to N`,m(Γ).

(2) We have an orthogonal direct sum decomposition

N`,m(Γ)◦ =
⊕̀
`′=1

`+m−`′⊕
m′=0

∑
X∈X`,m

`′,m′

X(S`′,m′(Γ)).

3Indeed, X`,m
`′,m′ is empty unless m′ ≥ 0, 0 ≤ `′ ≤ `, 0 ≤ `′ +m′ ≤ `+m, and some additional parity conditions

are satisfied. Moreover, X
`,m
`,m is always the singleton set consisting of the identity map whenever `,m are

non-negative integers.
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For the refined version of this result, see Theorem 4.8, which contains an exact description

of the sets X
`,m
`′,m′ . We also formulate a version of this theorem for scalar valued cusp forms

(Corollary 4.10), as well as deduce a result for forms of a fixed nearly holomorphic degree
(Corollary 4.11).

Next, we turn to a structure theorem for the whole space, including the non-cusp forms. This
situation turns out to be more complicated. Indeed, we need to now also include certain non-
holomorphic objects among our building blocks. This is to be expected from the n = 1 situation,
where the nearly holomorphic Eisenstein series E2 appears in the direct sum decomposition (2).

For each m ≥ 0, we define a certain subspace M∗3,m(Γ) of N1
3,m(Γ) consisting of forms

that are annihilated by two differential operators that we call L and E− (see Section 3.4 for
their explicit formulas). From the definition, it is immediate that M∗3,m(Γ) contains M3,m(Γ).
However, it may potentially contain more objects. These extra elements in M∗3,m(Γ) cannot
exist if M1,m(Γ) = {0} (which is the case, for instance, when Γ = Sp4(Z)); moreover, if they
exist, they cannot be cuspidal, must lie inside N1

3,m(Γ), and cannot be obtained by applying
our differential operators to holomorphic modular forms of any weight. Furthermore, we can
prove that the space M∗3,m(Γ) is Aut(C)-invariant.

Now, we may state our general structure theorem as follows.

Theorem 1.2 (Structure theorem for all modular forms, coarse version). Let `,m be integers

with ` > 0 and m ≥ 0. For each pair of integers `′,m′, let X
`,m
`′,m′ be as in Theorem 1.1. Then

we have a direct sum decomposition

N`,m(Γ) =
⊕̀
`′=1
`′ 6=3

`+m−`′⊕
m′=0

∑
X∈X`,m

`′,m′

X(M`′,m′(Γ))⊕
`+m−3⊕
m′=0

∑
X∈X`,m

`′,m′

X(M∗3,m′(Γ)).

This decomposition is orthogonal in the sense that forms lying in different constituents, and
such that at least one of them is cuspidal, are orthogonal with respect to the Petersson inner
product.

For a refined version of this result, see Theorem 4.33. We note that the restriction to ` > 0
is not serious, since the only nearly holomorphic modular forms with ` ≤ 0 are the constant
functions.

1.3. Lowest weight modules and n-finite automorphic forms. We now describe the
representation-theoretic results that form the foundation for Theorems 1.1 and 1.2. We hope
that they are of independent interest, as they explain nearly holomorphic forms from the point
of view of representation theory.

Let g be the Lie algebra of Sp4(R), and let gC be its complexification. We fix a basis of
the root system of gC, and let n be the space spanned by the non-compact negative roots. It
is well known that vector-valued holomorphic modular forms F correspond to (scalar-valued)
automorphic forms4 Φ on Sp4(R) that are annihilated by n. The (g,K)-module 〈Φ〉 generated
by such a Φ is a lowest weight module, and Φ is a lowest weight vector in this module. In fact,
it will follow from our results that 〈Φ〉 is always an irreducible module (see Proposition 4.28).

We define a vector v in any representation of gC to be n-finite, if the space U(n)v is finite-
dimensional; here U(n) is the universal enveloping algebra of n, which in our case is simply a
polynomial ring in three variables. Applying this concept to the space of automorphic forms
on Sp4(R), we arrive at the notion of n-finite automorphic form, which is central to this work.
Let A(Γ)n-fin be the space of n-finite automorphic forms on Sp4(R) with respect to a fixed

4Here, and elsewhere in this paper, we use the term “automorphic form” in the sense of Borel-Jacquet [9, 1.3]; in

particular, our automorphic forms are always scalar-valued functions on Sp4(R). For the precise correspondence
between (nearly holomorphic) vector-valued modular forms for Γ, and automorphic forms on Sp4(R) with respect

to Γ, see Lemma 3.2 and Proposition 4.5 of this paper.
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congruence subgroup Γ. Finiteness results from the classical theory imply that A(Γ)n-fin is an
admissible (g,K)-module.

Clearly, the lowest weight module 〈Φ〉 considered above is contained in A(Γ)n-fin. We will
prove the following:

• Every automorphic form in A(Γ)n-fin gives rise to a vector-valued nearly holomorphic
modular form on H2. See Lemma 3.2, Proposition 4.27 and the discussion following it.

• Conversely, the automorphic form corresponding to a vector-valued nearly holomorphic
modular form on H2 lies in A(Γ)n-fin. See Proposition 4.5.

In other words, the n-finite automorphic forms correspond precisely to nearly holomorphic
modular forms. The lowest weight vectors in irreducible submodules of A(Γ)n-fin correspond
precisely to holomorphic modular forms.

The structure theorems 1.1 and 1.2 are reflections of the fact that, in a lowest weight module
appearing in A(Γ)n-fin, we can navigate from the lowest weight vector to any given K-type using
certain elements X+, U , E+ and D+ in U(gC) that correspond to the differential operators given
in table (3). See Proposition 2.15 for the precise statement.

To prove statements like Proposition 2.15, we need rather precise information about K-types
and multiplicities occurring in lowest weight modules. Such information is in principle available
in the literature, but it requires some effort to obtain it from general theorems. It turns out
that category O provides a framework well-suited for our purposes. More precisely, we will
work in a parabolic version called category Op, whose objects consist precisely of the finitely
generated (g,K)-modules in which all vectors are n-finite. This category thus contains all the
lowest weight modules relevant for the study of n-finite automorphic forms.

Basic building blocks in category Op are the parabolic Verma modules N(λ) and their unique
irreducible quotients L(λ); here, λ is an integral weight.5 We determine which of the N(λ) are
irreducible (Proposition 2.5), composition series in each reducible case (Proposition 2.6), and
which of the L(λ) are square-integrable, tempered, or unitarizable (Proposition 2.2). This is
slightly more information than needed for our applications to automorphic forms, but we found
it useful to collect all this information in one place.

By general principles, the admissible (g,K)-module A(Γ)n-fin decomposes into a direct sum
of indecomposable objects in category Op. The subspace of cusp forms A(Γ)◦n-fin ⊆ A(Γ)n-fin

decomposes in fact into a direct sum of irreducibles L(λ), due to the presence of an inner prod-
uct. The multiplicities with which each L(λ) occurs is given by the dimension of certain spaces
of holomorphic modular forms. We can thus determine the complete algebraic structure of the
space A(Γ)◦n-fin in terms of these dimensions. See Proposition 4.6 for the precise statement,
which may be viewed as a precursor to Theorem 1.1.

One cannot expect that the entire space A(Γ)n-fin also decomposes into a direct sum of
irreducibles. This is already not the case in the degree 1 situation, where the modular form
E2 generates an indecomposable but not irreducible module. Sections 4.5 and 4.6 are devoted
to showing that only a very limited class of indecomposable but not irreducible modules can
possibly occur in A(Γ)n-fin. These modules account for the presence of the spaces M∗3,m′(Γ) in

Theorem 1.2. The algebraic structure of the entire space A(Γ)n-fin in terms of dimensions of
spaces of modular forms is given in Proposition 4.27. As in the cuspidal case, this proposition
is a precursor to the structure theorem.

1.4. Applications of the structure theorem. The significance of the structure theorem
is twofold. On the one hand, it builds up the space of nearly holomorphic forms from holo-
morphic forms using differential operators. As the differential operators have nice arithmetic
properties, this essentially reduces all arithmetic questions about nearly holomorphic forms
to the case of holomorphic forms. Since there is considerable algebraic geometry known for

5The automorphic forms corresponding to elements in M`,m(Γ) generate the lowest weight module L(`+m, `).
We note that in previous papers, we have used the notation E(` + m, `) instead of L(` + m, `).
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the latter, powerful results can be obtained. For example, in Section 5.2, we show that the
“isotypic projection” map from N`,m(Γ) to

∑
X∈X`,m

`′,m′
X(M`′,m′(Γ)) (this is commonly called

the “holomorphic projection” map when ` = `′, m = m′) obtained from our structure theorem
is Aut(C)-equivariant (see Propositions 5.10 and 5.17). This is a considerable generalization
of results of Shimura. We also prove a result on the arithmeticity of ratios of Petersson inner
products (Proposition 5.18) that will be of importance in our subsequent work.

On the other hand, sometimes one prefers to deal with modular forms of scalar weight,
rather than vector-valued objects. The structure theorem gives an explicit and canonical way
to start with an element of M`,m(Γ) (with m even and ` ≥ 2) and produce a non-zero element

of N
m/2
`+m(Γ) lying in the same representation. (This does not work if ` = 1.) On a related note,

this will also allow one to write down a scalar-valued nearly holomorphic lift in cases where
previously only holomorphic vector-valued lifts have been considered (e.g., the Yoshida lift of
two classical cusp forms f and g both of weight bigger than 2).

Both these points of view will be combined in a forthcoming work where we will prove results
in the spirit of Deligne’s conjecture for the standard L-function attached to a holomorphic
vector valued cusp form with respect to an arbitrary congruence subgroup of Sp4(Q). Such
results have so far been proved (in the vector-valued case) only for forms of full level. The
main new ingredient of this forthcoming work will be to consider an integral representation
consisting only of scalar-valued nearly holomorphic vectors. The results of this paper will be
key to doing that.

There are many other potential applications of this work, some of which we plan to pursue
elsewhere. For example, one can use our structure theorems to produce exact formulas for the
dimensions of spaces of nearly holomorphic modular forms; to the best of our knowledge, no
such formulas are currently known in degree 2. One could try to see if our explicit formulas
could be used to deal with problems related to congruences or the construction of p-adic
measures for vector-valued Siegel modular forms, similar to what was done in the scalar-valued
case in [10]. One could apply our results to the study of nearly overconvergent modular forms
for congruence subgroups of Sp4(Z), following the general framework of [42]. One could also
explore applications of our work to arithmetic and combinatorial identities, à la [11].

Finally, it would be interesting to generalize the results of this paper to the case n > 2 and
possibly to other groups. We hope to come back to this problem in the future.

Acknowledgements. We would like to thank Siegfried Böcherer, Marcela Hanzer, Michael
Harris, and Jonathan Kujawa for helpful discussions. We would also like to thank Shuji Hori-
naga, who had kindly informed us about a mistake in an earlier version of this paper.

Notation.

(1) The symbols Z, Z≥0, Q, R, C, Zp and Qp have the usual meanings. The symbol A
denotes the ring of adeles of Q, and A× denotes its group of ideles. We let f denote the
set of finite places, and Af the subring of A with trivial archimedean component.

(2) For any commutative ring R and positive integer n, let Mn(R) denote the ring of n×n
matrices with entries in R, and let M sym

n (R) denote the subset of symmetric matrices.
We let GLn(R) denote the group of invertible elements in Mn(R), and we use R× to
denote GL1(R). If A ∈Mn(R), we let tA denote its transpose.

(3) Define Jn ∈ Mn(Z) by Jn =
[

0 In
−In 0

]
, where In is the n by n identity matrix. Let

GSp4 and Sp4 be the algebraic groups whose Q-points are given by

GSp4(Q) = {g ∈ GL4(Q) | tgJ2g = µ2(g)J2, µ2(g) ∈ Q×}, (4)

Sp4(Q) = {g ∈ GSp4(Q) | µ2(g) = 1}. (5)

Let GSp4(R)+ ⊂ GSp4(R) consist of the matrices with µ2(g) > 0.
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(4) For τ = x+ iy, we let

∂

∂τ
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂τ̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
denote the usual Wirtinger derivatives.

(5) The Siegel upper half space of degree n is defined by

Hn = {Z ∈Mn(C) | Z = tZ, i(Z − Z) is positive definite}.

For g = [A B
C D ] ∈ GSp4(R)+, Z ∈ H2, define J(g, Z) = CZ + D. We let I denote the

element [ i i ] of H2.
(6) We let g = sp4(R) be the Lie algebra of Sp4(R) and gC = sp4(C) the complexified Lie

algebra. We let U(gC) denote the universal enveloping algebra and let Z be its center.
We use the following basis for gC.

Z = −i
[

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
, Z ′ = −i

[
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

]
,

N+ =
1

2

[ 0 1 0 −i
−1 0 −i 0
0 i 0 1
i 0 −1 0

]
, N− =

1

2

[ 0 1 0 i
−1 0 i 0
0 −i 0 1
−i 0 −1 0

]
,

X+ =
1

2

[
1 0 i 0
0 0 0 0
i 0 −1 0
0 0 0 0

]
, X− =

1

2

[
1 0 −i 0
0 0 0 0
−i 0 −1 0
0 0 0 0

]
,

P1+ =
1

2

[
0 1 0 i
1 0 i 0
0 i 0 −1
i 0 −1 0

]
, P1− =

1

2

[ 0 1 0 −i
1 0 −i 0
0 −i 0 −1
−i 0 −1 0

]
,

P0+ =
1

2

[
0 0 0 0
0 1 0 i
0 0 0 0
0 i 0 −1

]
, P0− =

1

2

[
0 0 0 0
0 1 0 −i
0 0 0 0
0 −i 0 −1

]
.

(7) For all smooth functions f : Sp4(R) → C, X ∈ g, define (Xf)(g) = d
dt

∣∣
0
f(exp(tX)).

This action is extended C-linearly to gC. Further, it is extended to all elements X ∈
U(gC) in the usual manner.

2. Lowest weight representations

In this section we study the lowest weight representations of the Hermitian symmetric pair
(G,K), where G = Sp4(R) and K is its maximal compact subgroup. We will determine
composition series and K-types for each parabolic Verma module. Of course, lowest weight
representations have been extensively studied in the literature, in the more general context of
semisimple Lie groups. Much of our exposition will consist in making the general theorems
explicit in our low-rank case.

2.1. Set-up and basic facts. The subgroup K of Sp4(R) consisting of all elements of the
form

[
A B
−B A

]
is a maximal compact subgroup. It is isomorphic to U(2) via the map

[
A B
−B A

]
7→

A+ iB.
Let g = sp4(R) be the Lie algebra of Sp4(R), which we think of as a 10-dimensional space of

4×4 matrices. Let k be the Lie algebra of K; it is a four-dimensional subspace of g. Let gC (resp.
kC) be the complexification of g (resp. k). A Cartan subalgebra hC of kC (and of gC) is spanned
by the two elements Z and Z ′. If λ is in the dual space h∗C, we identify λ with the element
(λ(Z), λ(Z ′)) of C2. The root system of gC is Φ = {(±2, 0), (0,±2), (±1,±1), (±1,∓1)}. These
vectors lie in the subspace E := R2 of C2, which we think of as a Euclidean plane. The
analytically integral elements of h∗C are those that identify with points of Z2. These are exactly
the points of the weight lattice Λ. The following diagram indicates the weight lattice, as well
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as the roots and the elements of the Lie algebra spanning the corresponding root spaces.

-�

6

?

�
���

�
��	

@
@@R

@
@@I

X+X−

N+

N−

P0+

P0−

P1+

P1−

q q q q q q q
q q q q q q q
q q q q q q q
q q q q q q q
q q q q q q q
q q q q q q q
q q q q q q q

(6)

Here, (1,−1) and (−1, 1) are the compact roots, with the corresponding root spaces being
spanned by N+ and N−. We declare the set

Φ+ = {(−2, 0), (−1,−1), (0,−2), (1,−1)}

to be a positive system of roots. We define an ordering on Λ by

µ 4 λ ⇐⇒ λ ∈ µ+ Υ, (7)

where Υ is the set of all Z≥0-linear combinations of elements of Φ+. Hence, under this ordering,
(0,−2) is maximal among the non-compact positive roots.

Let Z be the center of the universal enveloping algebra U(gC). A particular element in Z is
the Casimir element

Ω2 =
1

2
Z2 +

1

2
Z ′2 − 1

2
(N+N− +N−N+) +X+X− +X−X+

+
1

2
(P1+P1− + P1−P1+) + P0+P0− + P0−P0+. (8)

Using the commutation relations, an alternative form is

Ω2 =
1

2
Z2 +

1

2
Z ′2 − Z − 2Z ′ −N−N+ + 2X+X− + P1+P1− + 2P0+P0−. (9)

The characters of Z are indexed by elements of h∗C modulo Weyl group action; see Sects.
1.7–1.10 of [20]. Let χλ be the character of Z corresponding to λ ∈ h∗C. We normalize this
correspondence such that χ% is the trivial character (i.e., the central character of the trivial
representation of U(gC)); here, % = (−1,−2) is half the sum of the positive roots. Note that
Humphrey’s χλ is our χλ+%.

If kC acts on a space V , and v ∈ V satisfies Zv = kv and Z ′v = `v for k, ` ∈ C, then we say
that v has weight (k, `). If the weight lies in E, we indicate it as a point in this Euclidean plane.
Let V be a finite-dimensional kC-module. Then this representation of kC can be integrated to
a representation of K if and only if all occurring weights are analytically integral. The isomor-
phism classes of irreducible such kC-modules, or the corresponding irreducible representations
of K, are called K-types.

Let V be a K-type. A non-zero vector v ∈ V is called a highest weight vector if N+v = 0.
Such a vector v is unique up to scalars. Let (k, `) be its weight. Then the weights occurring
in V are (k − j, `+ j) for j = 0, 1, . . . , k − `. In particular, the dimension of V is k − `+ 1. If
we associate with each K-type its highest weight, then we obtain a bijection between K-types
and analytically integral elements (k, `) with k ≥ `.

Definition 2.1. We let Λ+ denote the subset of Λ consisting of pairs of integers (k, `) with
k ≥ `. If λ ∈ Λ+, we denote by ρλ the corresponding K-type.
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Let p± = 〈X±, P1±, P0±〉. Then p+ and p− are commutative subalgebras of gC, and we have
[kC, p±] ⊂ p±. Let ρλ be a K-type. Let F (λ) be any model for ρλ. We consider F (λ) a module
for kC + p− by letting p− act trivially. Let

N(λ) := U(gC)⊗kC+p− F (λ). (10)

Then N(λ) is a gC-module in the obvious way. It also is a (g,K)-module, with K-action given
by g.(X⊗v) = Ad(g)(X)⊗ρλ(g)v for g ∈ K, X ∈ U(gC) and v ∈ F (λ). The modules N(λ) are
often called highest weight modules in the literature. However, when we think of the K-type ρλ
as the weight of a modular form, it will be more natural to think of the N(λ) as lowest weight
modules.

As vector spaces, we have

N(λ) = U(p+)⊗C F (λ). (11)

Since U(p+) is simply a polynomial algebra in X+, P1+, P0+, it follows that N(λ) is spanned
by the vectors

Xα
+ P

β
1+ P

γ
0+N

δ
− w0, α, β, γ, δ ≥ 0, δ ≤ k − `, (12)

where λ = (k, `), and these vectors are linearly independent. Here, w0 is a highest weight
vector in F (λ) (identified with the element 1 ⊗ w0 in the tensor product (10)). Alternatively,
N(λ) is spanned by the vectors

Nδ
−X

α
+ P

β
1+ P

γ
0+ w0, α, β, γ, δ ≥ 0, (13)

but these are not linearly independent.
It will be convenient to work in a parabolic version of category O; see Sect. 9 of [20]. Let

n = 〈X−, P1−, P0−〉; this is the same as p−, but we will use the symbol n henceforth. Let M
be a gC-module. We say M lies in category Op if it satisfies the following conditions:

(Op1) M is a finitely generated U(gC)-module.
(Op2) M is the direct sum of K-types.
(Op3) M is locally n-finite, meaning: For each v ∈M the subspace U(n)v is finite-dimensional.

Recall that, by definition, all the weights occurring in a K-type are analytically integral. It
follows that all the weights occurring in any module in category Op are integral.

Evidently, the modules N(λ) defined in (10) satisfy these conditions. In fact, they are
nothing but the parabolic Verma modules defined in Sect. 9.4 of [20]. From the theory developed
there, we have the following basic properties of the modules N(λ).

(1) Each weight of N(λ) occurs with finite multiplicity. These multiplicities can be deter-
mined from (12).

(2) N(λ) contains the K-type ρλ with multiplicity one.
(3) The module N(λ) has the following universal property: Let M be a (g,K)-module

which contains a vector v such that:
• M = U(gC)v;
• v has weight λ;
• v is annihilated by 〈X−, P1−, P0−, N+〉.

Then there is a surjection N(λ)→M mapping a highest weight vector in N(λ) to v.
(4) N(λ) admits a unique irreducible submodule, and a unique irreducible quotient L(λ).

In particular, N(λ) is indecomposable.
(5) N(λ) has finite length. Each factor in a composition series is of the form L(µ) for some

µ 4 λ.
(6) N(λ) admits a central character, given by χλ+%. Here, as before, % = (−1,−2) is half

the sum of the positive roots.
(7) L(λ) is finite-dimensional if and only if λ = (k, `) with 0 ≥ k ≥ `.

The modules M in Op enjoy properties analogous to those in category O. In particular:
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• M has finite length, and admits a filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn ⊂M, (14)

with Vi/Vi−1
∼= L(λ) for some λ ∈ Λ+.

• M can be written as a finite direct sum of indecomposable modules.
• If M is an indecomposable module, then there exists a character χ of Z such that
M = M(χ). Here,

M(χ) = {v ∈M | (z − χ(z))nv = 0 for some n depending on z}. (15)

The following result, which is deeper, follows from standard classification theorems. Its last
part will imply that cusp forms must have positive weight (see Proposition 4.6).

Proposition 2.2. Let λ = (k, `) ∈ Λ+.

(1) L(λ) is square-integrable if and only if ` ≥ 3.
(2) L(λ) is tempered if and only if ` ≥ 2.
(3) L(λ) is unitarizable if and only if ` ≥ 1 or (k, `) = (0, 0).

Proof. (1) follows from the classification of discrete series representations; see Theorem 12.21
of [23]. (The L(λ) with ` ≥ 3 are precisely the holomorphic discrete series representations.)

(2) follows from the classification of tempered representations; see Theorem 8.5.3 of [23].
(The L(λ) with ` = 2 are precisely the limits of holomorphic discrete series representations.)

For a more explicit description of these classifications in the case of Sp4(R), see [26].
(3) follows from the classification of unitary highest weight modules; see [22], [12] or [13].

We omit the details. �

Lemma 2.3. The only irreducible, locally n-finite (g,K)-modules are the L(λ) for λ ∈ Λ+.

Proof. Let R be a locally n-finite (g,K)-module. Then R lies in category Op. By (14), R has
a finite composition series with the quotients being L(λ)’s. So if R is irreducible, it must be
an L(λ). �

Lemma 2.4. Let λ = (k, `) ∈ Λ+. The Casimir operator Ω2 defined in (8) acts on N(λ), and
hence on L(λ), by the scalar 1

2 (k(k − 2) + `(`− 4)).

Proof. Since Ω2 lies in the center of U(gC), it is enough to prove that Ω2w0 = 1
2 (k(k − 2) +

`(`− 4))w0, where w0 is a vector of weight (k, `). This follows from (9). �

2.2. Reducibilities and K-types. In this section we will determine composition series for
each of the modules N(λ), and determine the K-types of each N(λ) and L(λ).

Proposition 2.5. Let λ = (k, `) ∈ Λ+. Then N(λ) is irreducible if and only if one of the
following conditions is satisfied:

(1) ` ≥ 2.
(2) k = 1.
(3) k + ` = 3.

Hence N(λ) is irreducible if and only if λ corresponds to one of the blackened points in the
following diagram: r r r rr r r r rr r b b b bb r b r b b bb b r b b r b bb b b r b b b r bb b b b r b b b b r

(16)
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Proof. Most cases can be handled by Theorem 9.12 in [20]. The condition (*) in this theorem
translates into ` ≥ 2. Hence, by part a) of the theorem, N(λ) is irreducible if ` ≥ 2, and by
part b) of the theorem, N(λ) is reducible if ` ≤ 1 and λ+ % is regular (does not lie on a wall).

Hence consider λ with ` ≤ 1 and λ + % singular. Then either λ = (1, `) with ` ≤ 1 or
λ = (x + 1,−x + 2) with x ≥ 1. In the second case it is clear that no L(λ′) with λ′ 6= λ has
the same central character as N(λ); thus N(λ) is irreducible. In the case that λ = (1, `) with
` ≤ 1 we may use Theorem 9.13 in [20] (Jantzen’s simplicity criterion) to see that N(λ) is
irreducible, as follows. The set of roots Ψ+

λ defined on page 198 of [20] is easily calculated to
be {(−1,−1), (0,−2)}. Hence, by Corollary 9.13 a) of [20], N(λ) is irreducible if and only if

θ(s(−1,−1) · λ) + θ(s(0,−2) · λ) = 0. (17)

Here, the dot action of the Weyl group is defined in Sect. 1.8 of [20], and

θ(µ) = ch(M(µ))− ch(M(s(1,−1) · µ)) (18)

for any µ ∈ Λ+. It is straightforward to calculate that the characters involved on the left hand
side of (17) cancel each other out, so that (17) is satisfied. �

We see from (16) that the λ = (k, `), k ≥ `, for which N(λ) is reducible fall into one of three
regions:

• Region A: k ≤ 0; these are the dominant integral weights.
• Region B: k ≥ 2 and k + ` ≤ 2.
• Region C: ` ≤ 1 and k + ` ≥ 4.

In addition, we will consider

• Region D: ` ≥ 3.

Note that the disjoint union of Regions A – D comprises precisely the regular integral weights
with k ≥ `.

The dot action of an element w of the Weyl group W on λ ∈ h∗C is defined by w · λ =
w(λ+ %)− %, where on the right side we have the usual action of W via reflections, and where
% = (−1,−2) is half the sum of the positive roots. Let s1 ∈W be the reflection corresponding
to the short simple root, and let s2 ∈ W be the reflection corresponding to the long simple
root. Explicitly, s1(x, y) = (y, x) and s2(x, y) = (−x, y). Under the dot action, we have

s2 ·A = B, s2s1 ·A = C, s2s1s2 ·A = D, (19)

where we wrote “A” for “Region A”, etc. Consequently, s2s1s2 · B = C and s1s2s1 · C = D.

Proposition 2.6. Let λ = (k, `) ∈ Λ+.

(1) Assume that λ is in Region A. Then there is an exact sequence

0 −→ L(s2 · λ) −→ N(λ) −→ L(λ) −→ 0.

The weight s2 · λ = (−k + 2, `) is in Region B.
(2) Assume that λ is in Region B. Then there is an exact sequence

0 −→ L(s2s1s2 · λ) −→ N(λ) −→ L(λ) −→ 0.

The weight s2s1s2 · λ = (−`+ 3,−k + 3) is in Region C.
(3) Assume that λ is in Region C. Then there is an exact sequence

0 −→ L(s1s2s1 · λ) −→ N(λ) −→ L(λ) −→ 0,

The weight s1s2s1 · λ = (k,−`+ 4) is in Region D.

Proof. In this proof we will make use of the fact that a composition series for any N(λ) is
multiplicity free, i.e., each L(µ) can occur at most once as a subquotient in such a series.
This fact is generally true for Hermitian symmetric pairs (g, p) and other pairs for which p is
maximal parabolic; see [7] or [8].
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We first prove (3). Thus, assume that λ is in Region C. By general properties, each factor in
a composition series of N(λ) is of the form L(µ) for some µ 4 λ. Also, N(λ) and L(µ) have the
same central character, which is equivalent to λ and µ being in the same W -orbit under the dot
action. The only µ satisfying these properties, other than λ itself, is s1s2s1 · λ = (k,−` + 4).
Since N(λ) is reducible by Proposition 2.5, the module L(s1s2s1 · λ) occurs at least once in
a composition series for N(λ). By multiplicity one, L(s1s2s1 · λ) occurs exactly once. The
assertion follows.

To prove (1) and (2), assume that λ is in Region A. By Theorem 9.16 of [20], there is an
exact sequence

0 −→ N(s2s1s2 · λ) −→ N(s2s1 · λ)

−→ N(s2 · λ) −→ N(λ) −→ L(λ) −→ 0. (20)

Note that N(s2s1s2 ·λ) = L(s2s1s2 ·λ) by Proposition 2.5. By the already proven part (3), we
get an exact sequence

0 −→ L(s2s1 · λ) −→ N(s2 · λ) −→ N(λ) −→ L(λ) −→ 0. (21)

It follows that N(λ) and N(s2 · λ) have the same length. By central character considerations
and multiplicity one, the length of N(s2 · λ) can be at most 3. Hence the common length of
N(λ) and N(s2 · λ) is 2 or 3, and our proof, of both (1) and (2), will be complete if we can
show this length is 2.

By Proposition 9.14 of [20], the socle of N(λ) is simple. It follows that the length of N(λ)
coincides with its Loewy length. We are thus reduced to showing that the Loewy length of
N(λ) is 2.

For this we will employ Theorem 4.3 of [21]. In the notation of this paper we have SWλ =
{1, s2, s2s1, s2s1s2}. From (20) and (21) we conclude that the set SXλ determining the socular
weights contains at least s2s1 and s2s1s2. It follows from (21) that N(λ) does not contain
L(s2s1 · λ) in its composition series. Hence (s2s1)∨ = s2, where w∨ for w ∈ SXλ is defined on
p. 734 of [21]. A computation of the elements w, defined on p. 743 of [21] for w ∈ SWλ, yields

1 = 1, s2 = s2, s2s1 = s1, s2s1s2 = s2.

Thus the number t appearing in Theorem 4.3 of [21], defined as the maximal length of any w,
is 1. The hypothesis of this theorem is satisfied (set x = s2s1). The theorem implies that the
Loewy length of any N(w · λ) for w ∈ SWλ is at most 2. In particular, the Loewy length of
N(λ) is 2, concluding our proof. �

We will next determine the K-types in N(λ). Let V be any admissible (g,K)-module. For
a weight λ ∈ Λ, let Vλ be the corresponding weight space. We denote by

mλ(V ) = dimVλ (22)

the multiplicity of the weight λ in V . Let

multλ(V ) = the multiplicity of the K-type ρλ in V. (23)

It follows from the weight structure of the K-types that

multλ(V ) = mλ(V )−mλ+(1,−1)(V ). (24)

Let Q(λ) be the number of ways to write λ ∈ Λ as a Z≥0 linear combination of (2, 0), (1, 1)
and (0, 2). It is easy to see that, for λ = (x, y) with integers x, y,

Q(x, y) =


⌊min(x, y) + 2

2

⌋
if x, y ≥ 0 and x ≡ y mod 2,

0 otherwise.

(25)
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Lemma 2.7. Let λ = (k, `) ∈ Λ+. Let x, y be integers with x ≥ y. Then

mult(x,y)(N(λ)) = 0 if x < k, or y < `, or x− y 6≡ k − ` mod 2.

If x ≥ k and y ≥ ` and x− y ≡ k − ` mod 2, then

mult(x,y)(N(λ)) =


⌊min(x− k, y − `) + 2

2

⌋
if y ≤ k,⌊min(x− k, y − `)

2

⌋
−
⌊y − k − 1

2

⌋
if y > k.

Proof. It follows from (12) that

m(x,y)(N(λ)) =

k−∑̀
n=0

Q(x− k + n, y − `− n). (26)

The result now follows from (24) and some simplification. �

Proposition 2.6 combined with Lemma 2.7 allows us to calculate the multiplicities of the
K-types of any L(λ). Note also that if λ is not in Region A, B or C, then L(λ) = N(λ)
by Proposition 2.5, so that Lemma 2.7 can be used directly to calculate the multiplicities.
We record a few special cases in the following result; the details of the elementary proofs are
omitted.

Proposition 2.8. Let x ≥ y be integers.

(1) Assume that λ = (`, `) with an integer ` ≥ 1. Then

mult(x,y)(L(λ)) = 0 if x < `, or y < `, or x 6≡ y mod 2.

If x ≥ ` and y ≥ ` and x ≡ y mod 2, then

mult(x,y)(L(λ)) =

{
1 if y ≡ ` mod 2,

0 if y 6≡ ` mod 2.

(2) Assume that λ = (k, 1) with an integer k ≥ 2. Then

mult(x,y)(L(λ)) = 0 if x < k, or y < 1, or x− y 6≡ k − 1 mod 2.

If x ≥ k and y ≥ 1 and x− y ≡ k − 1 mod 2, then

mult(x,y)(L(λ)) =

{
1 if y ≤ x− k + 1,

0 if y > x− k + 1.

(3) Assume that λ = (k, `) is in Region C. Then mult(x,y)(L(λ)) = 0 if y ≥ x− k − `+ 4.
Hence, all the K-types of L(λ) are strictly below the diagonal line running through the
point (k,−`+ 4).

(4) Assume that λ = (2, 0). Then

mult(x,y)(L(λ)) =

{
1 if x ≥ 2, y ≥ 0 and x ≡ y ≡ 0 mod 2,

0 otherwise.

Finally, we consider the location of the boundary K-types in the modules N(λ) for any
λ = (k, `) with k ≥ `. By Lemma 2.7, all the boundary K-types occur with multiplicity one.
There are no K-types ρ(x,y) for x < k or y < `. For x = k or y = ` the K-types occur in steps
of 2. The top boundary is provided by the line y = x if k ≡ ` mod 2, or the line y = x − 1 if
k 6≡ ` mod 2. In the first case, the K-types on this line occur in steps of 2, in the second case
in steps of 1. The following diagrams illustrate these two cases.
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(k, `)

k 6≡ ` mod 2

(27)

2.3. Navigating the highest weight vectors. Let V be a (g,K)-module. In this section we
will investigate a collection of elements of U(gC) that preserve the property of being a highest
weight vector in some K-type. In other words, these elements X will have the property that
N+Xv = 0 if N+v = 0. Evidently, elements that commute with N+, like X+ and P0−, have
this property.

Table 1. Some elements of U(gC) that take highest weight vectors to highest
weight vectors. The last column shows the resulting weight after applying an
operator to a vector of weight (`+m, `).

name definition new weight

P0− (`+m, `− 2)

L m(m− 1)X− − (m− 1)P1−N− + P0−N
2
− (`+m− 2, `)

U m(m− 1)P0+ + (m− 1)P1+N− +X+N
2
− (`+m, `+ 2)

X+ (`+m+ 2, `)

E+ (m+ 2)P1+ + 2N−X+ (`+m+ 1, `+ 1)

E− (m+ 2)P1− − 2N−P0− (`+m− 1, `− 1)

D+ P 2
1+ − 4X+P0+ (`+m+ 2, `+ 2)

D− P 2
1− − 4X−P0− (`+m− 2, `− 2)

More specifically, we consider a vector v ∈ V of weight (` + m, `) for m ≥ 0. The new
elements of U(gC) that we introduce are called U , L, E+, E−, D+, and D−. Their definitions
appear in Table 1. These operators take v to another vector in V of the weight indicated in the
“new weight” column. Note that the operators U , L, E+ and E− depend on m. However, for
brevity, our notation will not reflect this dependence. The formulas for the operators U and L
are given only for m ≥ 2; we adopt the convention that U = L = 0 if m < 2.
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Remark 2.9. As was pointed out by the referee, the element Z−Z ′ of U(gC) acts on a vector of
weight (`+m, `) by multiplication by m; therefore the operators in Table 1 can be defined as
single elements of U(gC) without needing to involve the integer m. This leads to the alternate
definitions below, which are equivalent to the ones given in Table 1:

L = X−(Z − Z ′)(Z − Z ′ − 1)− P1−N−(Z − Z ′ − 1) + P0−N
2
−,

U = P0+(Z − Z ′)(Z − Z ′ − 1) + P1+N−(Z − Z ′ − 1) +X+N
2
−,

E+ = P1+(Z − Z ′ + 2) + 2N−X+,

E− = P1−(Z − Z ′ + 2)− 2N−P0−.

Lemma 2.10. Let ` be an integer, and m a non-negative integer. Let v be a vector of weight
(` + m, `) in some (g,K)-module V . Let X ∈ U(gC) be one of the elements in Table 1. Then
N+Xv = 0 if N+v = 0. The weight of Xv is indicated in the last column of Table 1. For the
U and L operators we assume m ≥ 2.

Proof. In order to show that N+Xv = 0 if N+v = 0, it suffices to show that N+X ∈ U(gC)N+.
This is easily verified using the commutation relations. The weight of Xv as indicated in the
last column of Table 1 is also immediate from the commutation relations. �

As we already mentioned, [N+, X+] = [N+, P0−] = 0. The two-step diagonal operators D±
have in fact the property that [N+, D±] = [N−, D±] = 0. The other operators in Table 1 do
not universally commute with N+. Using the commutation relations, one may further verify
that

X+E+ = E+X+, (28)

UE+ = E+U, (29)

D+E+ = E+D+, (30)

UD+ = D+U, (31)

X+U − UX+ = (m+ 1)D+. (32)

We remind the reader that the particular element in U(gC) that each operator appearing in
the above equations corresponds to, depends on the weight of the vector that the operator will
act on. For instance, consider both sides of (28) acting on a vector of weight (`+m, `). Then
the E+ on the left side is given by the formula in Table 1 while the E+ on the right side is
obtained by the substitution m 7→ m+ 2 in the same formula.

Now consider a weight λ = (` + m, `) with ` ∈ Z and m ≥ 0. By Lemma 2.7, if a K-type
ρ(x,y) occurs in N(λ), then x ≥ `+m and y ≥ `. We may therefore hope to generate all highest
weight vectors in the K-types of N(λ) by applying appropriate powers of the operators X+,
D+, U and E+ to the lowest weight vector w0 of N(λ). We will see below that this is indeed
the case.

As a first step in this direction, consider the K-types ρ(x,y) with x = ` + m; these are the
ones that are straight above the minimal weight. By Lemma 2.7, these are exactly the K-types
(` + m, ` + 2i), i ∈ {0, 1, . . . , bm2 c}, and each of these occurs with multiplicity 1 in N(λ). Let
w0 be a lowest weight vector (i.e., a highest weight vector in the minimal K-type of N(λ));
thus, w0 has weight (`+m, `), and N+w0 = 0. For i ∈ {0, 1, . . . , bm2 c}, let6

wi = U iw0. (33)

Then wi has weight (`+m, `+ 2i), and N+wi = 0. If wi 6= 0, then it is a highest weight vector
in the K-type ρ(`+m,`+2i) of N(λ).

6Once again, we remind the reader that the operator U i in (33) is really shorthand for Um+2−2i . . . Um−2 Um;

i.e., the integer m appearing in the definition of U changes at each step.
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Lemma 2.11. With the above notations,

P0−wi+1 = −(i+ 1)(`+ i− 1)(m− 2i)(m− 2i− 1)wi.

for i ∈ {0, 1, . . . , bm2 c − 1}. In particular, if ` ≥ 2, then wi 6= 0 for all i ∈ {0, 1, . . . , bm2 c}.

Lemma 2.12. Suppose λ = (`+m, `) with m ≥ 0, m even, and ` ≥ 1. If ` = 1, assume further
that m = 0. Let w0 be a non-zero vector of weight (` + m, `) in N(λ) such that N+w0 = 0.

Then, for all β ≥ 0, P
m/2
0− Dβ

−D
β
+U

m/2w0 is a non-zero multiple of w0.

The above two lemmas can be proved by routine calculation.
Before stating the next result, it will be convenient to introduce the concept of N−-layers.

Let λ = (`+m, `) ∈ Λ with ` ∈ Z and m ≥ 0. Given a non-negative integer δ, the δ-th N−-layer
of N(λ), denoted by N(λ)δ, is defined as the subspace spanned by all vectors of the form

Xα
+ P

β
1+ P

γ
0+N

δ
− w0, α, β, γ ≥ 0. (34)

Here, as before, w0 is a fixed non-zero vector of weight λ. Note that N(λ)δ = 0 for δ > m.
By (12), we have N(λ) = N(λ)0 ⊕ . . . ⊕ N(λ)m. We also introduce the notation N(λ)≤δ =
N(λ)0⊕. . .⊕N(λ)δ. Observe that, since N− normalizes p+ = 〈P0+, P1+, X+〉, in any expression
involving these four operators we may always move the N−’s to the right. In fact,

N−Y w0 ∈ Y N−w0 +N(λ)δ for Y ∈ U(p+)Nδ
−. (35)

It follows that the operator N− maps N(λ)δ to N(λ)δ ⊕ N(λ)δ+1. In particular, N− induces
an endomorphism of the top layer N(λ)m.

Lemma 2.13. Let λ = (`+m, `) ∈ Λ+.

(1) Let f ∈ C[X,Y, Z] be a non-zero polynomial. Then the element f(X+, P1+, P0+) of
U(gC) acts injectively on N(λ), and it preserves N−-layers.

(2) The restriction of E+ to N(λ)≤(m−1) is injective.

Proof. (1) is immediate from (11). (2) follows easily from (35) and the defining formula E+ =
(m+ 2)P1+ + 2N−X+. �

Lemma 2.14. Let λ = (` + m, `) ∈ Λ with ` ≥ 2 and m ≥ 0. Let the vectors wi ∈ N(λ) be
defined as in (33). Then the vectors

Xα
+D

β
+wi, α, β ≥ 0, i ∈

{
0, 1, . . . ,

⌊m
2

⌋}
, (36)

are linearly independent.

Proof. First note that the wi are non-zero by Lemma 2.11. By Lemma 2.13 (1), all the vectors

(36) are non-zero. We see from the defining formula for the U operator in Table 1 that Xα
+D

β
+wi

lies in N(λ)≤2i, but not in N(λ)≤(2i−1). It follows that any linear combination between the
vectors (36) can only involve a single i. But for fixed i the vectors (36) have distinct weights
as α and β vary. Our assertion follows. �

Recall from Lemma 2.7 that if a K-type ρ(x,y) occurs in N(λ), where λ = (` + m, `), then
x− y ≡ m mod 2. We say that such a K-type is of parity 0 if x ≡ `+m mod 2 and y ≡ ` mod
2. Otherwise, if x 6≡ `+m mod 2 and y 6≡ ` mod 2, we say the K-type is of parity 1. We apply
the same terminology to the highest weight vectors of such K-types. Clearly, the operators
X+, P0−, U , L and D± preserve the parity, while E± change the parity. Let N(λ)par(0) (resp.
N(λ)par(1)) be the subspace of N(λ) spanned by highest weight vectors of parity 0 (resp. parity
1). We now state the main result of this section.

Proposition 2.15. Let λ = (`+m, `) ∈ Λ+ with ` ≥ 2 and m ≥ 0.

(1) N(λ)par(0) is precisely the space spanned by the vectors (36).
(2) If m is odd, then the map E+ : N(λ)par(0) → N(λ)par(1) is an isomorphism.
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(3) If m is even, then the map E+ : N(λ)par(0) → N(λ)par(1) is surjective, and its kernel
is spanned by the vectors (36) with i = m/2.

Proof. (1) Clearly, the highest weight vectors (36) all have parity 0. By easy combinatorics we
can determine the number of vectors (36) of a fixed weight (x, y). Comparing with the formula
from Lemma 2.7, we see that this number coincides with mult(x,y)(N(λ)). This proves (1) in
view of the linear independence of the vectors (36).

(2) If m is odd, then the vectors (36) are all contained in N(λ)≤(m−1). Hence E+ :
N(λ)par(0) → N(λ)par(1) is injective by part (1) and Lemma 2.13 (2). To prove surjectiv-
ity, it is enough to show that mult(x,y)(N(λ)) = mult(x−1,y−1)(N(λ)) for all (x, y) of parity 1.
This follows from the formula in Lemma 2.7.

(3) Assume that m is even. The vector wm/2 has weight (`+m, `+m). By Lemma 2.7, the
K-type ρ(`+m+1,`+m+1) is not contained in N(λ); see also (27). Hence E+wm/2 = 0. By (28)
- (30) , E+ annihilates all vectors (36) with i = m/2. The vectors (36) with i < m/2 are all
contained in N(λ)≤(m−1). Therefore, the assertion about the kernel of E+ follows from part
(1) and Lemma 2.13 (2).

To prove the surjectivity assertion, first note that, by Lemma 2.7,

mult(x,y)(N(λ)) =

{
mult(x−1,y−1)(N(λ)) if y ≤ `+m,

mult(x−1,y−1)(N(λ))− 1 if y > `+m,

for all K-types ρ(x,y) of parity 1. The K-type ρ(x−1,y−1) of parity 0 receives a contribution
from a vector (36) with i = m/2 if and only if y > `+m. The surjectivity therefore follows by
what we already proved about the kernel of E+. �

Remark 2.16. Let N(λ)hw = N(λ)par(0)⊕N(λ)par(1) be the subspace of highest weight vectors,
and let I be the subalgebra of U(p+) generated by X+ and D+. Then Proposition 2.14 implies
that N(λ)hw is a free I-module of rank m + 1, the dimension of the minimal K-type. For
holomorphic discrete series representations, i.e., for ` ≥ 3, this also follows from the main
result of [19].

The case of lowest weight (1 + m, 1). In Proposition 2.15 we assumed ` ≥ 2 since otherwise
some of the vectors wi might be zero; see Lemma 2.11. However, for later applications we also
require the following analogous result for the L(λ) with λ = (1 +m, 1).

Proposition 2.17. Let λ = (1 + m, 1) with m ≥ 0. Let w0 be a non-zero vector of weight
(1 +m, 1) in L(λ).

(1) L(λ)par(0) is precisely the space spanned by the vectors

Xα
+D

β
+w0, α, β ≥ 0. (37)

(2) If m ≥ 1, then the map E+ : L(λ)par(0) → L(λ)par(1) is an isomorphism. If m = 0,
then L(λ)par(1) = 0.

Proof. The proof is similar to the previous case, and is omitted. �

3. Differential operators

3.1. Functions on the group and functions on H2. Recall that K ∼= U(2) via
[
A B
−B A

]
7→

A + iB. On the Lie algebra level, this map induces an isomorphism k ∼= u(2) given by the
same formula. Extending this map C-linearly, we get an isomorphism kC ∼= gl2(C). Under this
isomorphism,

Z 7−→
[

1 0
0 0

]
, Z ′ 7−→

[
0 0
0 1

]
, N+ 7−→

[
0 1
0 0

]
, N− 7−→

[
0 0
−1 0

]
. (38)
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Let ` be an integer, and m a non-negative integer. Let Wm ' symm(C2) be the space of all
complex homogeneous polynomials of total degree m in the two variables S and T . For any
g ∈ GL2(C), and P (S, T ) ∈ Wm, define η`,m(g)P (S, T ) = det(g)`P ((S, T )g). Then (η`,m,Wm)

gives a concrete realization of the irreducible representation det` symm of GL2(C). We will
denote the derived representation of gl2(C) by the same symbol η`,m. Easy calculations show
that, under the identification (38),

η`,m(Z)Sm−jT j = (`+m− j)Sm−jT j , (39)

η`,m(Z ′)Sm−jT j = (`+ j)Sm−jT j , (40)

η`,m(N+)Sm−jT j = jSm−j+1T j−1, (41)

η`,m(N−)Sm−jT j = −(m− j)Sm−j−1T j+1. (42)

In particular, η`,m(N+)Sm = 0 and η`,m(N−)Tm = 0. Since the vector Sm is a highest weight
vector of weight (`+m, `), we see that

The restriction of η`,m to U(2) is ρ(`+m,`). (43)

For a smooth function Φ on Sp4(R) of weight (` + m, `) satisfying N+Φ = 0, we define a

function ~Φ taking values in the polynomial ring C[S, T ] by

~Φ(g) =

m∑
j=0

(−1)j

j!
(N j
−Φ)(g)Sm−jT j , g ∈ Sp4(R). (44)

Evidently, ~Φ takes values in the space Wm ⊂ C[S, T ] of the representation η`,m. Hence, an

expression like η`,m(h)(~Φ(g)) makes sense, for any h ∈ GL2(C).
In the following lemma, for clarity of notation, we let ι be the transposition map on 2 × 2

complex matrices. We may interpret ι as an anti-involution of GL2(C). The derived map, also
given by transposition and also denoted by ι, is an anti-involution of gl2(C). It extends to an
anti-involution of the algebra U(gl2(C)). When we write ι(h) for h ∈ K, we mean ι applied to
the element of U(2) corresponding to h ∈ K via the map

[
A B
−B A

]
7→ A+ iB.

Lemma 3.1. Let ` be any integer, and m a non-negative integer. Let Φ be a K-finite function

on Sp4(R) of weight (` + m, `) satisfying N+Φ = 0 (right translation action). Let ~Φ be the
polynomial-valued function defined in (44). Then

~Φ(gh) = η`,m(ι(h))(~Φ(g)), for h ∈ K (45)

and g ∈ Sp4(R). On the Lie algebra level,

(X~Φ)(g) = η`,m(ι(X))(~Φ(g)) (46)

for X ∈ U(kC) and g ∈ Sp4(R). More generally,

(Y X~Φ)(g) = η`,m(ι(X))((Y ~Φ)(g)) (47)

for X ∈ U(kC), Y ∈ U(gC) and g ∈ Sp4(R).

Proof. Fixing g ∈ Sp4(R), we first claim that (46) holds for X ∈ kC. In fact, this assertion is
easily verified using the formulas (39) – (42). For X = N+ the identity

N+N
j
− = N j

−N+ + jN j−1
− (Z ′ − Z) + j(j − 1)N j−1

−

is helpful.
Replacing g by g exp(tY ) and taking d

dt

∣∣
0

on both sides, one proves that (46) also holds

for elements of degree 2 in U(kC). Continuing in this manner, we see that (46) holds for any
element X ∈ U(kC). Now using that exp((dη)(X)) = η(exp(X)) for any representation η and
X ∈ k, one can derive the identity (45).
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To prove (47), replace g by g exp(tY ) in (46) for some Y ∈ g. Taking d
dt

∣∣
0

on both sides,

we see that (47) holds for Y ∈ g, and then also for Y ∈ gC. Continuing in this manner, we
conclude that (47) holds for Y ∈ U(gC) of any degree. �

Evidently, the function Φ in Lemma 3.1 can be recovered as the Sm-component of ~Φ. It

is easy to see that the map Φ 7→ ~Φ establishes an isomorphism between the space of K-
finite functions of weight (` + m, `) satisfying N+Φ = 0, and the space of smooth functions
~Φ : Sp4(R)→Wm satisfying (45).

For later use, we make the following observation. Recall from Sect. 2.1 that we have n =
〈X−, P1−, P0−〉, and that this commutative Lie algebra is normalized by kC. For a smooth
function Φ of weight (`+m, `) satisfying N+Φ = 0, we then have

nΦ = 0 ⇐⇒ n~Φ = 0. (48)

(on both sides we mean the right translation action of n on smooth functions on the group).
This follows from the definition (44), and the fact that N− normalizes n.

Descending to the Siegel upper half space. From the vector-valued function ~Φ we can construct
a vector-valued function on H2, as follows. For g ∈ Sp4(R) and Z ∈ H2, let

J(g, Z) = CZ +D, g =

[
A B
C D

]
. (49)

Then J(g1g2, Z) = J(g1, g2Z)J(g2, Z). Since ι(h) = h̄−1 for h ∈ U(2), the transformation

property (45) can be rewritten as ~Φ(gh) = η`,m(J(h, I))−1~Φ(g) for h ∈ K; recall that I = [ i i ].

It follows that the Wm-valued function g 7→ η`,m(J(g, I))~Φ(g) is right K-invariant. Hence, this
function descends to a function F on H2

∼= Sp4(R)/K. Explicitly, we define F by

F (Z) = η`,m(J(g, I))~Φ(g), (50)

where g is any element of Sp4(R) satisfying gI = Z. Conversely, if F is a smooth Wm-

valued function on H2, then we can define a smooth function ~Φ on Sp4(R) by the formula
~Φ(g) = η`,m(J(g, I))−1F (gI). Clearly, ~Φ satisfies the transformation property (45). Combining

the maps Φ 7→ ~Φ and ~Φ 7→ F , we obtain the following result.

Lemma 3.2. Let ` be any integer, and m a non-negative integer. Let V`,m be the space of
smooth K-finite functions Φ : Sp4(R) → C of weight (` + m, `) satisfying N+Φ = 0. Then
V`,m is isomorphic to the space of smooth functions F : H2 → Wm. If Φ ∈ V`,m, then the

corresponding function F is given by (50), where ~Φ is defined in (44).

Given any function F : H2 →Wm, we will write F in the form

F (Z) =

m∑
j=0

Fj(Z)Sm−jT j ,

and call the complex-valued functions Fj the component functions of F . The component F0 is

obtained from F by setting (S, T ) = (1, 0). The component F1 is obtained by taking ∂
∂T and

then setting (S, T ) = (1, 0). In general,

Fj(Z) =
1

j!

∂j

∂T j
F (Z)

∣∣
(S,T )=(1,0)

. (51)

Next, we introduce coordinates on H2, as follows. Let us write an element Z ∈ H2 as

Z =

[
τ z
z τ ′

]
, τ = x+ iy, z = u+ iv, τ ′ = x′ + iy′, (52)
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where x, y, u, v, x′, y′ are real numbers, y, y′ > 0, and yy′ − v2 > 0. We set

bZ =


1 x u

1 u x′

1
1




1 v/y′

1
1

−v/y′ 1



a

b
a−1

b−1

 (53)

with

a =

√
y − v2

y′
and b =

√
y′. (54)

Then bZ is an element of the Borel subgroup of Sp4(R), and bZI = Z. Every element of Sp4(R)
can be written as bZh for a uniquely determined Z ∈ H2 and a uniquely determined h ∈ K.

If F , Φ, ~Φ are as above, then the following relation is immediate from (50).

F (Z) = ηl,m(J(bZ , I))~Φ(bZ). (55)

3.2. The action of the root vectors. Let Φ, ~Φ and F be as in Lemma 3.2. In this section

we will calculate (X~Φ)(bZ), where X is any of the root vectors X±, P1±, P0±, N±, and where
bZ is the element defined in (53). The result will be expressed in terms of differential operators
applied to the function F . As a consequence, we will prove that F is holomorphic if and only
if nΦ = 0.

For Z ∈ H2, let DZ = J(bZ , I). Then DZ is simply the lower right 2 × 2-block of bZ ,
explicitly,

DZ =

[
1

−v/y′ 1

][
a−1

b−1

]
, a =

√
y − v2

y′
, b =

√
y′. (56)

Proposition 3.3. Let (η,W ) be a finite-dimensional holomorphic representation of GL2(C).

Let F be a W -valued smooth function on H2, and let ~Φ be the corresponding W -valued function
on Sp4(R), i.e.,

~Φ(g) = η(J(g, I))−1F (gI).

Let bZ be as in (53), and DZ as in (56). Then the following formulas hold.

η(DZ)(N+
~Φ)(bZ) = η(DZ)η(

[
0 0
1 0

]
)η(DZ)−1F (Z). (57)

η(DZ)(N−~Φ)(bZ) = −η(DZ)η(

[
0 1
0 0

]
)η(DZ)−1F (Z). (58)

η(DZ)(P0+
~Φ)(bZ) = η(DZ)η(

[
0 0
0 1

]
)η(DZ)−1F (Z).

+
2i

y′

(
v2 ∂F

∂τ
+ vy′

∂F

∂z
+ y′2

∂F

∂τ ′

)
(Z). (59)

η(DZ)(P0−~Φ)(bZ) = −2i

y′

(
v2 ∂F

∂τ̄
+ vy′

∂F

∂z̄
+ y′2

∂F

∂τ̄ ′

)
(Z). (60)

η(DZ)(P1+
~Φ)(bZ) = η(DZ)η(

[
0 1
1 0

]
)η(DZ)−1F (Z)

+
2i

y′

√
∆
(

2v
∂F

∂τ
+ y′

∂F

∂z

)
(Z). (61)

η(DZ)(P1−~Φ)(bZ) = −2i

y′

√
∆
(

2v
∂F

∂τ̄
+ y′

∂F

∂z̄

)
(Z). (62)

η(DZ)(X+
~Φ)(bZ) = η(DZ)η(

[
1 0
0 0

]
)η(DZ)−1F (Z) +

2i

y′
∆
∂F

∂τ
(Z). (63)
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η(DZ)(X−~Φ)(bZ) = −2i

y′
∆
∂F

∂τ̄
(Z). (64)

Here, we used the abbreviation ∆ = yy′ − v2.

Proof. To prove these formulas, one has to first compute the action of a basis of root vectors
in the uncomplexified Lie algebra. This is relatively straightforward using the definitions,
though somewhat tedious. Once that is done, the action of the root vectors above lying in the
complexified Lie algebra follows by linearity. We omit the details. �

Corollary 3.4. Let ` be any integer, and m a non-negative integer. Let Φ : Sp4(R)→ C be a
K-finite function of weight (` + m, `) satisfying N+Φ = 0. Let F : H2 → Wm be the function
corresponding to Φ according to Lemma 3.2. Then F is holomorphic if and only if nΦ = 0.

Proof. It follows from (60), (62) and (64) that F is holomorphic if and only if n~Φ = 0. Now
use (48). �

3.3. The differential operators in classical language. Let ` be any integer, and m a non-
negative integer. Let Φ be a K-finite complex-valued function on Sp4(R) of weight (` + m, `)
satisfying N+Φ = 0. Let F : H2 → Wm be the function corresponding to Φ according to
Lemma 3.2. Let X be one of the operators defined in Table 1, and set Ψ = XΦ. Then Ψ is
a K-finite function satisfying N+Ψ = 0, of weight indicated in Table 1. Hence, according to
Lemma 3.2, there exists a vector-valued function G corresponding to Ψ. In this section, we
write down G in terms of F for all elements X defined in Table 1. The proofs rely on our
formulas for the action of the root vectors (Proposition 3.3). The calculations involved, while
long and detailed, are essentially routine, and therefore omitted.

Going down. We start with X = P0−. Hence, let Ψ = P0−Φ. Then Ψ has weight (`+m, `− 2)
and satisfies N+Ψ = 0. Let G : H2 →Wm+2 be the function corresponding to Ψ according to
Lemma 3.2. The following diagram illustrates the situation.

(weight (`+m, `)) Φ −−−−→ ~Φ −−−−→ F (values in Wm)

P0−

y
(weight (`+m, `− 2)) Ψ −−−−→ ~Ψ −−−−→ G (values in Wm+2)

(65)

Let F0, . . . , Fm be the component functions of F , and let G0, . . . , Gm+2 be the component
functions of G; see (51). We define three differential operators on H2,

∂̄0 = 2i
(
v2 ∂

∂τ̄
+ vy′

∂

∂z̄
+ y′2

∂

∂τ̄ ′

)
, (66)

∂̄1 = −2i
(

2vy
∂

∂τ̄
+ (yy′ + v2)

∂

∂z̄
+ 2vy′

∂

∂τ̄ ′

)
, (67)

∂̄2 = 2i
(
y2 ∂

∂τ̄
+ vy

∂

∂z̄
+ v2 ∂

∂τ̄ ′

)
. (68)

The following result expresses the Gj in terms of the Fi.

Proposition 3.5. With the above notations,

Gj = −
(
∂̄2Fj−2 + ∂̄1Fj−1 + ∂̄0Fj

)
(69)

for j = 0, . . . ,m+ 2. (We understand Fi = 0 for i < 0 or i > m.)
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Going left. Next we write down the effect of the operator L, whose defining formula is given
in Table 1. In order for L to be defined, we assume m ≥ 2. Let Ψ = LΦ. Then Ψ has weight
(` + m − 2, `), and N+Ψ = 0. Let G : H2 → Wm−2 be the function corresponding to Ψ. Let
F0, . . . , Fm be the component functions of F , and let G0, . . . , Gm−2 be the component functions
of G; see (51).

Proposition 3.6. With the above notations,

Gj = −(m− j)(m− j − 1)∂̄2Fj

+ (m− j − 1)(j + 1)∂̄1Fj+1

− (j + 2)(j + 1)∂̄0Fj+2. (70)

for j = 0, . . . ,m− 2.

Going up. Next, we consider U , whose defining formula is given in Table 1. We will assume
m ≥ 2, so that U is well-defined. Let Ψ = UΦ. Then Ψ has weight (`+m, `+2), and N+Ψ = 0.
Let G : H2 → Wm−2 be the function corresponding to Ψ. Let F0, . . . , Fm be the component
functions of F , and let G0, . . . , Gm−2 be the component functions of G; see (51). The following
result expresses the Gj in terms of the Fi.

Proposition 3.7. With the above notations,

Gj = (m− j)(m− j − 1)
(

(`− 1)
y

∆
+ 2i

∂

∂τ ′

)
Fj

+(m− j − 1)(j + 1)
(

(`− 1)
2v

∆
− 2i

∂

∂z

)
Fj+1

+(j + 2)(j + 1)
(

(`− 1)
y′

∆
+ 2i

∂

∂τ

)
Fj+2 (71)

for j = 0, . . . ,m− 2.

Going right. Next we calculate the effect of the operator X+. Let Ψ = X+Φ. Then Ψ has
weight (` + m + 2, `), and N+Ψ = 0. Let G : H2 → Wm+2 be the function corresponding to
Ψ. Let F0, . . . , Fm be the component functions of F , and let G0, . . . , Gm+2 be the component
functions of G; see (51).

Proposition 3.8. With the above notations,

Gj =
(

(`+m)
y

∆
+ 2i

∂

∂τ ′

)
Fj−2

−
(

(`+m)
2v

∆
− 2i

∂

∂z

)
Fj−1

+
(

(`+m)
y′

∆
+ 2i

∂

∂τ

)
Fj (72)

for j = 0, . . . ,m+ 2.

Remark 3.9. The operator X+ is the same as the operator δ`+m occurring in [4].

The degree 1 diagonal operators. Let Ψ± = E±Φ. Then Ψ± has weight (`+m± 1, `± 1), and
N+Ψ± = 0. Let G± : H2 →Wm be the function corresponding to Ψ±. Let F0, . . . , Fm be the
component functions of F , and let G±0 , . . . , G

±
m be the component functions of G±; see (51).

The following result expresses the G±j in terms of the Fi.

Proposition 3.10. With the above notations,

G+
j = (m− j + 1)

(
(2`+m− 2)

y

∆
+ 4i

∂

∂τ ′

)
Fj−1

+ (m− 2j)
(
− (2`+m− 2)

v

∆
+ 2i

∂

∂z

)
Fj
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− (j + 1)
(

(2`+m− 2)
y′

∆
+ 4i

∂

∂τ

)
Fj+1, (73)

G−j = 2(m+ 1− j)∂̄2Fj−1 + (m− 2j)∂̄1Fj − 2(j + 1)∂̄0Fj+1, (74)

for j = 0, . . . ,m. (We understand Fi = 0 for i < 0 or i > m.) The differential operators
∂̄0, ∂̄1, ∂̄2 are the ones defined in (66) – (68).

The degree 2 diagonal operators. Let Ψ± = D±Φ. Then Ψ has weight (` + m ± 2, ` ± 2), and
N+Ψ± = 0. Let G± : H2 →Wm be the function corresponding to Ψ±. Let F0, . . . , Fm be the
component functions of F , and let G±0 , . . . , G

±
m be the component functions of G±; see (51).

For scalar-valued or vector-valued functions on H2, we define the differential operator

∂̄3 = 2i
(
y
∂

∂τ̄
+ v

∂

∂z̄
+ y′

∂

∂τ̄ ′

)
. (75)

The following result expresses the G±j in terms of the Fi.

Proposition 3.11. With the above notations,

G+
j = (m− j + 1)(m− j + 2)

y2

∆2
Fj−2

+

(
4i(m− j + 1)

( y
∆

∂

∂z
+

2v

∆

∂

∂τ ′
)
− 2(m− 2j + 1)(m− j + 1)

vy

∆2

)
Fj−1

+

[
(4j2 + 4l2 − 4jm+m(m− 3) + l(4m− 2))

v2

∆2

+ (j2 − jm− (2l − 1)(l +m))
2yy′

∆2
+ 16

∂2

∂τ∂τ ′
− 4

∂2

∂z2

− 4i
(

(2j + 2l − 1)
y

∆

∂

∂τ
+ (m+ 2l − 1)

v

∆

∂

∂z
+ (2m− 2j + 2l − 1)

y′

∆

∂

∂τ ′

)]
Fj

+

(
4i(j + 1)

(2v

∆

∂

∂τ
+
y′

∆

∂

∂z

)
+ 2(m− 2j − 1)(j + 1)

vy′

∆2

)
Fj+1

+ (j + 1)(j + 2)
y′2

∆2
Fj+2, (76)

G−j =
(

4∆2
(

4
∂

∂τ̄

∂

∂τ̄ ′
− ∂2

∂z̄2

)
− 2∆∂̄3

)
Fj , (77)

for j = 0, . . . ,m.

Remark 3.12. The formula for D+ in the special case that m = 0 (the scalar valued case) is
given by

D+F =
(
− 2l(2l − 1)

∆
− 4i(2l − 1)

∆

(
y
∂

∂τ
+ v

∂

∂z
+ y′

∂

∂τ ′
)

+ 4
(
4

∂2

∂τ∂τ ′
− ∂2

∂z2

))
F. (78)

In this case, the operator D+ was originally defined by Maass in his book [25].

3.4. Nearly holomorphic functions. Let p be a non-negative integer. We will write elements
Z ∈ H2 as Z = X + iY with real X and Y . By definition of H2, the real symmetric matrix
Y is positive definite. We let Np(H2) denote the space of all polynomials of degree ≤ p in the
entries of Y −1 with holomorphic functions on H2 as coefficients. The space

N(H2) =
⋃
p≥0

Np(H2)

is the space of nearly holomorphic functions on H2. Evidently, N(H2) is a ring, and we have
Np(H2)Nq(H2) ⊂ Np+q(H2). For convenience, we let Np(H2) = 0 for negative p. If f ∈ N(H2)
lies in Np(H2) but not in Np−1(H2), we say that f has nearly holomorphic degree p. Note that
N0(H2) is the space of holomorphic functions on H2.
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As before, we will use the coordinates (52) on H2, and set ∆ = yy′− v2. The entries of Y −1

are then y/∆, v/∆ and y′/∆. Since y
∆
y′

∆ −
v2

∆2 = 1
∆ , the function 1

∆ is a nearly holomorphic
function. For a typical nearly holomorphic monomial we will use the notation[

α, β, γ
]

:=
( y

∆

)α( v
∆

)β(y′
∆

)γ
; (79)

here, α, β, γ are non-negative integers.
We may ask how the various differential operators we defined in previous sections behave

with respect to nearly holomorphic functions. It is easy to see that the basic partial derivatives

∂

∂τ
,

∂

∂z
,

∂

∂τ ′
,

∂

∂τ̄
,

∂

∂z̄
,

∂

∂τ̄ ′

map Np(H2) to Np+1(H2). The following lemma gives the action of differential operators, in-
cluding those defined in (66) – (68) and (75), on a nearly holomorphic monomial. In particular,
the lemma shows that the operators ∂̄0, ∂̄1, ∂̄2 act as “nearly holomorphic derivatives”.

Lemma 3.13. The following formulas hold for all non-negative integers α, β, γ.

∂̄0

[
α, β, γ

]
= α

[
α− 1, β, γ

]
, (80)

∂̄1

[
α, β, γ

]
= β

[
α, β − 1, γ

]
, (81)

∂̄2

[
α, β, γ

]
= γ

[
α, β, γ − 1

]
, (82)

∂̄3

[
α, β, γ

]
= (α+ β + γ)

[
α, β, γ

]
, (83)

D−
[
α, β, γ

]
= β(β − 1)

[
α, β − 2, γ

]
− 4αγ

[
α− 1, β, γ − 1

]
. (84)

Proof. Everything follows from direct calculations. �

As a consequence, we note that the operators ∂̄0, ∂̄1, ∂̄2 commute on N(H2) (they do not
commute on all of C∞(H2)).

Lemma 3.14. Assume that F =
∑
α,β,γ≥0[α, β, γ]Fα,β,γ is a nearly holomorphic function,

where the Fα,β,γ are holomorphic. Then F is zero if and only if all Fα,β,γ are zero.

Proof. This can be proved by induction on the nearly holomorphic degree, using the formulas
(80) – (82). �

Operators on vector-valued functions. Let ` be any integer, and m a non-negative integer.
Let C∞`,m(H2) be the space of smooth functions F : H2 → Wm. Note that this space does

not actually depend on `; nevertheless, it will be useful to carry this subindex along (the
significance of this subindex will be seen in the next chapter, when we will restrict to the
subspace of C∞`,m(H2) consisting of forms F which transform via η`,m with respect to some

congruence subgroup).
For each of the operators X appearing in Table 1 we will define a linear map X : C∞`,m(H2)→

C∞`1,m1
(H2), where (`1 +m1, `1) is the “new weight” given in Table 1. Some of the operators X

will depend on `, (or m, or both) but, as before, our notation will not reflect this dependence.
If m < 2, we set U = L = 0. In all other cases, the definitions will be in terms of

the component functions F0, . . . , Fm of F given by F (Z) =
∑m
j=0 Fj(Z)Sm−jT j , and are as

follows.

(P0−F )j = right hand side of (69), (85)

(LF )j = right hand side of (70), (86)

(UF )j = right hand side of (71), (87)

(X+F )j = right hand side of (72), (88)

(E+F )j = right hand side of (73), (89)
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(E−F )j = right hand side of (74), (90)

(D+F )j = right hand side of (76), (91)

(D−F )j = right hand side of (77). (92)

These formulas hold for all j ∈ Z, but the expressions on the right hand sides are automatically
zero if j < 0 or j > m1.

For a non-negative integer p, let Np
`,m(H2) be the subspace of C∞`,m(H2) consisting of those

F for which all component functions Fj are in Np(H2). Hence, these are nearly holomorphic
Wm-valued functions. The space N0

`,m(H2) consists of the holomorphic Wm-valued functions.

Table 2. Let X be one of the operators given in the first column. Let F ∈
Np
`,m(H2). Then XF ∈ Np1

`1,m1
(H2), with `1,m1, p1 given in the last three

columns of the table. The second column indicates the direction from the old
weight (`+m, `) to the new weight (`1 +m1, `1), assuming F corresponds to
the K-finite function Φ : Sp4(R)→ C of weight (`+m, `). If m < 2, then by
definition, U = L = 0.

operator direction new ` new m new p

P0− ↓ `− 2 m+ 2 p− 1

L ← ` m− 2 p− 1

U ↑ `+ 2 m− 2 p+ 1

X+ → ` m+ 2 p+ 1

E+ ↗ `+ 1 m p+ 1

E− ↙ `− 1 m p− 1

D+ ↗ `+ 2 m p+ 2

D− ↙ `− 2 m p− 2

Proposition 3.15. Let ` be any integer, and m a non-negative integer. Let X be one of the
operators in Table 1. Let F ∈ C∞`,m(H2).

(1) Assume that F corresponds, via Lemma 3.2, to the K-finite function Φ on Sp4(R) of
weight (` + m, `) satisfying N+Φ = 0. Then XF corresponds to XΦ. In other words,
the diagram

V`,m
∼−−−−→ C∞`,m(H2)

X

y yX
V`1,m1

∼−−−−→ C∞`1,m1
(H2)

(93)

is commutative. Here, `1,m1 are given in Table 2, and the horizontal isomorphisms
are those from Lemma 3.2.

(2) If F ∈ Np
`,m(H2), then XF ∈ Np1

`1,m1
(H2), where `1,m1, p1 are given in the last three

columns of Table 2.
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Proof. (1) simply summarizes the content of Propositions 3.5, 3.6, 3.7, 3.8, 3.10 and 3.11.
(2) follows from the formulas (85) – (92), together with Lemma 3.13. �

We see from (2) of this result that if we walk in the direction of one of the roots in n, then
the nearly holomorphic degree decreases, while if we walk in the direction of one of the roots in
p+, then the nearly holomorphic degree (potentially) increases. In the next section, we will use
the following holomorphy criterion to prove that spaces of nearly holomorphic modular forms
are finite-dimensional.

Lemma 3.16. Let ` be any integer, and m a non-negative integer. Let F ∈ C∞`,m(H2). Let

p ∈ {0, 1}.
(1) If m = 0, then the following are equivalent:

(a) F ∈ Np(H2).
(b) P0−F ∈ Np−1(H2).

In particular, F is holomorphic if and only if P0−F = 0.
(2) If m = 1, then the following are equivalent:

(a) F ∈ Np(H2).
(b) P0−F,E−F ∈ Np−1(H2).

In particular, F is holomorphic if and only if P0−F = E−F = 0.
(3) If m ≥ 2, then the following are equivalent:

(a) F ∈ Np(H2).
(b) P0−F,E−F,LF ∈ Np−1(H2).

In particular, F is holomorphic if and only if P0−F = E−F = LF = 0.

Proof. These properties can be verified from the explicit formulas for the operators written
above. The details are omitted. �

4. The structure theorems

4.1. Modular forms. Recall that, for a positive integer N , the principal congruence subgroup
Γ(N) consists of all elements of Sp4(Z) that are congruent to the identity matrix modulo N .
A congruence subgroup of Sp4(Q) is a subgroup that, for some N , contains Γ(N) with finite
index. The reason that we do not restrict ourselves to subgroups of Sp4(Z) is that we would
like to include groups like the paramodular group.

Let ` be an integer, and m a non-negative integer. Recall from Sect. 3.1 that η`,m denotes

the (m + 1)-dimensional representation det` symm of GL2(C). As before, let C∞`,m(H2) be the

space of smooth Wm-valued functions on H2. We define a right action of Sp4(R) on C∞`,m(H2)
by

(F
∣∣
`,m

g)(Z) = η`,m(J(g, Z))−1F (gZ) for g ∈ Sp4(R), Z ∈ H2. (94)

In the following we fix a congruence subgroup Γ of Sp4(Q). Let C∞`,m(Γ) be the space of smooth
functions F : H2 →Wm satisfying

F
∣∣
`,m

γ = F for all γ ∈ Γ. (95)

It is easy to see that F ∈ C∞`,m(H2) has this transformation property if and only if the function

Φ ∈ V`,m corresponding to F via Lemma 3.2 satisfies Φ(γg) = Φ(g) for all g ∈ Sp4(R) and
γ ∈ Γ. Let V`,m(Γ) be the subspace of V`,m consisting of Φ with this transformation property.
If X is one of the operators in Table 1, then it follows from Proposition 3.15 that there is a
commutative diagram

V`,m(Γ)
∼−−−−→ C∞`,m(Γ)

X

y yX
V`1,m1(Γ)

∼−−−−→ C∞`1,m1
(Γ)

(96)
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Here, `1,m1 are the integers given in Table 2. (One could verify directly that if F satisfies (95),
then XF satisfies (XF )

∣∣
`1,m1

γ = F for all γ ∈ Γ, but the use of the diagrams is much easier.)

More generally, one has the following basic commutation relation.

Lemma 4.1. Let X be the free monoid consisting of all (finite) strings of the symbols in the left
column of Table 1. Suppose that X is an element of X and let (`1,m1) be the integers (uniquely
determined by `, m and X) such that X takes C∞`,m(Γ) to C∞`1,m1

(Γ). Let γ ∈ Sp4(R). Then,

for all F ∈ C∞`,m(H2), we have (XF )|`1,m1
γ = X(F |`,mγ).

Proof. Let Φ be the function corresponding to F via Lemma 3.2. Then it follows from Propo-
sition 3.15 that XΦ corresponds to XF . On the other hand, the operation |`1,m1γ corresponds
to left multiplication of the argument by γ. Define a function Φ1 on Sp4(R) by Φ1(g) = Φ(γg).
Now the proof follows from the obvious identity (XΦ)(γg) = (XΦ1)(g). �

Fourier expansions. Now let F ∈ C∞`,m(Γ) ∩ Np
`,m(H2). Hence, F is nearly holomorphic and

satisfies (95). Let F0, . . . , Fm be the component functions of F , as defined in (51). Suppose
Fj is written as Fj =

∑
α,β,γ [α, β, γ]Fj,α,β,γ with holomorphic functions Fj,α,β,γ ; see (79) for

notation. Since F is invariant under the translations τ 7→ τ +N , z 7→ z +N and τ ′ 7→ τ ′ +N
for some positive integer N , the same is true for Fj and each Fj,α,β,γ ; observe here Lemma
3.14. Thus Fj,α,β,γ admits a Fourier expansion

Fj,α,β,γ(Z) =
∑
Q

aj,α,β,γ(Q)e2πiTr(QZ), (97)

where Q runs over matrices
[ a b/2
b/2 c

]
with a, b, c ∈ 1

NZ. It follows that Fj admits a Fourier

expansion

Fj(Z) =
∑
Q

aj(Q)e2πiTr(QZ), aj(Q) :=
∑
α,β,γ

aj,α,β,γ(Q)
[
α, β, γ

]
, (98)

and that F admits a Fourier expansion

F (Z) =
∑

Q∈Msym
2 (Q)

a(Q)e2πiTr(QZ), (99)

where

a(Q) =

m∑
j=0

∑
α,β,γ

aj,α,β,γ(Q)
[
α, β, γ

]
Sm−jT j . (100)

Thus, the Fourier coefficients of F are polynomial functions in the entries of Y −1 taking values
in Wm. For fixed Q, the complex-valued functions aj(Q) in (98) are nothing but the component
functions of a(Q). If X is one of the operators defined in (85), (86), (90) or (92), and if F has
Fourier expansion (99), then XF has Fourier expansion

(XF )(Z) =
∑
Q

(Xa(Q))e2πiTr(QZ). (101)

This follows directly from the definitions and the fact that e2πiTr(QZ) is holomorphic for all
matrices Q. If X is one of the operators defined in (87), (88), (89) or (91), then the Fourier
expansion of XF is more complicated. However, it is easy to see that

(XF )(Z) =
∑
Q

b(Q)e2πiTr(QZ), with b(Q) = 0 if a(Q) = 0. (102)

Hence, none of the eight operators introduces any “new” Fourier coefficients.



LOWEST WEIGHT MODULES AND NEARLY HOLOMORPHIC FORMS 29

Nearly holomorphic modular forms. Let ` be an integer, and m, p be non-negative integers. For
a congruence subgroup Γ, let Np

`,m(Γ) be the space of all functions F : H2 → Wm with the
following properties.

(1) F ∈ Np
`,m(H2).

(2) F satisfies the transformation property (95).
(3) F satisfies the “no poles at cusps” condition. This means: For any g ∈ Sp4(Q) the

function F
∣∣
`,m

g admits a Fourier expansion of the form (99) such that a(Q) = 0 unless

Q is positive semidefinite.

Let N`,m(Γ) =
⋃
p≥0N

p
`,m(Γ). We refer to N`,m(Γ) as the space of nearly holomorphic Siegel

modular forms of weight det` symm with respect to Γ. We sometimes write M`,m(Γ) for
N0
`,m(Γ); this is the usual space of holomorphic vector-valued Siegel modular forms taking

values in η`,m.
An element F ∈ N`,m(Γ) is called a cusp form if it vanishes at all cusps. By definition,

this means: For any g ∈ Sp4(Q) the function F
∣∣
`,m

g admits a Fourier expansion of the form

(99), for some N , such that a(Q) = 0 unless Q is positive definite. We write N`,m(Γ)◦ for the
subspace of cusp forms. Let Np

`,m(Γ)◦ = N`,m(Γ)◦ ∩Np
`,m(Γ). We sometimes write S`,m(Γ) for

N0
`,m(Γ)◦; this is the usual space of holomorphic vector-valued Siegel cusp forms taking values

in η`,m.

Lemma 4.2. The spaces Np
`,m(Γ) and Np

`,m(Γ)◦ are finite-dimensional.

Proof. Obviously, we only need to prove this for Np
`,m(Γ). It is well known, and can be proved

using Harish-Chandra’s general finiteness result stated as Theorem 1.7 in [9], that the statement
is true for p = 0, i.e., for holomorphic modular forms. Assume that p > 0. If m = 0, then, by
(1) of Lemma 3.16, the map F 7→ P0−F gives rise to an exact sequence

0 −→M`,m(Γ) −→ Np
`,m(Γ) −→ Np−1

`−2,m+2(Γ).

If m = 1, then, by (2) of Lemma 3.16, the map F 7→ (P0−F,E−F ) gives rise to an exact
sequence

0 −→M`,m(Γ) −→ Np
`,m(Γ) −→ Np−1

`−2,m+2(Γ)⊕Np−1
`−1,m(Γ).

If m ≥ 2, then, by (3) of Lemma 3.16, the map F 7→ (P0−F,E−F,LF ) gives rise to an exact
sequence

0 −→M`,m(Γ) −→ Np
`,m(Γ) −→ Np−1

`−2,m+2(Γ)⊕Np−1
`−1,m(Γ)⊕Np−1

`,m−2(Γ).

Hence our assertion follows by induction on p. �

4.2. Automorphic forms. Let Γ be a congruence subgroup of Sp4(Q). We denote by A(Γ)
the space of automorphic forms on Sp4(R) with respect to Γ. Recall that an automorphic
form is a smooth function on Sp4(R) that is left Γ-invariant, Z-finite, K-finite and slowly
increasing; here Z is the center of U(gC). Let A(Γ)◦ be the subspace of cuspidal automorphic
forms. We refer to [9] for precise definitions of these notions. The spaces A(Γ) and A(Γ)◦ are
(g,K)-modules under right translation.

Let dg be any Haar measure on Sp4(R). For Φ1 and Φ2 in A(Γ), we define the integral

〈Φ1,Φ2〉 :=
1

vol(Γ\Sp4(R))

∫
Γ\Sp4(R)

Φ1(g)Φ2(g) dg (103)

whenever it is absolutely convergent. This happens, for example, whenever at least one of Φ1

and Φ2 lies in A(Γ)◦. In particular, 〈 , 〉 defines an inner product on A(Γ)◦ invariant under
right translations by Sp4(R). For an element X ∈ g, we have

〈XΦ1,Φ2〉+ 〈Φ1, XΦ2〉 = 0.
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By general principles (see [9] and the references therein) A(Γ)◦ decomposes into an orthogonal
direct sum of irreducible (g,K)-modules, each occurring with finite multiplicity.

Let λ = (k, `) be an element of the weight lattice Λ. We say that Φ ∈ A(Γ) has weight
λ if ZΦ = kΦ and Z ′Φ = `Φ (right translation action). Let Aλ(Γ) be the subspace of A(Γ)
consisting of elements of weight λ, and let Aλ(Γ)◦ be similarly defined.

Let n ⊂ g be the span of the root vectors X−, P1− and P0−. Then U(n) is the polynomial
algebra in the three variables X−, P1− and P0−. An automorphic form Φ is called n-finite if
the space U(n)Φ is finite-dimensional. We denote by A(Γ)n-fin the space of n-finite automorphic
forms, and by A(Γ)◦n-fin the subspace of cusp forms. The following properties are easy to verify:

• A(Γ)n-fin is a (g,K)-submodule of A(Γ).
• A(Γ)n-fin is the direct sum of its K-types, i.e.: If Φ ∈ A(Γ)n-fin and Φ = Φ1 + . . .+ Φm,

where Φi lies in the ρi-isotypical component of A(Γ) for different K-types ρi, then
Φi ∈ A(Γ)n-fin for each i.

Analogous statements hold for cusp forms.

Lemma 4.3. A(Γ)n-fin is an admissible (g,K)-module.

Proof. Assume that a K-type ρλ occurs infinitely often in A(Γ)n-fin for some λ = (`+m, `). We
may assume that λ is maximal in the order (7). Let W be the space of highest weight vectors
in the ρλ-isotypical component; by assumption, W is infinite-dimensional. By our maximality
assumption, the kernel W1 of P0− on W is infinite-dimensional; note that N+ commutes with
P0−. Similarly, the kernel W2 of P1− on W1 is infinite-dimensional. Finally, the kernel W3

of X− on W2 is infinite-dimensional. The vectors in W3 correspond to holomorphic modular
forms in M`,m(Γ). Since this space is finite-dimensional, we obtain a contradiction. �

Modular forms and automorphic forms. We are going to prove that nearly holomorphic modular
forms generate n-finite automorphic forms. The following lemma will be useful.

Lemma 4.4. Let V be a gC-module, and v0 ∈ V a vector with the following properties:

• V = U(gC)v0.
• v0 has weight (`+m, `) for some integer ` and non-negative integer m.
• N+v0 = 0.
• Nr

−v0 = 0 for some r > 0.
• P s0−v0 = 0 for some s > 0.
• Dt

−v0 = 0 for some t > 0.

Then v0 is n-finite, and V is an admissible (g,K)-module in which each weight space is finite-
dimensional.

Proof. Let X = X−, Y = P1− and Z = P0−, so that U(n) is the polynomial ring C[X,Y, Z].
In this ring, let I be the ideal generated by Dt

− = (Y 2 − 4XZ)t and Zs. By our hypothesis,
every element of I annihilates v0.

In affine three-space, consider the vanishing set N(I). Clearly, a point (x, y, z) in N(I) must
have y = z = 0. Since the polynomial Y vanishes on all of N(I), we have Y n ∈ I for some
positive integer n by Hilbert’s Nullstellensatz.

By the PBW theorem, U(gC) is spanned by monomials of the form

(monomial in X−, N−, P0+, P1+, X+, Z, Z
′)× Pα1−P

β
0−N

γ
+

with α, β, γ ≥ 0. Since P1−, P0−, N+ are the only root vectors with a downwards component,
and since Pn1−v0 = P s0−v0 = N+v0 = 0, it follows that V cannot have weights (k, k′) below a
certain line k′ = k′0 for some k′0 < `.

Now consider the vectors Xq
−v0 for positive integers q. Since [N−, X−] = 0, all these vectors

are annihilated by Nr
−. If Xq

−v0 would be non-zero for very large q, then it would generate a
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kC-module containing weights below the line k′ = k′0; this is impossible. Hence there exists a q
such that Xq

−v0 = 0.
Now, in C[X,Y, Z], consider the ideal J generated by Xq and Dt

− = (Y 2 − 4XZ)t and Zs.
Clearly, its vanishing set in affine three-space consists of only the point (0, 0, 0). It follows that
C[X,Y, Z]/J is finite-dimensional as a C-vector space (see, e.g., Corollary 4 in Sect. 1.7 of [14]).
Since the annihilator of v0 contains J , it follows that v0 is n-finite.

Since we know thatXq
−v0 = 0, an argument analogous to the above shows that V cannot have

any weights (k, k′) to the left of a certain line k = k0. Thus, V contains only finite-dimensional
kC-modules. It also follows that each weight space is finite-dimensional. In particular, V is
admissible. �

Proposition 4.5. Let ` be an integer, and m and p be non-negative integers. Let Γ be a
congruence subgroup of Sp4(Q). Let F ∈ Np

`,m(Γ) be non-zero. Let Φ : Sp4(R) → C be the

function corresponding to F via Lemma 3.2. Then Φ ∈ A(Γ)n-fin. Furthermore, Φ ∈ A(Γ)◦n-fin

if and only if F is a cusp form.

Proof. Evidently, Φ is smooth, left Γ-invariant, K-finite and has weight (` + m, `). Next, we
briefly sketch a proof that Φ is slowly increasing (for further details, the reader can look at
[30] where a generalisation of this to higher degree is proved). Using the fact that the Fourier
expansion of each component function Fj is supported on the positive semi-definite matrices,
an argument similar to [25, §13] shows that the function F is bounded in a Siegel set; use the
fact that the functions [α, β, γ] are bounded in a Siegel set. This shows that there is a constant
c such that |(F |`,mγ)(Z)| ≤ c for all γ in Sp4(Z) and all Z in the Siegel set.

For any point Z ∈ H2 there exists γ ∈ Sp4(Z) such that Z ′ := γZ lies in the Siegel set. One
can prove that there exists a positive integer n, depending on ` and m, such that

‖η`,m(J(γ, Z))−1‖ ≤ (tr(Y ) + tr(Y −1))n

for all γ ∈ Sp4(Z) and all Z = X + iY ∈ H2. This shows that |F (Z)| ≤ c(tr(Y ) + tr(Y −1))n

for all Z ∈ H2. It then follows easily that Φ is slowly increasing.
Since, by Table 2, the operators D− and P0− lower the nearly holomorphic degree, we have

P s0−F = Dt
−F = 0 for some s, t > 0. By the diagram (93), it follows that P s0−Φ = Dt

−Φ = 0.
Hence, we can apply Lemma 4.4 and conclude that Φ is n-finite, and generates an admissible
(g,K)-module. Since each weight space is finite-dimensional by Lemma 4.4, it follows that Φ
is Z-finite. This proves Φ ∈ A(Γ)n-fin.

Finally, we sketch a proof that Φ ∈ A(Γ)◦n-fin if and only if F is a cusp form. Since we already
know that Φ ∈ A(Γ)n-fin, it suffices to show that Φ is a cusp form if and only if F is a cusp form.
First, start with a cusp form F ∈ N`,m(Γ)◦. For any γ ∈ Sp4(Q), define Fγ := F |`,mγ. Then
Fγ ∈ N`,m(Γ(Nγ))◦ for some integer Nγ , and its Fourier expansion is supported on positive

definite matrices. For any x ∈ R, define nx =

[
1 0 0 0
0 1 0 x
0 0 1 0
0 0 0 1

]
and put N ′(R) := {nx : x ∈ R}.

Note that N ′(R) is contained in the unipotent radicals of all the (standard-form) maximal
parabolic subgroups of Sp4(R). In order to show that Φ is a cusp form, it suffices to show
that for all γ ∈ Sp4(Q), g ∈ Sp4(R), we have

∫
NγZ\R Φ(γnxg)dx = 0. This is implied by∫

NγZ\R Fγ (Z + [ 0 0
0 x ]) dx = 0, which in turn follows from the fact that Fourier coefficients of Fγ

vanish at all matrices of the form
[
a b/2
b/2 0

]
.

Conversely, suppose that F is not a cusp form. We will show that Φ is not a cusp form. We
can find γ ∈ Sp4(Q) such that Fγ := F |`,mγ has a non-vanishing degenerate Fourier coefficient.
By choosing γ appropriately, we can assume that the Fourier coefficient of Fγ is non-vanishing
at a matrix of the form Qt := 1

Nγ
[ 0 0
0 t ] with t ∈ Z. Fix such a matrix Qt. Write the Fourier
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expansion as

Fγ(Z) =
∑

Q∈(1/Nγ)Msym
2 (Z)

a(Q)e2πiTr(QZ), (104)

where

a(Q) =

m∑
j=0

∑
α,β,γ

aj,α,β,γ(Q)
( y

yy′ − v2

)α( v

yy′ − v2

)β( y′

yy′ − v2

)γ
Sm−jT j . (105)

Since a(Qt) 6= 0, we can find positive real numbers r2, r3 such that the element f(y) in
C(y)[S, T ] given by

f(y) =

m∑
j=0

∑
α,β,γ

aj,α,β,γ(Qt)
( y

yr3 − r2
2

)α( r2

yr3 − r2
2

)β( r3

yr3 − r2
2

)γ
Sm−jT j

is not identically zero. Fix such r2, r3. For y > r2
2/r3, define the matrix

My :=
1√

y + r3 + 2
√
yr3 − r2

2

[
y +

√
yr3 − r2

2 r2

r2 r3 +
√
yr3 − r2

2

]

which is a square root of the matrix

[
y r2

r2 r3

]
. Then there is a real number α and some positive

real c, both independent of y, such that

|η`,m(My)f(y)| > cyα (106)

holds for all large enough y. Above, | | is the norm on C[S, T ] defined by |
∑
i,j ai,jS

iT j | :=

maxi,j |ai|, though any other norm on C[S, T ] will work equally well.
Now let Φγ(g) = Φ(γg) be the automorphic form attached to Fγ . Consider the integral∫

Msym
2 (NγZ\R)

~Φγ

([
I2 X
0 I2

] [My 0

0 M−1
y

])
e−2πiTr(QtX)dX

= η`,m(My)

∫
Msym

2 (NγZ\R)

Fγ (X + i [ y r2
r2 r3 ]) e−2πiTr(QtX)dX

= vol(M sym
2 (NγZ\R)) e

− 2πtr3
Nγ (η`,m(My)f(y)).

Now, using the triangle inequality on the above integral, together with (106), we conclude
that for all sufficiently large y, we can find X ∈M sym

2 (R) such that the matrix

g =
[
I2 X
0 I2

] [My 0

0 M−1
y

]
has the property |~Φγ(g)| > ce

− 2πtr3
Nγ yα. Letting y →∞, we conclude that |~Φγ | is not a rapidly

decaying function on Sp4(R). Hence, Φγ is not a cusp form and therefore neither is Φ. This
completes the proof. �

4.3. The structure theorem for cusp forms. In this section we prove the structure the-
orem for cusp forms. It is based on the following decomposition of the space A(Γ)◦n-fin into
irreducibles.

Proposition 4.6. As (g,K)-modules, we have

A(Γ)◦n-fin =

∞⊕
`=1

∞⊕
m=0

n`,mL(`+m, `), n`,m = dimS`,m(Γ).

The lowest weight vectors in the isotypical component n`,mL(` + m, `) correspond to elements
of S`,m(Γ) via the isomorphism from Lemma 3.2.
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Proof. Since A(Γ)◦n-fin is a (g,K)-submodule of A(Γ)◦, it decomposes into an orthogonal direct
sum of irreducible (g,K)-modules, each occurring with finite multiplicity. Recall from Lemma
2.3 that the only irreducible, locally n-finite (g,K)-modules are the L(λ) for λ ∈ Λ. Since
A(Γ)◦n-fin admits the inner product (103), each L(λ) occurring in the decomposition of A(Γ)◦n-fin

is unitarizable. The trivial (g,K)-module L(0, 0) cannot occur, since constant functions are
not cuspidal. Proposition 2.2 (3) therefore implies that only L(`+m, `) with ` ≥ 1 can occur.
The module L(` + m, `) must occur with multiplicity dimS`,m(Γ), since every lowest weight
vector in its isotypical component gives rise to an element of S`,m(Γ), and conversely. �

Remark 4.7. By (2) of Proposition 2.2, the modules L(1 +m, 1) are non-tempered. Still, it is
possible for these modules to occur in A(Γ)◦n-fin for certain Γ. After all, cusp forms of weight 1
do exist; see [44]. Globally, the modules L(1+m, 1) occur in CAP representations with respect
to the Borel or Klingen parabolic subgroup, which were considered in [40]. Therefore, these
modules have to be excluded from any correct formulation of the Ramanujan conjecture.

Recall from Lemma 4.1 that X denotes the free monoid consisting of all strings of the symbols
in the left column of Table 1. For integers `,m, `′,m′, we define the following subsets of X. If
` ≥ `′ ≥ 2, m ≥ 0, m′ ≥ 0, then let

X
`,m
`′,m′ =

{
Xα

+D
β
+U

γ
∣∣ α, β, γ ∈ Z≥0, γ ≤ m′/2,

`′ +m′ + 2α+ 2β = `+m, `′ + 2β + 2γ = `
}

∪
{
E+X

α
+D

β
+U

γ
∣∣ α, β, γ ∈ Z≥0, γ < m′/2,

`′ +m′ + 2α+ 2β + 1 = `+m, `′ + 2β + 2γ + 1 = `
}
. (107)

If ` ≥ `′ = 1, m ≥ 0, m′ ≥ 0, then let

X
`,m
`′,m′ =



∅ if m′ > m or m 6≡ m′ mod 2,{
X

m−m′
2

+ D
`−1
2

+

}
if m′ ≤ m, m ≡ m′ mod 2, and ` is odd,{

E+X
m−m′

2
+ D

`−2
2

+

}
if m′ ≤ m, m ≡ m′ mod 2, and ` is even.

(108)

In every other case we put X
`,m
`′,m′ = ∅, except for X

0,0
0,0 which we put equal to {1}.

With these notations we are now ready to prove one of our main results.

Theorem 4.8 (Structure theorem for cusp forms). Let ` be an integer, and m a non-negative
integer. Then we have an orthogonal direct sum decomposition

N`,m(Γ)◦ =
⊕̀
`′=1

`+m−`′⊕
m′=0

∑
X∈X`,m

`′,m′

X(S`′,m′(Γ)). (109)

Proof. Let F ∈ N`,m(Γ)◦. Let Φ : Sp4(R)→ C be the function corresponding to F via Lemma
3.2. By Proposition 4.5, we have Φ ∈ A(Γ)◦n-fin. According to Proposition 4.6, we can write
Φ =

∑r
j=1 Φj with non-zero Φj of weight (` + m, `) and lying in an irreducible submodule

L(`j + mj , `j) of A(Γ)◦n-fin. Since N+Φ = 0, we have N+Φj = 0 for all j. Considering the
possible K-types of the L(λ) given in Lemma 2.7, we see `j ≤ ` and `j +mj ≤ `+m for all j.

Let Ψj be a vector of weight (`j + mj , `j) in L(`j + mj , `j). By Propositions 2.15 and
2.17, we can navigate from Ψj to Φj using the operators U , X+, D+ and E+. The functions
Ψj correspond to elements of S`j ,mj (Γ). The commutativity of the diagram (96) allows us to
rewrite the relations in terms of functions on H2. This proves the theorem. �
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Corollary 4.9. Let ` be an integer, and m a non-negative integer. Then

N`,m(Γ)◦ = Np
`,m(Γ)◦ with p = `− 1 +

⌊m
2

⌋
.

Proof. Consider a typical term Xα
+D

β
+U

γ S`′,m′(Γ) appearing in the structure theorem. By
Table 2, such a term can produce nearly holomorphic degrees no larger than α + 2β + γ. By
the conditions in the first set in (107),

α+ 2β + γ = `− `′ + m−m′

2
≤ `− 2 +

m

2
.

Similarly we can estimate the nearly holomorphic degree of all the terms in the structure
theorem. The maximal number is `− 1 + m

2 , proving our result. �

Corollary 4.10 (Structure theorem for scalar-valued cusp forms). Let ` be an integer. Then
we have an orthogonal direct sum decomposition

N`,0(Γ)◦ =
⊕̀
`′=2

`′≡` mod 2

`−`′⊕
m′=0

m′≡0 mod 2

D
(`−`′−m′)/2
+ Um

′/2 S`′,m′(Γ) ⊕ N`,0(Γ)◦1,

where

N`,0(Γ)◦1 =

D
(`−1)/2
+ S1,0(Γ) if ` is odd,

0 if ` is even.

Proof. The terms of the decomposition in Theorem 4.8 simplify for m = 0. Note that all the
E+ terms are zero by (3) of Proposition 2.15 and (2) of Proposition 2.17. �

Corollary 4.11 (Structure theorem for scalar-valued cusp forms of bounded nearly holomor-
phic degree). Let ` be an integer. Then, for each p ≥ 0, we have an orthogonal direct sum
decomposition

Np
`,0(Γ)◦ =

⊕̀
`′=max(2,`−2p)
`′≡` mod 2

`−`′⊕
m′=max(0,2(`−`′−p))

m′≡0 mod 2

D
`−`′−m′

2
+ U

m′
2 S`′,m′(Γ) ⊕ Np

`,0(Γ)◦1,

where

Np
`,0(Γ)◦1 =

D
(`−1)/2
+ S1,0(Γ) if ` is odd and p ≥ `− 1,

0 otherwise.

Proof. The fact that the right side is contained in the left side follows immediately from Table
2. Next, let F ∈ Np

`,0(Γ)◦. By Corollary 4.10, we can write

F =
∑
`′,m′

D
`−`′−m′

2
+ U

m′
2 F`′,m′ + D

(`−1)/2
+ F1,0,

where F`′,m′ ∈ S`′,m′(Γ) and F1,0 ∈ S1,0(Γ) (with F1,0 = 0 if ` is even). To complete the

proof, it suffices to show that each `′, m′ above with F`′,m′ 6= 0 satisfies ` − `′ − m′

2 ≤ p, and
furthermore, that F1,0 6= 0 implies p ≥ `− 1.

We show that F`′,m′ 6= 0 implies `− `′− m′

2 ≤ p; the proof for the other inequality is similar.

Suppose that `− `′− m′

2 > p. Then, using Table 2, we see that P
m′/2
0− D

(`−`′−m′)/2
− F = 0. This

implies that

P
m′/2
0− D

(`−`′−m′)/2
− D

(`−`′−m′)/2
+ Um

′/2 F`′,m′ = 0.

But this contradicts Lemma 2.12. �
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4.4. Petersson inner products. Let ` be an integer, and m, p be non-negative integers. We
let 〈·, ·〉m be the unique U(2)-invariant inner product on Wm such that 〈Sm, Sm〉m = 1. Let
Γ be a congruence subgroup of Sp4(Q). For F,G ∈ N`,m(Γ), we define the Petersson inner
product 〈F,G〉 by

〈F,G〉 = vol(Γ\H2)−1

∫
Γ\H2

〈η`,m (Im(Z)) (F (Z)), G(Z)〉m dZ,

where dZ is any invariant measure on H2, provided the integral converges absolutely. We denote
this absolute convergence condition by 〈F,G〉 <∞. If the integral does not converge absolutely,
we write 〈F,G〉 =∞.

Remark 4.12. Let F,G ∈ N`,m(Γ) such that at least one of F and G lies in N`,m(Γ)◦. Then
〈F,G〉 <∞.

Lemma 4.13. Let ` be an integer, and m a non-negative integer. Let F,G ∈ Np
`,m(Γ) and let

ΦF , ΦG be the functions on Sp4(R) corresponding to F , G respectively via Lemma 3.2. Suppose
that 〈F,G〉 <∞. Then 〈ΦF ,ΦG〉 <∞ and

〈F,G〉 = 〈ΦF ,ΦG〉, (110)

where 〈ΦF ,ΦG〉 is defined by (103).

Proof. This follows from a standard computation as in [1, p. 195]. We omit the details. �

We define the subspace E`,m(Γ) to be the orthogonal complement of N`,m(Γ)◦ in N`,m(Γ)
with respect to the Petersson inner product.

Lemma 4.14. Let `,m be non-negative integers. Let F ∈ E`,m(Γ), and let Φ ∈ A(Γ)n-fin be
the function corresponding to F via Lemma 3.2. Then Φ is orthogonal to A(Γ)◦n-fin.

Proof. Let Ψ ∈ A(Γ)◦n-fin; we have to show that 〈Φ,Ψ〉 = 0. We may assume that Ψ generates
an irreducible module L(λ) for some λ. Since, under the K-action, Φ generates the K-type
ρ(`+m,`), we may assume that Ψ does as well. Writing Ψ as a sum of weight vectors, we may
even assume that Ψ has the same weight as Φ, namely (`+m, `). But then Ψ corresponds to
an element G of N`,m(Γ)◦. By hypothesis 〈F,G〉 = 0. Hence 〈Φ,Ψ〉 = 0 by Lemma 4.13. �

Lemma 4.15. Let X, X be as in Lemma 4.1. Then X takes N`,m(Γ)◦ to N`′,m′(Γ)◦ and
E`,m(Γ) to E`′,m′(Γ).

Proof. The fact that X takes N`,m(Γ)◦ to N`′,m′(Γ)◦ is an immediate consequence of the fact
that X does not introduce new Fourier coefficients (this is true for each operator in Table 1
by (102) and is therefore true for all elements of X).

To prove that X takes E`,m(Γ) to E`′,m′(Γ), let F ∈ E`,m(Γ), and let Φ ∈ A(Γ)n-fin be
the corresponding automorphic form. By Lemma 4.14, Φ is orthogonal to A(Γ)◦n-fin. Hence
the entire (g,K)-module U(gC)Φ is orthogonal to A(Γ)◦n-fin. Since XF corresponds to XΦ ∈
U(gC)Φ, our assertion follows. �

Lemma 4.16. Let ` be a positive integer, and m a non-negative integer. Let X, X be as in
Lemma 4.1. There exists a constant c`,m,X (depending only on `, m, X) such that for all
F ∈ S`,m(Γ) we have 〈XF,XF 〉 = c`,m,X〈F, F 〉.

Proof. Set λ = (` + m, `), and consider the (g,K)-module L(λ). Let v0 be a highest weight
vector in the minimal K-type of L(λ); of course, v0 is unique up to multiples. Since L(λ)
is unitary by Proposition 2.2, we may endow it with a g-invariant inner product 〈·, ·〉. By
irreducibility, this inner product is unique up to multiples. Put c`,m,X = 〈Xv0, Xv0〉/〈v0, v0〉.
Note that c`,m,X does not depend on the choice of model for L(λ), the choice of v0, or the
normalization of inner products.
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Now all we need to observe is that the automorphic form Φ ∈ A(Γ)◦n-fin corresponding to F
generates a module isomorphic to L(λ), that Φ is a lowest weight vector in this module, and
Lemma 4.13. �

Proposition 4.17. Let ` be a positive integer, and m a non-negative integer. Let X, X be as in
Lemma 4.1. Then, for all F ∈ S`,m(Γ) and G ∈M`,m(Γ), we have 〈XF,XG〉 = c`,m,X〈F,G〉,
where the constant c`,m,X is the same as in Lemma 4.16.

Proof. Because of Lemma 4.15, we may assume that F and G both belong to S`,m(Γ). Now
the proposition follows by applying the previous lemma to F +G. �

4.5. Initial decomposition in the general case. As before, we fix a congruence subgroup Γ,
and consider the space A(Γ)n-fin of n-finite automorphic forms. In this and the next sections we
investigate the algebraic structure of this (g,K)-module. We know from Proposition 4.6 that
the subspace of cusp forms is completely reducible. Since there is no inner product defined on
all of A(Γ)n-fin, this may no longer be true for the entire space. The following vanishing result
for Siegel modular forms will imply some basic restrictions on the possible K-types occurring
in A(Γ)n-fin.

Lemma 4.18. Let `,m ∈ Z with m ≥ 0. Assume that M`,m(Γ) 6= 0. Then ` ≥ 1 or ` = m = 0.
The space M0,0(Γ) consists only of the constant functions.

Proof. The first statement follows from the vanishing theorem Satz 2 of [43]. The second
statement says that the only holomorphic modular forms of weight 0 are the constant functions;
this is well known. �

Lemma 4.19. The space A(Γ)n-fin does not contain any weights (k, `) with negative `. It
contains the weight (0, 0) with multiplicity one; the corresponding weight space consists precisely
of the constant functions.

Proof. To prove the first statement, suppose that A(Γ)n-fin contains a non-zero vector Φ of
weight (k, `) with ` < 0. After applying P0−, P1− and X− finitely many times to Φ, we may
assume that Φ is annihilated by all these operators. By Corollary 3.4, Φ corresponds to a
non-zero element F of M`,k−`(Γ). But such F do not exist by Lemma 4.18.

To prove the second statement, let Φ be a vector of weight (0, 0). By the first statement,
P1−Φ = P0−Φ = N+Φ = 0. Hence also N−Φ = 0. Since [N−, P1−] = 2X−, then also X−Φ = 0.
Therefore Φ corresponds to an element of M0,0(Γ). By Lemma 4.18, Φ must be constant. �

Lemma 4.20. The space A(Γ)n-fin does not contain the weight (2, 0).

Proof. Suppose that Φ ∈ A(Γ)n-fin is a non-zero vector of weight (2, 0); we will obtain a
contradiction. Since A(Γ)n-fin does not contain any weights (k, `) with negative `, we have
E−Φ = P1−Φ = P0−Φ = N+Φ = 0. By Lemma 4.18, Φ cannot be annihilated by all of p−.
Hence X−Φ 6= 0. Since the formula for the L-operator in Table 1 can be rewritten as

L = m(m+ 1)X− − (m+ 1)N−P1− +N2
−P0−,

it follows that LΦ 6= 0. Since LΦ has weight (0, 0), it is a constant function by Lemma 4.19. We
normalize such that LΦ = −6; the reason for this normalization will become clear momentarily.

Let F : H2 →W2 be the function corresponding to Φ. Let F = F0S
2 +F1ST +F2T

2, where
Fj are the component functions. By Proposition 3.15 (1), the relations E−F = P0−F = 0 and
LF = −6 hold. Looking at the definitions (85), (86), (90) of these differential operators, and
solving the resulting linear system, we conclude

Fj =
[
1, 0, 0

]
− 2
[
0, 1, 0

]
+
[
0, 0, 1

]
+Hj (111)

for j ∈ {0, 1, 2}, where Hj is holomorphic. (See (79) for notation.) Now consider the function
on H2 given by G(Z) := F (Z) − 2F (2Z). Then G(Z) is a modular form with respect to a
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smaller congruence subgroup Γ′. It is easy to see that G is non-zero. In view of (111), the
nearly holomorphic parts of F (Z) and 2F (2Z) cancel each other out, so that G is holomorphic.
Hence G is a non-zero element of M0,2(Γ′). By Lemma 4.18, this is impossible. �

For the next lemma, recall that Aλ(Γ)n-fin denotes the subspace of vectors of weight λ ∈ Λ.

Lemma 4.21. Let ` be an integer, and m a non-negative integer.

(1) A(`+m,`)(Γ)n-fin = 0 if ` < 0.
(2) A(0,0)(Γ)n-fin = C.
(3) A(m,0)(Γ)n-fin = 0 for all m > 0.

Proof. (1) and (2) were already noted in Lemma 4.19.
(3) By part (1) and Lemma 4.18, the operator X− induces injective maps

A(m+2,0)(Γ)n-fin −→ A(m,0)(Γ)n-fin (112)

for each m ≥ 0. Clearly, A(1,0)(Γ)n-fin = 0 by Lemma 4.18, and A(2,0)(Γ)n-fin = 0 by Lemma
4.20. Hence A(m,0)(Γ)n-fin is zero for all m > 0. �

For a character χ of Z (the center of U(gC)) let A(Γ, χ)n-fin be the subspace of A(Γ)n-fin

consisting of vectors Φ with the property (z−χ(z))nΦ = 0 for all z ∈ Z and some n depending
on z.

Lemma 4.22. We have

A(Γ)n-fin =
⊕
χ

A(Γ, χ)n-fin. (113)

Each space A(Γ, χ)n-fin has finite length as a (g,K)-module.

Proof. For a weight µ ∈ Λ, let A<µ(Γ)n-fin be the subspace of A(Γ)n-fin spanned by all vectors of
weight λ < µ; see (7) for the definition of the order. Since A(Γ)n-fin is admissible by Lemma 4.3,
and since there are no weights below a horizontal line by Lemma 4.19, the space A<µ(Γ)n-fin is
finite-dimensional. Therefore, the (g,K)-module A〈<µ〉(Γ)n-fin generated by A<µ(Γ)n-fin lies in
category Op. By general properties of this category, it admits a decomposition into χ-isotypical
components, as defined in (15), each of which has finite length. If we move µ farther up and
farther to the right, we will exhaust the whole space A(Γ)n-fin. The assertion follows. �

By Lemma 4.22 (and Lemma 2.3), each A(Γ, χ)n-fin has a finite length composition series
whose irreducible quotients are of the form L(λ) for some λ ∈ Λ+. Since L(λ) has central
character χλ+%, only those λ with χλ+ρ = χ can occur in A(Γ, χ)n-fin. For a given χ, this
allows for only finitely many λ. Lemma 4.21 puts restrictions on the possible L(λ)’s that can
occur; for example, L(k, `) with ` < 0 can never occur in A(Γ, χ)n-fin. We will go through the
list of χ’s for which there exists at least one L(λ) that is permitted by Lemma 4.21; evidently,
only such χ’s can occur in the decomposition (113):

• The trivial character, i.e., χ = χ%, where % = (−1,−2). The irreducible modules L(λ)
that can occur as subquotients of A(Γ, χ%)n-fin are L(0, 0) (the trivial representation),
L(3, 1) and L(3, 3). (The module L(2, 0) also has central character χ%, but is not
permitted by (3) of Lemma 4.21). Following terminology in the literature, we call χ%
the principal character.

• The characters χλ+% for λ = (k, 1) with k ≥ 4. The irreducible modules that can occur
as subquotients of A(Γ, χλ+%)n-fin are L(k, 1) and L(k, 3). Since the modules L(k, 1)
are non-tempered by Proposition 2.2, we will refer to these χλ+% as non-tempered
characters.

• The character χλ+% for λ = (1, 1). The irreducible modules that can occur as subquo-
tients of A(Γ, χλ+%)n-fin are L(1, 1) and L(2, 2).



38 AMEYA PITALE, ABHISHEK SAHA, AND RALF SCHMIDT

• The character χλ+% for λ = (2, 1). The only irreducible module that can occur as a
subquotient of A(Γ, χλ+%)n-fin is L(2, 1).

• The characters χλ+% for λ = (` + m, `) with (` ≥ 4, m ≥ 0), or (` = 2, m ≥ 1). The
only irreducible module that can occur as a subquotient of A(Γ, χλ+%)n-fin is L(λ). We
will refer to these χλ+% as the tempered characters.

Our task in the following will be to determine the structure of each A(Γ, χ)n-fin occurring
in (113). We can quickly treat the case of tempered χ. Since L(λ) admits no non-trivial self-
extensions by Proposition 3.1 (d) of [20], the component A(Γ, χ)n-fin for tempered χ = χλ+%

is a direct sum of copies of L(λ). The lowest weight vector in such an L(λ) corresponds to an
element of M`,m(Γ), where λ = (`+m, `). Thus,

A(Γ, χ)n-fin = nλL(λ), nλ = dimM`,m(Γ), (114)

for tempered χ = χλ+% with λ = (`+m, `).
The third and fourth cases above can also be dealt with easily. We get

A(Γ, χ)n-fin = nλL(λ), nλ = dimM1,1(Γ), (115)

for χ = χλ+% with λ = (2, 1), and

A(Γ, χ)n-fin = n1L(1, 1)⊕ n2L(2, 2), nk = dimMk,0(Γ), (116)

for χ = χλ+% with λ = (1, 1).
As for the principal character, note that, by (2) of Lemma 4.21, the trivial module L(0, 0)

occurs exactly once in A(Γ)n-fin, and it occurs as a submodule. It is easy to see that L(0, 0)
does not admit any non-trivial extensions with L(3, 1) or L(3, 3). It follows that

A(Γ, χ%)n-fin
∼= L(0, 0)⊕ V3, (117)

where the module V3 has a composition series with the only subquotients being L(3, 1) and
L(3, 3). This module V3 can be treated together with the non-tempered characters, which we
will take up in the next section.

4.6. The non-tempered characters. In this section we investigate the contribution to the
space A(Γ)n-fin coming from non-tempered central characters, as defined in the previous section.
Recall that these are the χλ+% for λ = (k, 1) with k ≥ 4. The only irreducible L(λ) that can
occur as subquotients of such modules are λ = (k, 1) and λ = (k, 3).

In the following we will require the dual module N(λ)∨ of the module N(λ). The basic
properties of the duality functor on category Op are given in Sects. 3.2 and 3.3 of [20]. In
particular, N(λ)∨ contains the same K-types as N(λ), and admits L(λ) as its unique irreducible
submodule.

Lemma 4.23. Let k ≥ 3 be an integer and λ = (k, 1) ∈ Λ. Then

ExtO(N(λ), N(λ)) = 0, (118)

ExtO(L(λ), L(λ)) = 0, (119)

ExtO(N(λ), L(λ)) = 0, (120)

ExtO(L(λ), N(λ)) = 0, (121)

ExtO(N(λ)∨, N(λ)∨) = 0, (122)

ExtO(L(λ), N(λ)∨) = 0, (123)

ExtO(N(λ)∨, L(λ)) = 0. (124)

Proof. Equations (118) – (120) are general properties; see Proposition 3.1 of [20]. The claim
(121) follows exactly as in the first part of the proof of Proposition 3.12 of [20]. Equations
(122) – (124) follow from the previous ones and the properties of duality. �
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Lemma 4.24. Let k ≥ 3 be an integer. Let λ = (k, 1) ∈ Λ and µ = (k, 3) ∈ Λ. Let V be a
module in category Op with the following properties:

• The only possible irreducible subquotients of V are L(λ) and L(µ).
• V does not contain N(λ) as a submodule.

Then
V = aL(λ) ⊕ bL(µ) ⊕ cN(λ)∨. (125)

with non-negative integers a, b, c.

Proof. For i = 1 or i = 3, denote by Hi the space of vectors v ∈ V of weight (k, i) that are
annihilated by N+. Then

V = U(gC)H1 + U(gC)H3. (126)

Indeed, the quotient V/(U(gC)H1 +U(gC)H2) does not contain the K-types ρλ or ρµ. Since its
only possible irreducible subquotients are L(λ) or L(µ), it must be zero.

Note that P0− induces a linear map H3 → H1. Let H ′′3 be the kernel of this map. Let H ′3
be any vector space complement to H ′′3 in H3. Let H ′1 = P0−(H ′3), and let H ′′1 be any vector
space complement to H ′1 in H1. Thus H3 = H ′3 ⊕H ′′3 and H1 = H ′1 ⊕H ′′1 , and P0− induces an
isomorphism H ′3 → H ′1. From (126) we see that

V = U(gC)H ′′1 + U(gC)H ′′3 + U(gC)H ′3. (127)

Our hypothesis that V does not contain N(λ) as a submodule implies that every non-zero
v ∈ H1 generates a copy of L(λ). From (119) we thus conclude that U(gC)H ′′1 = aL(λ) (a
direct sum) for some a ≥ 0. Similarly, U(gC)H ′′3 = bL(µ) for some b ≥ 0. Our hypothesis,
together with the PBW theorem, also implies that every non-zero v ∈ H ′3 generates a copy of
N(λ)∨. Using (122), we get U(gC)H ′3 = cN(λ)∨ for some c ≥ 0. By (127) we now have

V = aL(λ) + bL(µ) + cN(λ)∨. (128)

Lemma 4.23 implies that aL(λ) + cN(λ)∨ = aL(λ)⊕ cN(λ)∨. Since

Hom(L(µ), aL(λ)⊕ cN(λ)∨) = 0,

the intersection of bL(µ) with aL(λ) ⊕ cN(λ)∨ is zero. It follows that the sums in (128) are
direct. �

Let λ = (k, 1) and µ = (k, 3) for some k ≥ 3. Let χ = χλ+%. If k ≥ 4, then let Vk =
A(Γ, χ)n-fin; hence, Vk is the component appearing in the decomposition (113) corresponding
to the non-tempered character χ. Let V3 be the module appearing in (117); hence, V3 is
“almost” A(Γ, χ%)n-fin, but without the trivial module.

Lemma 4.25. Vk does not contain N(λ) as a submodule.

Proof. Suppose that Vk does contain N(λ) as a submodule; we will obtain a contradiction.
Let Φ ∈ N(λ) be an automorphic form of weight (k, 1). Clearly, Φ generates N(λ). Let
F ∈ M1,k−1(Γ) be the holomorphic modular form corresponding to Φ. By the Folgerung to
Satz 3 of [43], the modular form F is square-integrable. By Lemma 4.13 the function Φ is
square-integrable on Sp4(R). Since square-integrable automorphic forms constitute a (g,K)-
submodule of A(Γ)n-fin, it follows that N(λ) consists entirely of square-integrable forms, and
hence admits an invariant inner product. In particular, we obtain the contradiction that N(λ)
is semisimple. �

For any k ≥ 3, the module Vk admits only L(λ) and L(µ) as irreducible subquotients.
Therefore, by Lemma 4.24 and Lemma 4.25,

Vk ∼= aL(λ) ⊕ bL(µ) ⊕ cN(λ)∨ (129)

with certain multiplicities a, b, c. These multiplicities may be related to dimensions of spaces of
modular forms, as follows. Any vector of weight (k, 1) in either L(λ) or N(λ)∨ gives rise to an
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element of M1,k−1(Γ). Conversely, a non-zero element F ∈ M1,k−1(Γ) (or rather the function
Φ on Sp4(R) corresponding to F ) generates a copy of L(λ) (which may lie inside an N(λ)∨).
This explains the first of the following three equations,

a+ c = dimM1,k−1(Γ), (130)

b = dimM3,k−3(Γ), (131)

b+ c = dimM∗3,k−3(Γ). (132)

For the second equation, observe that any vector of weight (k, 3) in L(µ) gives rise to an element
of M3,k−3(Γ). Conversely, a non-zero element F ∈M3,k−3(Γ) generates a copy of L(µ).

The space appearing in (132) is defined by

M∗3,k−3(Γ) = {F ∈ N3,k−3(Γ)
∣∣ LF = E−F = 0, P0−F is holomorphic}. (133)

By (3) of Lemma 3.16, an alternative definition is

M∗3,k−3(Γ) = {F ∈ N1
3,k−3(Γ)

∣∣ LF = E−F = 0}. (134)

Evidently,

M3,k−3(Γ) ⊂M∗3,k−3(Γ) ⊂ N1
3,k−3. (135)

We already noted that a vector of weight (k, 3) in L(µ) gives rise to an element of M3,k−3(Γ),
and hence to an element of M∗3,k−3(Γ). We claim that a vector Φ of weight (k, 3) in N(λ)∨

also gives rise to an element of M∗3,k−3(Γ). Let F be the smooth function on H2 corresponding

to Φ. Then (3) of Lemma 3.16 implies that F is nearly holomorphic of degree 1. Hence
F ∈ N1

3,k−3(Γ). Clearly F ∈ M∗3,k−3(Γ), as claimed. Conversely, a non-zero F ∈ M∗3,k−3(Γ)

generates either a copy of L(µ) or a copy of N(λ)∨. This proves (132).
Solving the linear system (130) – (132), we obtain the following result.

Lemma 4.26. For k ≥ 3, let Vk be defined as above. Then we have the direct sum decomposi-
tion

Vk ∼= akL(λ) ⊕ bkL(µ) ⊕ ckN(λ)∨, (136)

where

ak = dimM1,k−1(Γ) + dimM3,k−3(Γ)− dimM∗3,k−3(Γ), (137)

bk = dimM3,k−3(Γ), (138)

ck = dimM∗3,k−3(Γ)− dimM3,k−3(Γ). (139)

We note that the component cN(λ)∨ in (136) is not well-defined as a subspace of Vk; while the
multiplicities of indecomposable modules are well-defined in category Op, isotypical components
are in general not. For example, if Φ has weight (k, 3) and generates an N(λ)∨, and if Ψ has the
same weight and generates an L(µ), then Φ + Ψ also generates an N(λ)∨. Hence, the vectors
of weight (k, 3) generating the N(λ)∨ are only determined up to “holomorphic” vectors of the
same weight.

In classical language, this means that we do not know of a canonical way to define a com-
plement of M3,k−3(Γ) inside M∗3,k−3(Γ). We prefer not to choose any such complement, but

work with the full space M∗3,k−3(Γ) instead. The modular forms in this space generate the

component bkL(µ) ⊕ ckN(λ)∨, which is well-defined as a subspace of Vk.
Consider the map P0− from M∗3,k−3(Γ) to M1,k−1(Γ). Recall from [43] that modular forms in

the space M1,k−1(Γ) are square-integrable. Hence, we may consider the orthogonal complement
M∗∗1,k−1(Γ) of P0−(M∗3,k−3(Γ)) inside M1,k−1(Γ). The various spaces are then connected by the
exact sequence

0 −→M3,k−3(Γ) −→M∗3,k−3(Γ)
P0−−→M1,k−1(Γ) −→M∗∗1,k−1(Γ) −→ 0, (140)
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in which the fourth map is orthogonal projection. The quantity ak in (137) is equal to
dimM∗∗1,k−1(Γ). Let V ∗k be the subspace of Vk generated by the elements of M∗3,k−3(Γ), and let

V ∗∗k be the subspace of Vk generated by the elements of M∗∗1,k−1(Γ). Then

Vk = V ∗k ⊕ V ∗∗k . (141)

The subspaces V ∗k and V ∗∗k are canonically defined, and decompose according to

V ∗k
∼= bkL(µ) ⊕ ckN(λ)∨, V ∗∗k

∼= akL(λ) (142)

as abstract modules.

4.7. The structure theorem for all modular forms. Recall that in Proposition 4.6 we
obtained a decomposition of the space A(Γ)◦n-fin into irreducible (g,K)-modules. The analogous
statement for all n-finite modular forms is slightly more complicated.

Proposition 4.27. As (g,K)-modules, we have

A(Γ)n-fin =

∞⊕
`=2
` 6=3

∞⊕
m=0

n`,mL(`+m, `)

⊕
∞⊕
k=3

V ∗k ⊕
∞⊕
k=1

V ∗∗k ⊕ L(0, 0). (143)

where n`,m = dimM`,m(Γ), the spaces V ∗k , V
∗∗
k for k ≥ 3 are as in (142), and V ∗∗k =

n1,k−1L(k, 1) for k = 1, 2.

Proof. This follows by combining Lemma 4.22 with the results of the previous subsection. �

Proposition 4.28. Let ` be a positive integer, and m a non-negative integer. Let F ∈M`,m(Γ)
and let ΦF : Sp4(R)→ C be the function of weight (`+m, `) corresponding to F by Lemma 3.2.
Then the submodule U(gC)ΦF of A(Γ)n-fin is irreducible and isomorphic to L(`+m, `).

Proof. By Property (3) of the modules N(λ) in Section 2.1, we see that U(gC)ΦF is isomorphic
to a quotient of N(`+m, `). If N(`+m, `) = L(`+m, `) there is nothing to prove. Otherwise
assume that N(`+m, `) 6= L(`+m, `). It suffices to prove that U(gC)ΦF is not isomorphic to
N(`+m, `). But this follows from Proposition 4.27, as the module N(`+m, `), when reducible,
does not appear as a submodule of A(Γ)n-fin. �

Recall that the cuspidal structure theorem, Theorem 4.8, was based on Proposition 4.6,
which is the cuspidal analogue of Proposition 4.27, and Propositions 2.15 and 2.17, which say
that every highest weight vector in an L(k, `) can be generated from the highest weight vector
of its minimal K-type by applying U , X+, D+ and E+ operators. We therefore require a result
similar to Propositions 2.15 and 2.17 for the indecomposable modules N(k, 1)∨ appearing
in (143). For these modules we define N(k, 1)∨par(0) and N(k, 1)∨par(1) just as we did in the

paragraph before Proposition 2.15 (set λ = (k, 1)). Recall that N(k, 1)∨ sits in an exact
sequence

0 −→ L(k, 1) −→ N(k, 1)∨
ϕ−→ L(k, 3) −→ 0.

For the submodule L(k, 1) we have the spaces L(k, 1)par(0) and L(k, 1)par(1) of even and odd
highest weight vectors, and clearly

L(k, 1)par(0) ⊂ N(k, 1)∨par(0) and L(k, 1)par(1) ⊂ N(k, 1)∨par(1).

The spaces L(k, 1)par(0) and L(k, 1)par(1) originate from w0, the essentially unique vector of
weight (k, 1), by applying X+, D+ and E+ operators. Let w1 be the essentially unique vector
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of weight (k, 3), so that ϕ(w1) is the highest weight vector in the minimal K-type of L(k, 3).
Then, by Proposition 2.15,

L(k, 3)par(0) =
⊕
α,β≥0

0≤γ≤ k−3
2

CXα
+D

β
+U

γϕ(w1), L(k, 3)par(1) =
⊕
α,β≥0

0≤γ< k−3
2

CE+X
α
+D

β
+U

γϕ(w1).

Now let

L̃(k, 3)par(0) =
⊕
α,β≥0

0≤γ≤ k−3
2

CXα
+D

β
+U

γw1 (144)

and

L̃(k, 3)par(1) =
⊕
α,β≥0

0≤γ< k−3
2

CE+X
α
+D

β
+U

γw1. (145)

It is clear that ϕ maps L̃(k, 3)par(i) isomorphically onto L(k, 3)par(i); in particular, the sums in
(144) and (145) are really direct.

Lemma 4.29. With the above notations, we have N(k, 1)∨par(i) = L(k, 1)par(i) ⊕ L̃(k, 3)par(i)

for i = 0, 1.

Proof. It is clear that the sum is direct, since L(k, 1)par(i) lies in the kernel of ϕ, while the restric-

tion of ϕ to L̃(k, 3)par(i) is an isomorphism. Let v ∈ N(k, 1)∨par(i). Then ϕ(v) ∈ L(k, 3)par(i).

Let ṽ ∈ L̃(k, 3)par(i) be such that ϕ(ṽ) = ϕ(v). Then v − ṽ ∈ L(k, 1)par(i). The assertion
follows. �

Theorem 4.30 (Structure theorem for all modular forms). Let ` be a positive integer, and m

a non-negative integer. Let the sets X
`,m
`′,m′ be defined as in (107) and (108). Then we have a

direct sum decomposition

N`,m(Γ) =
⊕̀
`′=1

`+m−`′⊕
m′=0

∑
X∈X`,m

`′,m′

X(M∗`′,m′(Γ)), (146)

where

M∗`′,m′(Γ) =

{
M`′,m′(Γ) if `′ 6= 3,

as in (133) if `′ = 3.
(147)

The decomposition (146) is orthogonal in the following sense: If

F1 ∈
∑

X∈X`,m
`′,m′

X(S`′,m′(Γ)), F2 ∈
∑

X∈X`,m
`′′,m′′

X(M∗`′′,m′′(Γ)), (148)

and if (`′,m′) 6= (`′′,m′′), then 〈F1, F2〉 = 0.

Proof. The proof of (146) is similar to that of Theorem 4.8. Instead of Proposition 4.6 one
uses Proposition 4.27. In addition to Propositions 2.15 and 2.17, one also uses Lemma 4.29.
We omit the details.

To prove the orthogonality statement, write F2 =
∑
XiF

′
i+
∑
XjF

′′
j , where F ′i ∈ S`′′,m′′(Γ),

and the F ′′j ∈ M∗`′′,m′′(Γ) are orthogonal to S`′′,m′′(Γ). Clearly, if F ′ =
∑
XiF

′
i , then

〈F1, F2〉 = 〈F1, F
′〉. We are thus reduced to cusp forms, for which the statement follows

from the orthogonality of the decomposition in Theorem 4.8. �

Remark 4.31. Not contained in Theorem 4.30 is the case ` = 0. But recall from Lemma 4.21
(or Proposition 4.27) that N0,0(Γ) = C, while N0,m(Γ) = 0 for m > 0.
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Modular forms orthogonal to cusp forms. We will introduce some notation involving orthogonal
complements of cusp forms. First, let E`,m(Γ) be the orthogonal complement of S`,m(Γ) inside
M`,m(Γ), so that

M`,m(Γ) = S`,m(Γ)⊕ E`,m(Γ). (149)

Recall from (134) that M∗3,m(Γ) = {F ∈ N1
3,m(Γ) | LF = E−F = 0}. We let E∗3,m(Γ) be the

orthogonal complement of S3,m(Γ) in M∗3,m(Γ), so that

M∗3,m(Γ) = S3,m(Γ)⊕ E∗3,m(Γ). (150)

Recall that in Sect. 4.4 we defined E`,m(Γ) to be the orthogonal complement of N`,m(Γ)◦ in
N`,m(Γ), so that

N`,m(Γ) = N`,m(Γ)◦ ⊕ E`,m(Γ). (151)

Lemma 4.32. Let ` be a positive integer, and m a non-negative integer. Then:

(1) E∗3,m(Γ) ⊂ E3,m(Γ).
(2) E3,m(Γ) ∩M∗3,m(Γ) = E∗3,m(Γ).
(3) E`,m(Γ) ⊂ E`,m(Γ).
(4) E`,m(Γ) ∩M`,m(Γ) = E`,m(Γ).

Proof. (1) Let F ∈ E∗3,m(Γ) and G ∈ N3,m(Γ)◦; we have to show that 〈F,G〉 = 0. We work
instead with the corresponding automorphic forms ΦF , ΦG, and will show that 〈ΦF ,ΦG〉 = 0.
We may assume that ΦG generates an irreducible module L(κ). Recall from the definition of
the space M∗3,m(Γ) that ΦF generates either a module L(µ), where µ = (m+ 3, 3), or a module
N(λ)∨, where λ = (m+3, 1). Assume that 〈ΦF ,ΦG〉 6= 0; we will obtain a contradiction. Since
the modules 〈ΦF 〉 and 〈ΦG〉 ∼= L(κ) pair non-trivially, we get a non-zero gC-map

L(µ) −→ L(κ) or N(λ)∨ −→ L(κ).

In either case we conclude L(κ) ∼= L(µ), hence κ = µ. It follows that G is holomorphic,
therefore an element of S3,m(Γ). Since F ∈ E∗3,m(Γ), we have 〈F,G〉 = 0, contradicting our
assumption 〈ΦF ,ΦG〉 6= 0.

(2) follows from (1), (3) is proved in a way analogous to (1), and (4) follows from (3). �

Theorem 4.33 (Structure theorem for modular forms orthogonal to cusp forms). Let ` be a

positive integer, and m a non-negative integer. Let the sets X
`,m
`′,m′ be defined as in (107) and

(108). Then we have a direct sum decomposition

E`,m(Γ) =
⊕̀
`′=1

`+m−`′⊕
m′=0

∑
X∈X`,m

`′,m′

X(E∗`′,m′(Γ)), (152)

where

E∗`′,m′(Γ) =

{
E`′,m′(Γ) if `′ 6= 3,

as in (150) if `′ = 3.
(153)

Proof. By Lemma 4.32, E∗`′,m′(Γ) ⊂ E`′,m′(Γ) for all `′,m′. Lemma 4.15 therefore implies
that the right hand side is contained in the left hand side. The reverse inclusion follows in a
straightforward way from Theorem 4.30. �

5. Adelization and arithmeticity

5.1. Adelization and automorphic representations. Throughout this section, we let G
denote the group GSp4. Let K∞ denote the maximal compact subgroup of Sp4(R), and for
each prime p, put Kp = G(Zp). Recall that an automorphic form on G(A) is a smooth function
on G(A) that is left G(Q)-invariant, Z-finite, K∞-finite and slowly increasing; here Z is the
center of U(g′C), where g′ ∼= R⊕g is the Lie algebra of GSp4(R). We let A(G) denote the space
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of automorphic forms on G(A) and A(G)◦ denote the subspace of cusp forms on G(A). All the
automorphic forms we will consider in the following will be annihilated by the center R of g′.

For each prime p, and each positive integer N , define a compact open subgroup KN
p of G(Zp)

by

KN
p =

{
g ∈ G(Zp) | g ≡

[
I2
aI2

]
(mod N), a ∈ Z×p

}
. (154)

Note that our choice of KN
p satisfies the following properties:

• KN
p = G(Zp) for all primes p not dividing N ,

• The multiplier map µ2 : KN
p 7→ Z×p is surjective for all primes p,

• Γ(N) = G(Q)
⋂
G(R)+

∏
p<∞KN

p .

As always, let `, m denote integers with m ≥ 0. Let Γ be a congruence subgroup of Sp4(Q)
and F be an element of C∞`,m(Γ). Let N be any integer such that Γ(N) ⊂ Γ. By Lemma 3.2, we

can attach to F a function Φ on Sp4(R) that is left invariant by Γ. By strong approximation,
we can write any element g ∈ G(A) as

g = λgQg∞kf, gQ ∈ G(Q), g∞ ∈ Sp4(R), kf ∈
∏
p

KN
p , λ ∈ ZG(R)+,

We define the adelization ΦF of F to be the function on G(A) defined by ΦF (g) = Φ(g∞). This
is well defined because of the way the groups KN

p were chosen. Furthermore, it is independent of
the choice of N . By construction, it is clear that ΦF (hg) = ΦF (g) for all h ∈ G(Q), g ∈ G(A).
It is also easy to see that the mapping F 7→ ΦF is linear. The following is immediate from
Proposition 4.5.

Proposition 5.1. Let Γ be a congruence subgroup of Sp4(Q) and F be an element of N`,m(Γ).
Let ΦF be the adelization of F . Then ΦF ∈ A(G). If F ∈ N`,m(Γ)◦, then ΦF ∈ A(G)◦.

Let F ∈ N`,m(Γ) and ΦF ∈ A(G) be its adelization as defined above. Then ΦF generates
a representation πF under the natural right regular action7 of G(A). From the results of the
previous sections it follows that any irreducible subquotient of πF is an irreducible automorphic
representation of G(A); it is cuspidal whenever F ∈ N`,m(Γ)◦.

Let X, X be as in Lemma 4.1. Let F ∈ N`,m(Γ) be such that ΦF generates a factorizable
representation π = ⊗vπv of G(A), and suppose that ΦF corresponds to a factorizable vector
φ = ⊗vφv inside π. Then, if G := XF ∈ N`′,m′(Γ), then ΦG is the vector inside π corresponding
to ⊗p<∞φv⊗ (Xφ∞). In particular, if π is an irreducible automorphic representation, then ΦG
generates π. This is immediate from (96), the definition of the adelization map, and the fact
that X does not alter the components of F at any of the finite places.

Proposition 5.2. Let F ∈M∗`,m(Γ) and πF be the (g,K∞)×G(Af)-module generated by ΦF .
Let π = ⊗vπv be any irreducible subquotient of πF .

(1) If ` 6= 3, then π∞ ' L(`+m, `).
(2) If ` = 3, then π∞ is isomorphic to either L(3 +m, 3) or L(3 +m, 1).

Proof. This can be derived in a straightforward way from our results in Sect. 4.6. �

5.2. Arithmeticity for nearly holomorphic forms. Recall that any F ∈ N`,m(Γ) =⋃
p≥0N

p
`,m(Γ) has a Fourier expansion as follows (note the difference in normalization be-

tween (156) and (100); this is for arithmetic purposes):

F (Z) =
∑

Q∈Msym
2 (Q)

a(Q)e2πiTr(QZ), (155)

7More precisely, one takes the right regular action of G(Af) together with the action of the Lie algebra at the

infinite place.
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where

a(Q) =
∑
α,β,γ

aα,β,γ(Q)
( y

2π∆

)α( v

2π∆

)β( y′

2π∆

)γ
, aα,β,γ(Q) ∈Wm. (156)

We note that aα,β,γ(Q) = 0 unless Q ∈ 1
NM

sym
2 (Z) for some integer N . Given any σ ∈ Aut(C),

we define a function σF via the action of σ on the elements aα,β,γ(Q):

σF (Z) =
∑

Q∈Msym
2 (Q)

σa(Q)e2πiTr(QZ),

where

σa(Q) :=

m∑
j=0

∑
α,β,γ

σ(aj,α,β,γ(Q))
( y

2π∆

)α( v

2π∆

)β( y′

2π∆

)γ
Sm−jT j . (157)

For any subfield L of C, define N`,m(Γ;L) to be the subspace of N`,m(Γ) consisting of the
forms that are fixed by Aut(C/L). Define N`,m(Γ;L)◦, Np

`,m(Γ;L), Np
`,m(Γ;L)◦, M`,m(Γ;L),

S`,m(Γ;L) similarly.
We say that a congruence subgroup Γ of Sp4(Q) is “nice” if there exists a compact open

subgroup K0 of G(Af) with the following properties.

(1) K0 =
∏
p<∞K0,p, where, for each prime p, K0,p is a compact open subgroup of G(Qp)

with K0,p = G(Zp) for almost all primes.
(2) For all p, and all x ∈ Z×p , we have

diag(1, 1, x, x)K0,p diag(1, 1, x−1, x−1) = K0,p.

(3) K0GSp4(R)+ ∩ GSp4(Q) = Γ.

We note that all congruence subgroups that are naturally encountered in the theory, such as
the principal, Siegel, Klingen, Borel or paramodular congruence subgroups, are nice in the
above sense. The following result follows from [39, Theorem 14.13].

Theorem 5.3 (Shimura). Let Γ be a nice congruence subgroup of Sp4(Q). Then for all p ≥ 0
we have the equalities

Np
`,m(Γ) = Np

`,m(Γ;Q)⊗Q C,

Np
`,m(Γ)◦ = Np

`,m(Γ;Q)◦ ⊗Q C.
In particular, the action of Aut(C) preserves the above spaces.

Remark 5.4. Theorem 14.13 of [39] had the added condition that Mk,0(Γ;Q) 6= {0} for some
0 < k ∈ Z. This is clearly true in our case. Indeed, we have Γ ⊂ γ−1Γpara(N)γ for some
squarefree integer N and some γ ∈ G(Q); this is because every compact open subgroup of
G(Qp) is either contained in a conjugate of G(Zp) or in a conjugate of the local paramodular
group at p. Let F1 ∈ S10,0(Sp4(Z);Q) be the unique weight 10 cusp form of full level. Then

F = (
∏
p|N θp)F1 belongs to S10,0(Γpara(N);Q), where θp is as in [31]; the fact that the Fourier

coefficients are algebraic follow from the q-expansion principle. Observe that θp is injective by

Theorem 7.2 of [31], so that F 6= 0. Finally, F |k,0γ is an element of S10,0(Γ;Q).

Let X+ be the free monoid consisting of all (finite) strings of the symbols X+, U , E+,
and D+ in the left column of Table 1. Clearly X+ is a submonoid of the monoid X defined

earlier, and furthermore contains all the subsets X
`,m
`′,m′ introduced for the purpose of stating

the structure theorems. Each element X ∈ X+ is an operator that for any particular `,m, p,
takes Np

`,m(Γ) to Np1
`1,m1

(Γ), where the integers `1,m1, p1 (that depend on `, m, p and X) can
be easily calculated using Table 2. In particular, the non-negative integer v = p1 − p depends
only on X. Precisely, v = 1 for X+, U , and E+; v = 2 for D+. For longer strings, v can be
calculated by adding up the contributions from the individual operators.
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Definition 5.5. For any X ∈ X+, we define the degree of X to be the integer v described
above.

The following key proposition, when combined with our structure theorems, allows us to
transfer arithmeticity results from holomorphic forms to nearly holomorphic forms.

Proposition 5.6. Let X ∈ X+ and let v be the degree of X. Then, for all F ∈ N`,m(Γ), and
all σ ∈ Aut(C), we have

σ
((2π)−vXF ) = (2π)−vX(σF ).

Proof. It suffices to prove this for each of the basic operators X+, U , E+, and D+. Using
equations (85) – (92), we note that the action of the operators X+, U , and E+ on the component
functions of F are given by rational linear combinations from the following set S of operators
on C∞(H2),

S =
{ y

∆
,
y′

∆
,
v

∆
, 2i

∂

∂z
, 2i

∂

∂τ
, 2i

∂

∂τ ′

}
.

Furthermore, the action of the operator D+ on the component functions of F is given by
rational linear combinations of the objects formed by taking the composition of exactly two
operators from the set S.

Therefore, to complete the proof, it suffices to show that for each elementQ ∈M sym
2 (Q), each

triple of non-negative integers α, β, γ, and each operator s ∈ S, there exist rational numbers
aα′,β′,γ′(Q) indexed by a finite set of triples of non-negative integers α′, β′, γ′, such that

(2π)−1s

(( y

2π∆

)α( v

2π∆

)β( y′

2π∆

)γ
e2πiTr(QZ)

)
=

∑
α′,β′,γ′

aα′,β′,γ′(Q)
( y

2π∆

)α′( v

2π∆

)β′( y′

2π∆

)γ′
e2πiTr(QZ).

This is an elementary calculation and can be easily verified for each element s of S. We omit
the details. �

Isotypic projections. By our structure theorem, the space N`,m(Γ) decomposes as a direct sum
as follows:

N`,m(Γ) =
⊕

0≤`′≤`
0≤`′+m′≤`+m

m′≥0

∑
X∈X`,m

`′,m′

X(M∗`′,m′(Γ)), (158)

where we adopt the convention that M∗`′,m′(Γ) := M`′,m′(Γ) whenever `′ 6= 3. The identical
decomposition holds for the cuspidal subspace.

Definition 5.7. For each quadruple of integers `,m, `′,m′ with m,m′ non-negative, define an
endomorphism p`′,m′ of N`,m(Γ) by the projection map

N`,m(Γ) −→
( ∑
X∈X`,m

`′,m′

X(M∗`′,m′(Γ))

)
⊂ N`,m(Γ)

given by the direct sum decomposition (158). In particular, if the set X
`,m
`′,m′ is empty, we have

p`′,m′ = 0.

Lemma 5.8. Suppose that F ∈ N`,m(Γ). Then the following hold.

(1) Suppose that F ∈ N`,m(Γ)◦, resp. F ∈ E`,m(Γ). Then, p`′,m′(F ) ∈ N`,m(Γ)◦, resp.
p`′,m′(F ) ∈ E`,m(Γ).
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(2) We have

F =
∑

`′≥0, m′≥0

p`′,m′(F ).

The above sum is orthogonal in the sense that if (`′1,m
′
1) 6= (`′2,m

′
2), and p`′1,m′1(F ) ∈

N`,m(Γ)◦, then 〈
p`′1,m′1(F ), p`′2,m′2(F )

〉
= 0.

(3) Suppose that F ∈ N`,m(Γ), and G ∈ S`′,m′(Γ). Then, for all X ∈ X
`,m
`′,m′ ,

〈F,XG〉 =
〈
p`′,m′(F ), XG

〉
.

Proof. All the parts follow directly from the structure theorems and our definition of the
projection map. We omit the details. �

Lemma 5.9. Let Γ be a nice congruence subgroup of Sp4(Q). Then we have the equality

M∗`′,m′(Γ) = M∗`′,m′(Γ;Q)⊗Q C.
In particular, the action of Aut(C) preserves the above space.

Proof. We only need to consider the case `′ = 3, since otherwise M∗`′,m′(Γ) = M`′,m′(Γ) and

this case has already been covered by Theorem 5.3. So, assume `′ = 3. Let F ∈M∗3,m′(Γ) and

σ ∈ Aut(C). It suffices to show that σF ∈M∗3,m′(Γ); see Lemma 3.19 of [33]. We already know

from Theorem 5.3 that σF ∈ N1
3,m′(Γ). So, to complete the proof, we only need to show that

L(σF ) = E−(σF ) = 0. But this is an immediate consequence of Proposition 5.6. �

We now state our main arithmeticity result concerning this projection map.

Proposition 5.10. For all quadruples (`,m, `′,m′), all σ ∈ Aut(C), and all F ∈ N`,m(Γ), we
have

p`′,m′(
σF ) =

σ
(p`′,m′(F )).

Proof. By shrinking Γ if necessary, we may assume Γ is nice. Using the structure theorem 4.30,
write

F =
∑
`′,m′

∑
X∈X`,m

`′,m′

X ′(FX), where X ′ = (2π)−v(X)X

and FX ∈M∗`′,m′(Γ). Then, by Proposition 5.6,

σF =
∑
`′,m′

∑
X∈X`,m

`′,m′

σ
(X ′(FX)) =

∑
`′,m′

∑
X∈X`,m

`′,m′

X ′(σFX).

By Theorem 5.3 and Lemma 5.9, the modular form σFX lies in M∗`′,m′(Γ). Hence

p`′,m′(
σF ) =

∑
X∈X`,m

`′,m′

X ′(σFX) =
∑

X∈X`,m
`′,m′

σX ′(FX) =
σ
(p`′,m′(F )).

This completes the proof. �

Remark 5.11. In the special case `′ = `, m′ = m, Shimura defined the map p`,m : N`,m(Γ) →
M`,m(Γ) and called it the holomorphic projection map. He was able to prove results of Aut(C)-
equivariance in this special case under the additional assumption that either F ∈ N`,m(Γ)◦ or
m = 0; see [39, Prop. 15.3, Prop. 15.6].

Definition 5.12. Let q denote the natural projection map from nearly holomorphic modular
forms to nearly holomorphic cusp forms, i.e., q : ⊕`,mN`,m(Γ) → ⊕`,mN`,m(Γ)◦ is obtained
from the orthogonal direct sum decomposition

N`,m(Γ) = N`,m(Γ)◦ ⊕ E`,m(Γ).
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Definition 5.13. Define p◦`′,m′ = q ◦ p`′,m′ .

Thus,

p◦`′,m′ : N`,m(Γ)→
∑

X∈X`,m
`′,m′

X(S`′,m′(Γ)) ⊂ N`,m(Γ)◦.

If F ∈ N`,m(Γ)◦, then p◦`′,m′(F ) = p`′,m′(F ). It is clear that for all F ∈ N`,m(Γ), G ∈ S`′,m′(Γ),

X ∈ X
`,m
`′,m′ , we have

〈F,XG〉 =
〈
p`′,m′(F ), XG

〉
=
〈
p◦`′,m′(F ), XG

〉
.

Furthermore, if F ∈ N`,m(Γ) and we write, using the structure theorem,

F =
∑
`′,m′

∑
X∈X`,m

`′,m′

X(FX),

then

p◦`′,m′(F ) =
∑

X∈X`,m
`′,m′

X(q(FX)).

Recall that E`,m(Γ) denotes the orthogonal complement of S`,m(Γ) in M`,m(Γ) and has the
property that E`,m(Γ) = E`,m(Γ) ∩M`,m(Γ); see Lemma 4.32.

Definition 5.14. Given a number field L, we say that E`,m(Γ) is L-rational if

E`,m(Γ) = E`,m(Γ;L)⊗L C.

Remark 5.15. If E`,m(Γ) is L-rational, then for all F ∈ M`,m(Γ), σ ∈ Aut(C/L), we have
σ
(q(F )) = q(σF ).

Remark 5.16. The results of Harris (see [16]) imply that if ` > 4 (so that we are in the
absolutely convergent range, and so E`,m(Γ) is spanned by holomorphic Siegel and Klingen
Eisenstein series) and Γ is nice, then E`,m(Γ) is L-rational for some number field L. It is
unclear to us if we can always take L = Q in this case, though we suspect this to be the case.

Proposition 5.17. Suppose that `′ > 3 and E`′,m′(Γ) is L-rational. Then, for all F ∈ N`,m(Γ)
and σ ∈ Aut(C/L),

p◦`′,m′(
σF ) =

σ
(p◦`′,m′(F )).

Proof. The proof is essentially identical to that of Proposition 5.10. �

We end this section with an arithmeticity result for ratios of Petersson inner products.

Proposition 5.18. Let F ∈ S`,m(Γ) have the property that for all G ∈ S`,m(Γ) and all
σ ∈ Aut(C), we have

σ

(
〈G,F 〉
〈F, F 〉

)
=
〈σG, σF 〉
〈σF, σF 〉

.

Let `1,m1 be integers such that X
`1,m1

`,m is a singeleton set equal to {X}. Then for all G ∈
N`1,m1

(Γ)◦, and all σ ∈ Aut(C), we have

σ

(
〈G, XF 〉
〈XF, XF 〉

)
=
〈σG, σXF 〉
〈σXF, σXF 〉

.

Remark 5.19. It is expected that whenever ` ≥ 6, all Hecke eigenforms F in S`,m(Γ) with
coefficients in a CM field have the property required in the above proposition. This has been
proved in many special cases, e.g., when Γ = Sp4(Z) (see [41]).
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Proof. By (3) of Lemma 5.8,

〈G,XF 〉
〈XF,XF 〉

=
〈p`,m(G), XF 〉
〈XF,XF 〉

.

Now, p`,m(G) = XG′ for some G′ ∈ S`,m(Γ). By Proposition 4.17,

σ

(
〈G,XF 〉
〈XF,XF 〉

)
= σ

(
〈X(G′), XF 〉
〈XF,XF 〉

)
= σ

(
〈G′, F 〉
〈F, F 〉

)
.

Similarly, using Proposition 5.6,

〈σG, σXF 〉
〈σXF, σXF 〉

=
〈σG′, σF 〉
〈σF, σF 〉

.

Now the result follows from the property of F assumed in the statement of the proposition. �

Remark 5.20. The condition that X
`1,m1

`,m is a singleton set is satisfied when `1 = ` + m and

m1 = 0, provided m is even. In this case, we have X
`1,m1

`,m = {Um/2}. The application of the
above proposition in this special case will be of crucial importance in our upcoming work.

Proposition 5.21. Let F be as in Proposition 5.18. Assume further that ` > 3 and E`,m(Γ)
is L-rational for some number field L.

Let `1,m1 be integers such that X
`1,m1

`,m is a singeleton set equal to {X}. Then for all G ∈
N`1,m1

(Γ), and all σ ∈ Aut(C/L), we have

σ

(
〈G, XF 〉
〈XF, XF 〉

)
=
〈σG, σXF 〉
〈σXF, σXF 〉

.

Proof. The proof is identical to Proposition 5.18, except that we use p◦`,m. �
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97–143. Birkhäuser Boston, Boston, MA, 1983.



50 AMEYA PITALE, ABHISHEK SAHA, AND RALF SCHMIDT

[13] Thomas Enright and Anthony Joseph. An intrinsic analysis of unitarizable highest weight modules. Math.
Ann., 288(4):571–594, 1990.

[14] William Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley Publishing Company, Ad-

vanced Book Program, Redwood City, CA, 1989. An introduction to algebraic geometry, Notes written
with the collaboration of Richard Weiss, Reprint of 1969 original.

[15] Michael Harris. A note on three lemmas of Shimura. Duke Math. J., 46(4):871–879, 1979.

[16] Michael Harris. Eisenstein series on Shimura varieties. Ann. of Math. (2), 119(1):59–94, 1984.
[17] Michael Harris. Arithmetic vector bundles and automorphic forms on Shimura varieties. I. Invent. Math.,

82(1):151–189, 1985.

[18] Michael Harris. Arithmetic vector bundles and automorphic forms on Shimura varieties. II. Compositio
Math., 60(3):323–378, 1986.

[19] Roger Howe and Hanspeter Kraft. Principal covariants, multiplicity-free actions, and the K-types of holo-
morphic discrete series. In Geometry and representation theory of real and p-adic groups (Córdoba, 1995),
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