PULLBACKS OF EISENSTEIN SERIES FROM GU(3,3)
AND
CRITICAL L-VALUES FOR GSp(4) x GL(2)

ABHISHEK SAHA

ABSTRACT. Let F' be a genus two Siegel newform and g a classical newform, both of squarefree
levels and of equal weight £. We prove a pullback formula for certain Eisenstein series — thus
generalizing a construction of Shimura — and use this to derive an explicit integral representation
for the degree eight L-function L(s, F' x g). This integral representation involves the pullback of a
simple Siegel-type Eisenstein series on the unitary group GU(3,3). As an application, we prove a
reciprocity law — predicted by Deligne’s conjecture — for the critical special values L(m, F' X g)
WheremGZﬂSmS%—L

INTRODUCTION

If L(s, M) is an arithmetically defined (or motivic) L-series associated to an arithmetic object
M, it is of interest to study its values at certain critical points s = m. For these critical points,
conjectures due to Deligne predict that the corresponding L-values satisfy the following reciprocity
law:

(a) L(m, M) is the product of a suitable transcendental number 2 and an algebraic number
A(m, M).

(b) If o is an automorphism of C, then A(m, M)? = A(m, M?).
In this paper, we prove a key special case of the above conjecture when M corresponds to the
product F' x g where F' is a Siegel modular form and g a classical modular form. Precisely, fix
odd, squarefree integers M, N. Let F be a genus two Siegel newform of level M and g an elliptic
newform of level N; see Section 6 for the definitions of these terms. We assume that F' and g have
the same even integral weight ¢ and have trivial central characters. We also make the following
assumption about F*:

Suppose

F(Z) =) a(S)e(tr(52))
S>0

is the Fourier expansion; then we assume that

b
(0.0.1) a(T') # 0 for some T' = (% 2)
2
such that —d = b? — 4ac is the discriminant of the imaginary quadratic field L = Q(v/—d), and all
primes dividing M N are inert in L.

One can associate a degree eight L-function L(s, F' X g) to the pair (F,g). We prove a reciprocity
law (see Theorem 8.2.1 below) for the critical points {m :2 < m < %— 1,m € Z} of this L-function.
As is often the case for such problems, the key ingredient in our proof is the interpretation of the
transcendental factor as the period arising from a certain integral representation. In Section 1 we
associate to a Hecke character A of L a Siegel Eisenstein series Ex(g,s) on GU(3,3; L)(A). Let R
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denote the subgroup of elements (hi,hs) € GSp(4) x GU(1,1; L) for which hy, he have the same
multiplier. We define in Subsection 2.3 an embedding ¢ : R — GU(3,3;L). Let ®, ¥ denote the
adelizations of F, g respectively. We can extend the definition of ¥ to GU(1,1;L)(A) by defining
U(ag) = U(g) for all a € L*(A),g € GL(2)(A). Our integral representation is as follows.

Theorem 6.3.3. We have

Er(c(g1, 92), )8 (g1)¥(g2) A~ (det go)dg = A(s)L(3s + =, F x g)

/reZ(A)R(Q)\R(A) i

where r = (g1, 92), A is a suitable Hecke character of L and A(s) is an explicit normalizing factor,
defined in Section 6.

The first step towards proving Theorem 6.3.3 was achieved in our earlier work [16] where we
extended an integral representation due to Furusawa. That integral representation involved a
complicated Klingen Eisenstein series attached to the cusp form g. The technical heart of this
paper is a certain pullback formula (Theorem 2.4.1) that expresses our earlier Eisenstein series as the
inner product of the cusp form and the pullback of the simpler higher-rank Siegel Eisenstein series
Ex. Formulas in this spirit were first proved in a classical setting by Shimura [18]. Unfortunately,
Shimura only considers certain special types of Eisenstein series in his work which does not include
ours (except in the full level case M = 1, N = 1). Furthermore his methods are classical and cannot
be easily modified to deal with our case. The complicated sections at the ramified places and the
need for precise factors make the adelic language the right choice for our purposes. We provide a
complete proof of the pullback formula for our Eisenstein series which explicitly gives the precise
factors at the ramified places needed by us.

Combining the pullback formula with our previous work, we deduce Theorem 6.3.3. It seems
appropriate to mention here that the referee of our paper [16] has indicated it may have been well
known to some experts that one could use such a pullback formula to rewrite the Furusawa integral
representation.

From Theorem 6.3.3, we easily conclude that L(s, F' x g) is a meromorphic function whose only
possible pole on the right of the critical line Re(s) = % is simple and at s = 1. Moreover, with the
aid of rationality results due to Garrett and Harris and the theory of nearly holomorphic functions
due to Shimura, we prove the following Theorem.

Theorem 8.2.1. Suppose that the Fourier coefficients of F' and g are totally real and algebraic
and that ¢ > 6. For a positive integer k, 1 < k < % — 2, define

L(L —k,F x g)
AR 95 K) = St g, g)

Then we have,
(a) A(F,g;k) is algebraic
(b) For an automorphism o of C, A(F,g;k)° = A(F?,¢%; k).

We remark here that the completely unramified case M = 1, N = 1 of the above theorem was
already known by the works of Heim [7] and Bocherer—Heim [1], who used a very different integral
representation from the one in this paper. Also, just the algebraicity part of the above Theorem
(i.e. part (a)) has been proved for the right-most critical value (corresponding to & = 1) in various
settings earlier by Furusawa [3], Pitale-Schmidt [15] and the author [16].

To relate Theorem 8.2.1 to the conjecture of Deligne for motivic L-functions mentioned at the
beginning of this introduction, we note that Yoshida [21] has shown that the set of all critical points
for L(s,F x g) is {m : 2 — % <m< g —1,m € Z}. In particular, the critical points are always
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non-central (since the weight ¢ is even) and so the L-value is expected to be non-zero. Assuming
the existence of a motive attached to F' (this seems to be now known for our cases by the work
of Weissauer [20]) and the truth of Deligne’s conjecture for the standard degree 5 L-function of
F', Yoshida also computes the corresponding motivic periods. According to his calculations, the
relevant period for the point m is precisely the quantity 7*™*3=4(F, F')(g, g) that appears in our
theorem above (once we substitute m = g — k). We note here that Yoshida only deals with the full
level case; however, as the periods remain the same (up to a rational number) for higher level, his
results remain applicable to our case.

Thus, Theorem 8.2.1 is compatible with (and implied by) Deligne’s conjecture, and furthermore,
it covers all the critical values to the right of Re(s) = % except for the L-value at the point 1.
The proof for the critical values to the left of Re(s) = % would follow from the expected functional
equation. Extending our result to L(1, F' x g) is intimately connected to proving the analyticity
of the L-function at that point (see Corollary 6.3.4). These questions, related to analyticity and
the functional equation are also of interest for other applications and will be considered in a future
paper. In particular, once analyticity results are known for all GL(1) and GL(2) twists of F', one
could try using the converse theorem to lift 7' to GL(4). This is currently work in progress with
A. Pitale and R. Schmidt.

We also note that the integral representation (Theorem 6.3.3) is of interest for several other
applications. For instance, we hope that this integral representation will pave the way to certain new
results involving stability, hybrid subconvexity, and non-vanishing results for the L-function under
consideration following the methods of [11]. We are also hopeful that we can prove results related to
non-negativity of the central value L( %, F). These results appear to be new for holomorphic Siegel
modular forms. For example, the non-negativity result is known in the case of generic automorphic
representations by Lapid and Rallis [10]; however, automorphic representations associated to Siegel
modular forms are never generic. Another interesting application of the integral representation
would be to the construction of p-adic L-functions.

We expect most of the results of this thesis to hold for arbitrary totally real base fields. It would
be particularly interesting to work out the special value results when the Hilbert-Siegel modular
forms have different weights for each Archimedean place. This case will be considered in a future
work.

We briefly summarize the logical structure of this paper. Section 1 lays down the basic definitions
concerning the Eisenstein series that will be used throughout the paper. In Section 2, we state the
crucial pullback formula (Theorem 2.4.1). Roughly speaking, the pullback formula says that for
a suitable choice of section YT, the Petersson inner product (Ev(c(g,h),s), ¥(h)) essentially equals
a particular Klingen Eisenstein series Ey A(g,s) living on GU(2,2). The proof of the pullback
formula involves extensive local harmonic analysis as well as a careful choice of local sections.
Sections 3 and 4 are devoted to these computations and are possibly of independent interest.
These local results are used in Section 5 to prove the pullback formula. In Section 6 we derive the
crucial integral representation (Theorem 6.3.3) for L(s, F' x g) by combining the pullback formula
with a result from [16] that says that (Ew(g,s), ®(g, s)) essentially equals L(3s + 3, F x g). We
rewrite our integral representation classically in Theorem 6.5.1. In Section 7, we recall various
rationality results relating to Petersson inner products, Eisenstein series and nearly holomorphic
modular forms. These results are due to Garrett, Harris and Shimura and are the key tools that
when applied on our integral representation lead to the proof, in Section 8, of our main result
(Theorem 8.2.1).

Acknowledgements. The author thankfully acknowledges his use of the software MAPLE for
performing many of the computations for this paper.
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Notation. The symbols Z, Z>¢, Q, R, C, Z, and Q,, have the usual meanings. A denotes the ring
of adeles of Q, Ay the finite adeles. For a complex number z, e(z) denotes ez,
For a matrix M we denote its transpose by M. Denote by .J,, the 2n by 2n matrix given by

0 I,
Jy = (_ A 0) .
We use J to denote Js.

For a positive integer n define the group GSp(2n) by
GSp(2n, R) = {9 € GL2n(R)|g" J0ng = pin(g)Jp for some p,(g) € R™}

for any commutative ring R.

Define Sp(2n) to be the subgroup of GSp(2n) consisting of elements g1 € GSp(2n) with p,(g1) =
1.

For an imaginary quadratic extension L of Q define

GU(n,n) = GU(n,n; L)
by
GU(n>n)(@) = {g € GL2n(L)|(§)tJng = Mn(g)Jmﬂn(g) € QX}
where g denotes the conjugate of g. N N
Let H = GU(3,3),H1~: U(3,3),H~: GSp(6),H, = Sp(6),G = GU(2,2), G1 = U(2,2),
G =GSp(4),Gy = Sp(4),F =GU(1,1), F, =U(1,1).
Define
H, = {Z € M,(C)|i(Z — Z) is positive definite},
H, ={Z € M, (C)|Z = Z",i(Z — Z) is positive definite}.

For g = <21, g) € GU(n,n)(R), Z € H, define

J(g,Z) =CZ + D.

The same definition works for g € GSp(2n)(R), Z € H,,.

For a commutative ring R we denote by I(2n, R) the Borel subgroup of GSp(2n, R) consisting of

A B

<0 /\(At)1>
by B the Borel subgroup of G defined by B = I(4).

For a quadratic extension L of Q and v be a finite place of Q, define L, = L ®g Q,.

Zp, denotes the ring of integers of L and Zp, , its v-closure in L,.For a prime p, let Zf,p denote
the group of units in Zr, .

If p is inert in L, the elements of Zz’p are of the form a + bv/—d with a,b € Z,, and such that at
least one of a and b is a unit. Let F%,p be the subgroup of Zf,p consisting of the elements with p|b.

4
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For a positive integer N the subgroups I'g(N) and T°(N) of SLy(Z) are defined by

To(N) = {A € SLy(Z) ( ) (mod N)}

I%(N) ={Ac SLy(Z) | ( 0> (mod N)}

*

For p a finite place of Q, their local analogues I'y, (resp. I‘O are defined by

Top={A€GLy(Z,) | A= (; I) (mod p)},

0= {A€GLy(Z,) | A= <: S) (mod p)}.

The local Iwahori subgroup I, is defined to be the subgroup of K, = G(Z,) consisting of those
elements of K, that when reduced mod p lie in the Borel subgroup of G(IF,). Precisely,

I,={AceK,| A= (mod p)}

O ¥ X %
EE O

S O ¥ %
O O *x O

Let R denote the subgroup of GxF consisting of elements h = (h, hy) such that hy € C:’, ho € F
and pa(h1) = pi(he). Let R denote the subgroup of R consisting of those (hi, hy) where h; € G.

For a fixed element g € G(A), let Fi[g](A) denote the subset of F(A) consisting of all elements
ho such that ua(g) = p1(ha).

1. EISENSTEIN SERIES ON GU(3,3)

1.1. Assumptions. Let S be a finite subset (possibly empty) of the finite places of Q. Let S, Sa, S3
be disjoint subsets of S such that S = 57 L S5 LI S5.

We let M denote the product of primes in S; LU S; and N denote the product of primes in
So LI S3. Thus M, N are positive, squarefree integers determined by Si, S5, S3. Conversely, any
choice of positive, squarefree integers M, N uniquely determines Sy, .52, S3 since we have

e 51 is the set of primes that divide M but not V.
e 55 is the set of primes that divide ged(M, N).
e 53 is the set of primes that divide N but not M.

Let L denote an an imaginary quadratic field such that all primes in S7 U Sy are inert in L. Fix
an unitary character A =[], A, of L*(A)/L* such that:

(a) AJA* =1.

(b) A is trivial.

(¢) A is unramified outside S7 LI Ss.

(d) If p € S; U Sy, then A, is non-trivial on Zzp but trivial on the subgroup FOL’p

Remark: To see that such characters exist, note that for each prime ¢ € S10LSs, L*A* L (Hp;éq 75 p)I‘%q

is a subgroup of L* LeoA*([],Z] ) of index qH > 1. Here 2t is the cardinality of the group Zj
For details, see [16, Subsection 9.3].



1.2. Eisenstein series. Let P; = Mz Ny be the Siegel parabolic of ﬁ, with
A 0 y
Mz(Q) == {m(A,v) = <0 .. (Al)t> |A € GL3(L),v € Q } ,
N (@ = dn@) = (L O) e )i =0
For s € C, we form the induced representation

I(A, s) = @uIy(Ay, s) = 1nd§§g) (AS*)

consisting of smooth functions = on H (A) such that
(1.2.1) =(nm(A4,v)g, 5) = [o] 26T N, g (det A)PET2) A(det A)Z(g, 5)

for n € N5(A), m(A,v) € Mz(A), g € H(A). Here § denotes the modulus character of Py.
Finally, given such a section =, we form the Eisenstein series E=(h,s) by

(1.2.2) E=(h,s) = > E(yhs)
VEPE(Q\H(Q)

for Re(s) large, and defined elsewhere by meromorphic continuation.

1.3. Some compact subgroups. For each finite place p of Q, define the maximal compact sub-
groups Kf,KpG, Kf of (respectively) H(Q,), G(Qp), F(Qp) by

K = H(Q,) N GLs(Zy,,),

K¢ =G(Q,) NGLy(Zyy),

K!I' = F(Q,) NGLy(Zy,).
Let Uf be the subgroup of Kf defined by

* ok ok ok ok ok
* ok ok ok ok ok
ﬁ f_j o * ok ok ok ok Xk
U ={z€eK) |z= e o e w ow s (mod p)}.
000 0 * =
000 0 * =

Let r: KE —~H (F,) be the canonical map and define the subgroup

o =716, Fp).
Also, put N
K& ={ge HR)|us(g) =

K§ = {9 € G(R)|pa(g) =
and N N
KL ={g € F(R)|m(g) = 1,9(i) = i}.

By [9, p.5], any matrix ke in Kolz (resp. ng, Kolz) can be written in the form ko, = A —AB ﬁ)
where A € C,|A\| =1, and A+iB,A—iB lie in U(3;R) (resp. U(2;R),U(1;R)) with det(A+iB) =
det(A —iB).
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For a positive even integer ¢, define
(1.3.1) pe(kso) = det(A —iB)~*
Note that an alternate definition for py(ks) is simply
pekos) = det (koo )/ det(J (koo 1)) 7.
Also note that if k. has all real entries, then
pe(koo) = det(J (koo, i) .

1.4. A particular choice of section. Fix an element Q € H;(Z) and an element Q € H;(Z). We
abuse notation and use @, {2 to also denote their natural inclusions into H(Q,) for any place v.

We impose the following condition on 2 for all primes p € Ss:

If nm(A,v) € Pz(Qp) N QI’HQ 1 then det(A) € T} Lo

We next define, for each place v, a particular section Ty (s) € I,(Ay, s).
Recall that I, (A, s) consists of smooth functions Z on H(Q,) such that

(1.4.1) S(nm(A, t)g, s) = [t], " 2 |NL/Q(detA)|vs DA Ay(det A)Z(g, s)
for n € Nj(Q,), m(A,1) € My(Qu), g € H(Qy).

e Clearly I,(A,, s) has a Kf fixed vector whenever A, is unramified.

For all finite places p ¢ S, choose T, to be the unique Kf fixed vector with

(1.4.2) Ty(1,s) =1.
e For all finite places p € S3, choose T, to be the unique UE fixed vector with
(1.4.3) T)(Q,s) =1
and
Tp(t,s) =0

if t ¢ Py(Q,)QUL.

e Suppose p € Sa. Choose 1), to be the unique Iz’)ﬁ fixed vector with
(1.4.4) T,(Q,s) =1
and
T,(t,s) =0

ift ¢ Pﬁ(Qp)QII’Dﬁ . We note here that such a well-defined vector as above exists because if
nm(A,v) € Py(Qp) NQLHEQ™!, then det(A) € F%’p. This follows because Q- € Hi(Z).

o Let p € 5y. N
Choose T, to be the unique IIQH fixed vector with
(1.4.5) T,(2,s) =1, T,(Q,s)=1
and

Tp(t,s) =0

ift ¢ Pﬁ(Qp)QI]’Jﬁ U Py (Qp)Qlfl . It is an easy exercise to check that such a vector exists

by our assumption on §2.
e Finally choose T, to be the unique vector in I (Ao, s) such that

(1.4.6) Yoo (koos 8) = pe(koo)
for ks € Kolz



Let Y be the factorizable section in Indgflx) (Al - |3%). defined by
H

T(s) = (®uTo(s))-
As explained in (1.2.2), this gives rise to an Eisenstein series Ex (g, s). B
Note that T and Ex are right invariant by [[ ¢, s, nH [Les, UM T pes K.
p<oo

2. STATEMENT OF THE PULLBACK FORMULA

2.1. Assumptions. For the rest of this paper, we assume that all primes in S are odd and inert
mn L.

Let a,b be integers and d a positive integer such that L = Q(v/—d) and —d = b*> — 4a.

Also, we henceforth fix Q) to equal the following matriz:

01000 O

1 0000 O
00000 -1
@= 00001 -1
00010 O
01 100 O
Further, define the element © € Gy (Z) by
100 O
o_ @ 1 0 O her _b+v—d
o o1 —a| VYT T
0 00 1
and the element s; € G1(Z) by
0100
11 0 00
710001
0010

2.2. Eisenstein series on GU(2,2). Let P be the maximal parabolic subgroup of G consisting of
ko ok * ok

the elements in G that look like 0 : : : . We have the Levi decomposition P = M N with
0 * *x %
M = MW M3 where the groups M, N, MY M@ are as defined in [3].
Precisely,
a 0 0 O
1) _ 01 0 0 x U rx
(2.2.1) MY (Q) = 00 a! o |ae L ~ L".
0 0 0 1
10 0 0
0 o 0 p a [ a 0
M (Q) = < )eGULl A= ( >
0~ 0 ¢
~ GU(1,1)(Q)



1 2z 0 0 1 0 a vy
B 01 0 O0][0 17y O
(2.2.3) N(Q) = oo 1 olloo 1o la€eQ,z,ye L
0 0 —x 1 0 0 01
We also write
a 0 0 O
01 0 O
m@ =19 o g1 o]
00 0 1
1 0 0 0
a B\ _ |10 o 0 B
2 (*y 5)‘ 00 A0
0 v 0 ¢
Next, let g be a normalized newform of weight ¢ for I'g(N). ¢g has a Fourier expansion
9(z) = bn)e(nz)
n=1

with b(1) = 1. It is then well known that the b(n) are all totally real algebraic numbers.
We define a function ¥ on GLy(A) by

W(ygacko) = (det goo) 2 (ci + d)~g(goo (i)

where v € GL2(Q), goo = <Z Z) € GL3 (R), and

ko € H GLQ(Zp) H F07p.

p%SQUS;g peS2US3

Let o be the automorphic representation of GLy(A) generated by ¥. We know that o = ®a,
where

holomorphic discrete series if v = o0,
0, = { unramified spherical principal series  if v finite ,v { N,
§Stgr2ywhere &, unramified, =1 ifv]|N.

If p{ N, we let ap, 5, denote the unramified characters of Q, that induce the spherical local
representation oy,.

For a prime p, let r : Kpé — é(IFp) be the canonical map and define the subgroup
I =r"'I(4,Fp).

Also, let Uf be the subgroup of Kf defined by

* 0 % %

G e X ok %k
UI)G:{ZGKPGME c 0 % x (mod p)}.

0 0 0 =

Extend U to F(A) by
U(ag) = ¥(g)



for a € L*(A),g € GLy(A). Now define the compact open subgroup UC of é(Af) by

(2.2.4) vC=[I&STIvs ] L

péS pES3 pESIUS2
Define
sil B ) ~ -
(2.2.5) falg, s) = 85 % (mumo) A(T) " W (ma)pi(kee)  if g = mamankk € G(A)
where m; € MO(A) (i =1,2), n € N(A), k = keoko with koo € K&, ko € U and k =[], ky €
IL, KPG is such that k, = 1if p ¢ S1 U Se, ky € {1,51} for p € Sy and k, € {1,0} for p € S;. Put
fA(ga 5) =0

if g is not of the form above. It can be easily verified that everything is well-defined.
We define the Eisenstein series Fy 4 (g,s) on G(A) by

(2.2.6) Bualg,s)= Y.  fa(y9:9).
YEP(Q\G(Q)
2.3. An important embedding. We define an embedding ¢ : R— H by
A B
AB ab a —b
(2.3.1) L.(|:CD:|,|:Cd:|)I—> c D
—c d
An essential feature of this embedding is the following. Suppose

g1 = my(a)ma(b)n € P(A),

g2 ="
where
a 0 0 O
01 0 0O
ml(a): 00 at o EM(l)(A)a
00 0 1
eN), b= (Y P e Fa)
n , — y 5 9
and
10 0 0
0 0
ma®)= [0 ¢ 0 7| e MO,
0~ 0 9
where A = (: ?) Then
(2.3.2) Q- u(91,92)Q" € Py(A).

It is this key fact that enables us to pass from Klingen Eisenstein series on G (A) to Siegel Eisenstein
series on H(A).
Henceforth, we fix
Q=Q 1(6,1).
We note that 2 satisfies the condition stated at the beginning of Subsection 1.4.
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2.4. The Pullback formula. For an element g € G(A), let Fi[g](A) denote the subset of F(A)

consisting of all elements hy such that ps(g) = p1(he). Clearly Fi(Q) acts on Fy[g](A) by left
multiplication.
We will compute the integral

(2.4.1) 8(g,s)z/~ - Ex(u(g,h), s)¥(h)A" (det h)dh.
(Q\F1lg)(a)

Here, the measure is normalized by making all the local maximal compact subgroups Kf have

measure 1. Define
¢s)=JJa-p)7",
p¢S

LSs,x-p)= ] @=(-p)p@p ™"

p¢S
ged(p,D)=1

where y_p denotes the character of A* associated to L.

Also, let p(A) denote the representation of GLy(A) obtained from A by automorphic induction.
Hence, for a prime ¢ ¢ S, we have:

L(s, 04 x p(Aq))
(1-a*(g)g ) (1= B*(g)g )" if g is inert in L,

(1- Q(Q)Aq((h)q_s)_l(l - 5((1)1\(1(%)@_5)_1 if ¢ is ramified in L,

(1= a(@)Aq(a)a™*) " (1 = Bla)Ag(ar)g )"

(1= alg)Ay (q1)g™) (1 = Bla)Ag (ar)g ™)~ if ¢ splits in L,
where ¢ € Zr, 4 is any element with NL/Q(ql) € qZ;.

Also for a prime p € S3, put

L(s,0p % p(Ap)) = (1 —p~ 27171,

Put
L(s,0 x p(A)) = [ ] L(s, 04 x p(Ay)).
atM
Now define
B By (s)L(3s + 1,0 x p(A))
(242) BS) = )20 (N] ged (M, NY) P, L5 (65 + 2, x_p)C5(65 + 3)
where
o1(A4) = H(p +1)
plA
and 0/29—65—1
_(=D)Emhe
Boo(s) = 6s+¢—1

Then the pullback formula says:

Theorem 2.4.1 (Pullback formula). For g € G(A) define £(g,s) as above and Egya(g,s) as in
Subsection 2.2. Then we have
&(g,s) = B(s)Ew (g, s)
as an identity of meromorphic functions.
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We will prove the Pullback formula in Section 5 using the machinery developed in the next two
sections.

3. THE LOCAL INTEGRAL AND THE UNRAMIFIED CALCULATION

3.1. Definitions. We retain the notations and definitions of the previous section. Furthermore,
for any prime p, we define the following compact subgroups of F'(Q)):

*

5 5 *
) FOF’p:{AEKZf]AE (0 *> (mod p)}
o Let rp,: Kf — GU(1,1)(F,) be the canonical map and let K;,ﬁ = r;l(GLg(IFp)). Define
F _ goF ~7F
F{)J) = K;) NI,

3.2. Some useful properties. First, we note some properties of the section Y. Fix (g1,92) €
R(A).

e Let p be a prime not dividing MN and k; € Kf, ko € Kf with po(k1) = pi(ke). Then,
note that

k1, ko) € K.
Because T, is K;? -fixed, it follows that
(3.2.1) T(u(g1k1, g2k2), s) = T((g1, 92), 5),
o Let p|N,pt M. If ky € U, ky € T with (k1) = pu1 (k2) then check that
(3.2.2) W(k1, k2) € UL
Because T, is Uf -fixed, it follows that
(3.2.3) Y((g1k1, g2ka), s) = Y(u(g1,92), 5),
o Let p be a prime dividing M. If ky € I, ks € T4 with pa(k;) = g1 (k2) then check that
(3.2.4) W1, ko) € I,
Because T, is Il'ﬁ -fixed, it follows that
(3.2.5) Y((g1k1, g2k2),s) = Y(u(g1,92),5),
o Finally, let k1 € KC, ko € KE with pa(ky) = pu1(k2). Check that
(3.2.6) u(ki, ks) € K.
Hence we have

(3.2.7) Y(e(giki, gaka), ) = pe(k1)pe(ka) 1T (e(g1, g2), ).
12



3.3. The key local zeta integral. Let ¢» =[], ¥, be a character of A such that
e The conductor of v, is Z,, for all (finite) primes p,
o o(z) =e(x), for x € R,
* Ylg=1.
Let Wy be the Whittaker model for W. It is a function on F(A) defined by

Wal(g) = /@ L ((é f) g) W(—z)da.

We have the Fourier expansion

(331) v =X we((5 V)o)

AeQX
By the uniqueness of Whittaker models, we have a factorization

Wy = ®vW\I/,v-

Now, for each place v, and elements g, € F (Qu), ky € Kg; , define the local zeta integral

(3.3.2) Zy(gu, kv, 8) = /~ To(Q - t(ky, hy), 8) W o (guhy) Ayt (det hy)dhy,
Fl(@v)

The evaluation of this local integral at each place v lies at the heart of our proof of the pullback
formula.
First of all, by (2.3.2) and the properties proved in the previous subsection, observe that it is

enough to evaluate the integral for k, lying in a fixed set of representatives of (P(Q,) ﬂKUé NEK vé /Uy,
where ~
KS ifvgsS
Uy =1UF ifvesSs
I{} if v € 51U .5
For 1 <14 <5, define the matrices s; € G(Q) as follows:

0100 0 0 01 0 0 10
s = 1 000 5y = 0 0 10 55— 0 0 01
000 1]”° 0 -1 0 0)” -1 0 0 0}”
0 010 -1 0 0 0 0 -1 00
0o -1 0 0 0 -1 0 O
sy = -1 0 0 O 55— -1 0 0 0
o 0 0 -1} 0o 1 0 -1
1 0 -1 0 0 0 -1 0

Define the set Yo, = {1} and for a (finite) prime p, define the set Y, C G (Qp) as follows:
o Y, ={1}ifpt MN.
o Y, ={1,s1,s2} if p|N,p{ M.
o Y, ={1,51,52,53,0,0s,0s4,0s5} if p|M.
Remark. In the above definition, we consider the s; and © as elements of é((@p). This makes
Y, a subset of (NJ(ZU) for all places v.

Lemma 3.3.1. Y, is a set of representatives for (P(Q,) N K?)\K?/Uv at all places v.

Proof. For v infinite or v a prime not dividing M N, this is obvious. Now let p be a prime dividing
N but not M. If W denotes the eight element Weyl group, then W is a set of representatives for

(P(Qp)N KE)\KI?/II? where II? denotes the Iwahori subgroup of KE. Since Upé is larger than IE,
13



there is some collapsing, as expected. By explicit computation we find that {1, sy, s2} do form a
set of distinct representatives. The case when p|M is also proved similarly by explicit computation.
For brevity, we do not include the details here. ([l

The rest of this section and the next will be devoted to evaluating at each place v the integral
Zy(gv, ky, 8) for every k, € Yy, g, € F(Qy).

3.4. The local integral at unramified places. In this subsection, ¢ will denote a prime that
does not divide M N. Hence, both A, and o, are unramified.

In particular, o, is a spherical principal series representation induced from unramified characters
a, B of Q.

By abuse of notation we use ¢ to also denote its inclusion in Q. Thus ¢ is an uniformizer in our
local field.

Let p(A) denote the representation of GLy(A) obtained from A by automorphic induction. Define

L(s,04 x p(A4)) as in Subsection 2.4.

1— =)7L i v i ified at

For a character x of Q; define L(s,x) = (1= x(a)a™) b 1.1nram1 edar e,
1 otherwise.

The aim of this subsection is to prove the following proposition.

Proposition 3.4.1. Let q be a prime such that g+ MN. Let 1 denote the trivial character and
X—p denote the Hecke character associated to the quadratic extension L/Q. Then, we have
L(3s+ 1,04 x p(Ay))

o9 1 8) = Waal9a) - 775 (X-D)q)L(65+3,1)

Proof. Let K f ! denote the maximal compact subgroup of P (Qq) defined by
KD = Fi(Q) NGLy(Zy ).
Note that for g € ﬁl((@q),k:l, ko € KFl we have using (1.2.1), (3.2.1)
Ty(Q - (1, kigka),s) = Yo(Q - e(ma(ki)ma(k1) ™", kigks), s)
=T4(Q - t(ma(k1) ™", gks), s)
= Tq(Q : (Lg)a 5)

In other words Y4(Q - ¢(1,g), s) only depends on the double coset Kqﬁngfl.
There are three distinct cases: ¢ can be inert, split or ramified in L. We consider each of these
cases separately.

Case 1. q is inert in L.

In this case, L, is a quadratic extension of Q,. We may write elements of L, in the form a+bv/ —d
with a,b € Qg; then Zr, ; = a + bv/—d where a,b € Z,. Also note that A, is trivial.
We know (Cartan decomposition) that

q) = |_| Kle”Kfl

n>0
q" 0 .
where A,, = <0 q‘") . So (3.3.2) gives us
3.4.1 Z4(94:1,8) = Ty( s /N _ Wy 4(gqhq)dhy.
(3.4.1) 019) = D TQ A [y Waalagh

14



Given an element k € Kfl we can find [ € Zz’q such that kl € GLy(Z,). It follows that if

GLy(Zg) AnGLa(Zg) = | | aiGLa(Zy),

where a; € SLy(Zg) then
KPAK =] |aiK["
i

The importance of this observation is that we can use the theory of Hecke operators for GLy to
evaluate fo1Aan1 Wy 4(gghq)dhy.

Recall that classically T'(¢*) denotes the Hecke operator corresponding to the set G'La(Z,)SkGLa(Zy,)
where Sj, comprises of the matrices of size 2 with entries in Z, whose determinant generates the
ideal (¢*). Also observe that

noQ
GLy(Z4q)SonGLr(Zy) = (q

D ) GLa(a) A, Ll

|_| <g 0) G Lo(Zq)San—2G La(Zy).

q
So we have
(3.42) /KﬁlA K W q(9ghq)dhg = Z W q(9q04)
(3.4.3) = (Bon — Ban—2)Ww 4(94)

where () is the eigenvalue corresponding to ¥ for the Hecke operator T(¢¥). We put 8, = 0 if
k <O0.
Using [2, Proposition 4.6.4] we have

¢"*(a(q)F ! — B(g)F 1)

(3.4.4) Br =

a(q) — B(q)
for kK > 0.
On the other hand, using (2.3.1) we see that Q - (1, A,)Q ™" is the matrix
1 0 0 00 O
0 1 0 00 O
c_| 0 0 am 000
=1 0 0g¢"-110 0
0 0 0 01 0
1—¢" 0 0 00 ¢"
We can write C = PK where
" 00 0 01
0 1.0 0 00O
o o1 gm0 o0 )
P=10 00 ¢» 0 of €@
0O 00 0 10
0O 00 0 01



and

1 0 0 0 0 -1
0 1 0 0O 0 O
0 0 1 -1 0 O
0 0 0 0O 1 0
1—¢" 0 0 0 0 ¢"
So, by (1.2.1) we have
(3.4.6) To(Q u(1,Ay),s) = ¢TI (KQ, s)

Also KQ- € Kf, hence T (KQ,s) = 1.
So, by (3.4.1),(3.4.3),(3.4.4),(3.4.6), we have

Z4(9g:1,5) = W q(90) [Z om0 = Bla)

= a(q) - A(q)
e ensi12 0" (a9 = B9
; ! a(q) — B(q)

(1 _ q—65—3)(1 + q—65—2)
(1= a(aPq % 2)(1— Alg)Pq 2
B L(3s+ 1,04 x p(A,))
= Wwal90) " 765+ 2. x_p)L(6s + 3.1)

= W\I’,q(gq)

Case 2. q is split in L.

We can identify L, with Q, @ Q, with Q, embedded diagonally as t — (t,1).
For g € GL,(Q,) denote g* = J,1(g")"1J,. Note that for n = 2, g* = degtg' Now there is a

natural isomorphism of GL,(Qg) into U(n,n)(Qq) given by g — (g,g*). Thus specializing to the
n =2 case, g — (g, ﬁ;g) takes GL2(Qg) isomorphically onto Fi(Qy).

) qm-i-k 0
Define A,, 1, to be the image of .

m+k —m 0
Thus A — (@"5a™™) .
us Am,k < 0 (qqu—m—k)
The Cartan decomposition gives us
o= || KD Amp KD

k>0
meZ

Let g1 denote the element (¢,1) € Ly. So N g(q1) = g. For brevity, let us denote Ay(q1) by A.
Note that for any integer m,

Aq(qm’qu) — )\2m'
Now, using (3.3.2), we have

(3.4.7) Zq(99:1,8) = > Y@ 1(1, App), s) A28 / Wa.4(gqhq)dhy.
E>0 K Am kK
meZ

16



Using the above conventions, and the notation of the inert case, we have
—m

GLy(Z4)SkGLo(Zy) = (q 0

0
q_m> GL3(Zq) A 1 GL2(Zy)

| | <8 2) GLy(Zg)Si—2GLo(Zy).

So, we have
(3.4.8) / P 7 Wy q(9ghg)dhg = (B — Br—2)Ww ,q(9q)
KylAn pKgt

where we put B = 0 if k < 0. Now Q - ¢(1, A, 1)@ " is the matrix C where

1 0 0 00 O
0 1 0 00 O
- 0 0 mq 00 O
0 0 ¢g"—-1 1 0 O
0 0 0 01 O

1_qm+k 0 0 0 0 qm+k

[Note that by C' we actually mean the pair (C, C*). This convention will be used throughout our
treatment of the split case; thus the letters P, K etc. are really a shorthand for (P, P*), (K, K*)
etc.]

First we consider the case m > 0. We can write C = PK

where
gt 0 0 0 0 1
0 1 0 0 00
B 0 0 ¢™ —¢™ 0 0
P= 0 0 O 1 00
0 0 O 0 10
0 0 O 0 01
and
1 0 0 00 -1
0 1 0 00 0
_ 0 0 q" 10 0
K= 0 0 ¢"—1 1 0 0
0 0 0 01 0
1— qm+k 0 0 0 0 qm+k
Since P € Py(Q,) we have, using (1.2.1)
(3.4.9) T (Q-1(1, App),s) = AImHkg=3CmIRHDy (KQ, s)
Since KQ € KX, T,(KQ,s) = 1.
Thus when m > 0 we have
(3.4.10) (@ (1, A ), 5) = N3 HEg Omask)(st1/2),
Now suppose 0 > m > —k. For convenience we temporarily put n = —m. So 0 <n < k.
Writing C' in the form PK we verify that
(3.4.11) To(Q- (1, Ap),s) = A2tk —3k(s+1/2)
So, when —k < m < 0 we have
(3.4.12) T Q- 1(1, A ), s) = )\2m+kq—3k’(s+1/2).

17



Finally, consider the case m < —k. For convenience we again put n = —m. So 0 < k < n. By
similar calculations as above, we find that

(3.4.13) T (Q- (1, Apg),s) = A2 (6me43k) (s+1/2)

Substituting (3.4.4),(3.4.8),(3.4.10),(3.4.12),(3.4.13) into (3.4.7) we obtain

Zq(gtb 17 8)
=W (99 Z (Bk — Br—2) [ D AT Imokg(ZOmsk) (s 1/2)
m=1
—k—1
+ Z )\—Qm—kq—3k(s+1/2) + Z )\—2m—kq(6m+3k)(s+1/2)
m=—k e —oco

_ Wy 4(94)(1 — ¢~ 73)(1 — g7572)

(I —a(g)Ag 3 1)(1 = B(@)Ag™ 1)1 — a(g)A~tg 37 1) (1 — B(g)A~tg=?1)
. L(3s+ 1,04 % p(Ag))
= Wy 4(9q) - T6s 12 I Li6543.T)

Case 3. q is ramified in L.

We largely revert to the notation of the inert case. Write elements of L, as a4+ bg; with a,b € Q,
and ¢ an uniformizer in Ly, that is, Ny ,o(q1) € ¢Z;. So Zr4 = a + bgy with a,b € Z,. Put
A= Ag(q1). We have A2 = 1.

The Cartan decomposition takes the form

ﬁl(@q) = |_| K,flAnK(fl

n>0

where A,, = <q1 9n> . So (3.3.2) gives us
0 q
(3414) g‘b 173 ZT )78) / ﬁlA K~ W‘If q(gqh )dhq
n>0
Now,

P Fo_ ql_n 0 Fy " 0 P
st (5 205

So, by the same argument as in the inert case, we have,

(3.4.15) / By i W q(9ghq)dhg = (Bn — Bn—2)Ww q(9q)

where, of course, we put 5, = 0 for negative n.

Now (1, A,) is the same matrix as in the inert case with ¢ replaced by ¢;. So the same choice
of P and K work.

Thus, by (1.2.1) we have

(3.4.16) T (Q-1(1,Ay),s) = Arg3n(s+1/2)
18



Substituting (3.4.4),(3.4.15), (3.4.16) in (3.4.14) we have

n/2 alg)vt! — n+1
Zy(gg1,8) = ij7q(gq)|:2)\nq—3n(s+l/2)q (a(q) Bl@)"")

= a(q) - A(q)
_ n_—3n(s+1/2) qn/2—1(a(q)n—1 - B(Q)n_l)
7;2 M a(q) — B(q)
1—q~%7%

= Wualga) (1 —a(g)rg=3=1)(1 = B(g)Ag~371)

L(3s+ 1,04 x p(Ay))

p— W .
v.a(9a) L(6s+2,x_p)L(6s + 3,1)
(Note that L(s,x—p) = 1 in this case)
This completes the proof. O

4. THE LOCAL INTEGRAL FOR THE RAMIFIED AND INFINITE PLACES

4.1. The local integral for primes in S3. Let r be a prime dividing N but not M. Note that
r is inert by our assumptions. In this section we will prove the following proposition.

Proposition 4.1.1. We have
1 TR R
Lo ys) = { PV Lot L) i by =
0 if k. = s1 or ss.
where the local L-function L(s,o, x p(A;)) is defined by
L(SaUT X p(Ar)) = (1 - T_QS_I)_I'

Proof. Recall that o is the irreducible automorphic representation of GLo(A) generated by V. Let
or be the local component of ¢ at the place r. We know that o, = Sp ® 7 where Sp denotes the
special (Steinberg) representation and 7 is a (possibly trivial) unramified quadratic character. We
put a, = 7(r), thus a, = +1 is the eigenvalue of the local Hecke operator T'(r).

We first deal with the case k. = 1. Let I‘& ! denote the compact open subgroup of P (Q;) defined
by
Iyl =18, NF(Qr).
Note that for g € Fi(Q,), ki, ko € FOF}, we have using (1.2.1), (3.2.3)
T (Q - o(1, k1gka), s) = Tr(Q - t(ma(k1)ma(k1) ™, kigks), s)
(4.1.1) =T.(Q - t(ma(k1)7t, gks), s)
= TT(Q ' L(lvg)a S)
In other words Y, (Q - ¢(1,g), s) only depends on the double coset Fg #gFOFj L.
Because r is inert in L, L, is a quadratic extension of Q.. We may write elements of L, in the
form a + bv/—d with a,b € Q,; then Zj, , = a + bv/—d where a,b € Z,. Also note that A, is trivial.
We know (Bruhat-Cartan decomposition) that
F(Q) =T U Thwrd

u | |reiAnrt v | | TitApwr

(412) n>0 n>0

ﬁl ﬁl ﬁl ﬁl
U |_| TilwA T U |_| I5 wA,wl.
n>0 n>0
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where A, = <r0 T,On) and w = ( 01 0) So (3.3.2) gives us

Zu(ges108) = X0(Q0(1,1).5) | Wy (gl )b,
FO,’I‘

F0@ (L)) [ Walgrh)dh,
Iy twlhh
+n§>‘6n(@ : L(l,An),S)/ﬁlA o Wy (grhy)dh,
(4.1.3)

F QoA [ Walach)dh,
n>0 lA”wF

FX QL wA) ) [ Wl h)dh,
;} (@Q- ) )rFlwArF; (grh)

-I—Z:TT(Q-L(l,wAnw),s)/~ _ Wq,r(grhr)dhr
n>0 FOTwAnwF

Now Wy, is an eigenvector for the Iwahori-Hecke algebra, hence each of the integrals in (4.1.3)
evaluates to a constant multiple of Wy ,(g,). Thus for some function A(s) (not depending on g;)
we have

ZT(9T7 L, 3) = A(S)W\I/,T<gr)'
We may normalize Wy (1) = 1; it follows that

(4.1.4) Zr(9r,1,8) = Z,(1,1, )Wy (9r)
Given an element k € F ' we can find [ € ZX such that kl € I'g .. It follows that if

FO,TAnPO,T = |_| aiFO,T7

where a; € SLy(Z4) then
Fi g pF F
L |azF0%~

0 pn ) where 0 < m < r?". Using the formula

in [5, Lemma 2.1], we have Wy ,.(a;) = r~2" and hence

(4.1.5) > Wy, (a) =1

aerFlA FFl /I‘

From [12, Lemma 4.5.6], we may choose a; =

Also, from [12] we have
IitwAwlit =| |bIgL.

—n
where b; = —7:&7‘1_" 72) Using the formula in [5, Lemma 2.1], and doing some simple manipu-

lations, we have

(4.1.6) > Wy (b) =1
belglwA,wlg L /ThL
20



Next, we check that the quantities T, (Q - ¢(1, A,w), s), Tr(Q - (1, wAy), s), are both equal to
0. Indeed TJ(Q <1(1,A),s) = 0 whenever @ - ¢(1, A) as an element of H(Q,) does not belong to
P7(Q,)QU. Let K be the matrix defined in (3.4.5) with ¢ replaced by r. It suffices to prove that
the quantities KQ - t(m(w),1), KQ - (1, w)- do not belong to (Pz(Q,) N KH)QUF. We check this
by taking a generic element P of (Pz(Q,) N K}*) and showing that Q 'PKy ¢ U where Kj is
one of the above quantities. That is a simple computation and is omitted.

On the other hand, putting

rm 0 0 0 01
O 1.0 0 0O
O 01 ™ 0 O
P=19 00 rm o of€a@)
0O 00 O 10
0O 00 0 01
we can check that _
Q7 'PIQ - u(1,4,) e UH,
hence
(4.1.7) Yo (Q - u(1, Ap), s) = r6n(s+1/2)
Also, putting
O 0 ™ 1 0 O
O1 0 00 O
1 0 0 0 0 r=™
P=1o 0 0 00 rn|€Pa@)
O 0 0 01 O
00 0 1 0 O

we can check that N
QPIQ - u(ma(w), Apw) € UM,

hence
(4.1.8) T (Q - (1, wA,w), s) = T(Q - t(ma(w), Apw), s) = r~"+1/2)
So, using (4.1.5),(4.1.6) (4.1.7) and (4.1.8),
Z-(1,1,8) =71,(Q - ¢(1,1),s / dh, + T.(Q- (1, A,),s [/N _ Wy (hy)dh,
(1,1,5) ( ())FST}T Z:O( ( ))rgernrgjqu’()

+/~ s W\Il,r h'r’)dhr:|
Tyl AnTgL (

= (K TR 14+ 2) 1@ (1, An). )

n>0

_ 1 —6n(s+1/2)
= (1+ 21;07« )

1 1+ r0s=3
Cor4 11— 053
whence (4.1.4) implies

147073

1
(4.1.9) Zr(9r 1,8) = = War(9r) - T =63
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Finally, we deal with the case when k. = s1 or so. The key observation is that if k£ € Kf ! then
fori=1,2

s; tma(k)s; € UTé.

By the same argument as in (4.1.1), it follows that T, (Q - ¢(s;, g), s) only depends on the double

coset KflgF&,. So, if we can show that for all h € F1(Q,) we have Zaerl arfL i Wy »(gra) =0,

it would follow that Z.(g,, s;,s) = 0.
If we define

Wi(gr) = Z W\I/,r(gra)
ek Tt ri

then W(g k) = W(g,) for all k € K P in other words W is a vector in the Whittaker space that

r o
is right K invariant. But the only such vector is the 0 vector and this completes the proof.
O

4.2. The local integral for primes in S5. In this subsection, we prove the following proposition.

Proposition 4.2.1. Let p be a prime dividing gcd(M,N) and k, € Y,. We have

W‘I’;P(gp) e —1 b -
Zp(gpak‘p,s):{ (p+1)2 if kp or ky = 51

0 otherwise .

Proof. Recall that o is the irreducible automorphic representation of GLo(A) generated by W. Let
op be the local component of o at the place p. We know that o0, = Sp ® 7 where Sp denotes the
special (Steinberg) representation and 7 is a (possibly trivial) unramified quadratic character. We
put ap = 7(p), thus a, = £1 is the eigenvalue of the local Hecke operator T'(p).

Let F(f; denote the compact open subgroup of P (Qp) defined by
F F ~ 7
Lo =T6, N F1(Qp).
We first consider the case k, = 1. By a similar argument as before, we have,

Tp(Q - (L kighkz), 5) = Tp(Q - elma(kr)ma (ki)™ kigks), s)

(421) = TP(Q ) L(mQ(kl)_lvng)a ‘9)
=Tp(Q-(1,9),5)
In other words Y),(@ - ¢(1, g), s) only depends on the double coset Fg} gFB%.

Because p is inert in L, L, is a quadratic extension of Q,. We may write elements of L, in the
form a 4+ bv/—d with a,b € Qp; then Zr , = a + bv/—d where a,b € Z,. Also note that A, is not
trivial.

Fix a set U of representatives of ng / F%p. For definiteness we may take

U={1}U{b+vV—d:beZ,0<b<p}

~ I 0 =~ ~ -
Forl e L putl= (0 l_1> . We know that given g € Fg}, there exists [ € Zz’p such that gl € F{fg.

From this fact and the Bruhat-Cartan decomposition (4.1.2), it follows that
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|_| F/Fl lF/Fl U I—I F/FlwlF/Fl

leu leUu
U | rEadrd U || T AT
(4.2.2) n>0 n>0
€U IEU
U | Readr U || T w AT
n>0 n>0
leU IEU
_(p" O (0 1
where as before A,, = ( 0 p”> and w = <_1 Nk

Now, in the proof of Proposition 4.1.1 we saw that the elements @ - (1, Ayw), @ - 1(1,wA,;) of
H(Qp) do not belong to Pﬁ((@p)QU;I. In particular therefore, the elements @ - ¢(1, A,wl), @ -

(1, wARl) of fI(Qp) cannot belong to PH(QP)QIZ’)FI.
So (3.3.2) gives us

Zp(gp:1,8) = DA TH(Q - u(1,1),8) [ W p(gphp)dhy
leU ITop
(4.2.3) +ZZA;2(Z)TP(Q‘L(17AVLI~)75) /,F P W p(gphp)dhy
n>0 1€V » Anllg )
+Y Y T AZDTL(Q - (1, wAwl), 5) / . o W p(gphp)dhy.
n>01eU IU’An“’lF »

If we choose a;, b; as in the proof of Proposition 4.1.1 then we have

Fy o4 T E F
AT = | Jadrt,
i

T4 A il = |_|blF’F1
Hence, by the same argument as in the proof of that proposition, we have
W (gphy)dhy, = Wy (gphp)dhy, = [KF - T
/’FlA iyl v (gphp) iy /FoFlwAnwlF/Fl v (gphp)dhy = Ky < Lo,

It is easy to check that the last quantity is equal to

(p+1)2’
So we have
Zp(gpvlv )_ 7p gp <ZA (177)’3)
(4.2.4) v
+ZZA;2(Z)T,,( (L Anl),8) + >0 A (1,wAnwl),s)).
n>01eU n>01eU

We can check that for n > 0, Q - ¢(1, A,l) does not belong to Pﬁ(Qp)QI;,ﬁ, hence T,(Q -
L(l,AJ), s) = 0. We can also check that for I # 1,1l € U, Q- L(lj) does not belong to Pﬁ((@p)QII’JH,

hence T, (@ - u(1,1),s) = 0.
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Also, putting

OO O = OO
OO OO O
_ o OO O
O = OO OO

’B\

3

o~~~

m

i)

=)

3

N—

we can check that ~
QP Q - 1(w, Aywl) € I;)H,
hence

(425) TP(Q ’ L(lv ’LUAan)7 5) = Ap(l)p_Gn(S+1/2)
Thus we have A;Q(Z)TP(Q (1, wApwl), s) = A;l(l)p_G”(sH/z) and hence for all n > 0 we have

ZA;2(Z)TP(Q (1, wAywl), s) = 0.
leU

So we conclude that

Wy p(9p)
Zy(gp,1,5) = ﬁ-

Next, we deal with the case k, = s1.

If k e Fg:;; then s7'ma(k)s; € I,. So, by tlje same argument as before, we know that Y,(Q -
t(s1,9),s) depends only on the double coset 1“612 gl“g;ﬁ.

Also, by explicit computation, we check that Q - (s1, Apwl), Q - t(s1,wA,l) do not belong to
Pﬁ(Qp)QII’,H for any n > 0. Moreover, the quantity @ - ¢(s1, Apl) belongs to Pﬁ((@p)le’,H if and

only if n =0,l=1 On the other hand, for n > 0, the quantity @ - ¢(s1, wA,wl) does belong to
PH(QP)QI;,H . By explicit computation which we omit, one sees that

(4.2.6) Zp(gp, 51,8) = W <1 + Z Z A;Q(Z)TP(Q sy, wARwl), s))
n>01eU

But we check that T,(Q - t(s1,wA,wl),s) = Ay())p~+1/2) and hence Y, A2(D)T,(Q -

u(s1, wApwl),s) = 0.
This completes the proof that

Wy »(9p)
Zy(gp, 51,8) = ﬁ.

Next, we consider k, = s2. Let F;?’Fl = JJ‘(% J1 where J; = (_01 (1]) .

If k € T then s;'mo(k)sy € I,. So, by the same argument as before, we know that 1,(Q -

t(s2,9),s) depends only on the double coset F;O’Fl gfgg.
Now, the Bruhat-Cartan decomposition (4.2.2) continues to hold when we replace the left Fg:;

in each term by F;?’Fl. So, to prove that Z,(gp,s2,s) = 0 it is enough to prove that each of the

elements @Q-¢(s2, An~), Q- 1(s2, Aan), Q-1(s2, wAn~), Q-1(s2, wAnwl~) cannot belong to Pg(Qp)QIZ’ﬁ
for any n > 0. This we do by an explicit computation. The details are omitted.
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Next, take k, = s3. Once again, we check that if &k € I then s3'ma(k)sy € I,. On the
other hand, an explicit computation again shows that the elements @ - t(s3, Anl), @ - t(s3, Apwl),

Q - (s3, wAnzv), Q - (s, wAnwzv) cannot belong to Pﬁ(Qp)QI}/,H. So by exactly the same argument
as the previous case, Z,(gp, s3,5) = 0.
Next consider the case k, = ©. Define

M {Aerfi|a= <é D (mod p)}.

We can check that if k € F'ﬁl then O 'my(k)© € I). We know that given g € Fop, there exists

l e Zz such that gl € I’/F1 Thus, the Bruhat-Cartan decomposition (4.2.2) continues to hold

when we replace the left FO,p in each term by Fl P An explicit computation again shows that the
elements @ - (O, Anl~), Q- L(@,Anwl), Q- (0O, wAnl) never belong to Pﬁ(@p)le’)H. On the other

hand, if n > 0, then @ - L(@,wAnwzv) does belong to Pﬁ((@p)QII’Dﬁ. Indeed, by explicitly writing
down the decomposition, we see that

(4.2.7) Zp(gp, ©, 5) = ——22Ip) (9p) (ZZA (0, wAwl), )>.

p + 1 n>01eU

But we see that Tp(Q - (O, wAnwzv), s) = Ap(l)p_G”(SH/Q) and hence
ZA -1(0, wAwl), s) =

leU
This completes the proof that
Zp(9p,©,5) =0.
The rest of the proof is similar: by explicit computations, we check that Z,(gp, ©s2,s) = 0,

Zp(gpa @847 3) =0, Zp(gpv ®S5> 5) =0.
O

4.3. The local integral for primes in S;. In this subsection, we prove the following proposition.

Proposition 4.3.1. Let p be a prime dividing M but not N and k, € Y,,. We have

W\I/,p(gp) e —1 L -6
Zp(gpakp,S) :{ (p+1)2 lf D or P

0 otherwise .

Proof. Recall that o is the irreducible automorphic representation of GLo(A) generated by W. Let
op be the local component of o at the place p. We also let a, 3 be the unramified characters of Q
from which op. is induced.

Let F{)F;,F'F ! be as defined in the previous subsection.

We first consider the case k, = 1. As in the previous case, T),(Q - ¢(1,g), s) only depends on the
double coset FBF ! gF’F !
By explicit computation we check that, Q- u(1, AnlN), Q-u(1, Anwiv), Q- (1, wAnl~), Q-u(1, wAnwD

do not belong to Pﬁ((@p)QI]’DH . Thus only the section supported on ) contributes. So, by the
Wy p(9p)
(p+1)% -
Next, consider the case k, = s1. Again, by explicit computation, we check that for n > 0,
Q - (s, Apl), Q - u(s1, Apwl), Q - t(s1,wALL), Q - t(s1,wA,wl) do not belong to Pﬁ(Qp)QII’)H.
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results of the previous subsection, and by (4.2.2), we have Z,(gp, 1,s) =



Furthermore @ - (s1, wl) does not belong to P5(Qp)Q2 I’H and Q - «(s1,1) belongs only when [ # 1.
So

W ~
(4.3.1) Zp(gps 51,58) = \Ilp gp ZA cu(s1,0),8)+ 1

leU
1£1

where the 1 comes from the results of the previous subsection.
Noting that Tp(Q - t(s1,1),s) = Ay(l) and that Y ey A1) = —1,
1£1
we get
W\I!,p(gp) W‘I!,p(gp) _
(p+1)?  (p+1)?

Zp(gpa S1, S) = -

Next, we consider k, = s2. Let F]’DO "1 he as in the previous subsection.
By the argument there, we know that Y,(Q - ¢(s2,9),s) depends only on the double coset

/0 Fl /Fl
Iy I’O’p

To prove that Z,(gp,s2,s) = 0 it is enough to prove that each of the elements @) - L(SQ,AnT),
Q - 1(s2, Aywl), Q- 1(s2,wAL), Q- t(s2, wA,wl) cannot belong to Pﬁ(Qp)QI;JH for any n > 0. This
we do by an explicit computation. The details are omitted. N

Next, take k, = s3. Once again, an explicit computation shows that the elements @ - ¢(s3, Anl),
Q - u(s3, Anwﬂ, Q - u(s3, wAnZV), Q - i(s3, wAnwiv) cannot belong to Pﬁ(Qp)QI;,H. So by exactly the
same argument as the previous case, Z,(gp, s3,s) = 0.

Next, consider the case k, = ©. By explicit calculation, we check that for n > 0 the elements

Q- u(©,Awl), Q- (O, wALl), Q- (O, wA,wl) do not belong to Pﬁ(Qp)QIJDﬁ. Also check that
Q- L(@,wT) ¢ Pﬁ(Qp)QII’,H. Also, provided [ # 1, we have Q - L(@,wl~) ¢ Pﬁ(Qp)QIZ’gH. Thus, the
only term that contributes is @ - ¢(©,1).

So by the same argument as before, we have

Zp(9p,©,5) = Tp(Q - 1(O,1),5) /F'ﬁl W p(gphyp)dhy
0,p

_ W‘If,p(gp)
e+ 1)?

Next consider the case k, = ©sy. For ¢ € Z, let u(x) be as in the previous subsection. As
before, to prove that Z,(g,, ©s2,s) = 0, it is enough to check that the elements Q - +(Os2, w(z)Anl),
Q - U(Os2, u(x)Apwl), Q - L(Osa, u(x)wAL), Q - 1(O,u(z)wA,wl) do not belong to PE(QP)QII’)INJ.
This can be done by an explicit computation (omitted for brevity).

Next, consider the case k, = Os4. To prove that Z,(gp, ©s4,s) = 0, it is enough to check that

the elements @ - (O sy, u(:):)AnZN), Q- L(@S4,U($>Anwl~), Q- L(@S4,u(x)wAn2V), Q- 1(Osy, u(x)wAnwD
do not belong to Pg(Q,)Q1; H  This is done by an explicit computation, which we omit.

Finally, we con51der the case k, = ©s5. To prove that Z (gp, Oss,s) = 0, it is enough to check
that the elements Q-.(©ss, Ay, 1), Q-1(Os5, Apwl), Q-1(Os5, wALL), Q-1(Os5, wA,wl) do not belong

to Pﬁ(Qp)QII’)H . This is done by an explicit computation, which we omit.

(4.3.2)

t
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4.4. The local integral at infinity. In this subsection we prove the following proposition.
Proposition 4.4.1. We have
Zoo(gom 1, 5) = BOO(S)W‘IJ,OO(QOO)7

_1)¢/29—6s—1,
where BOO(S) = (%(SW

Proof. Note that Kf; is the maximal compact subgroup of ﬁl(R). Furthermore, note that any
element h of F(R) can be written in the form

=0 D))

where x € R, b € Rt k € Kf; Let us henceforth denote u(x) = <[1) f), t(b) = <8 b91>' We

normalize our Haar measures such that Kf; has volume 1. Also, note that Ay is trivial and for
ke KE, g,h € F1(R) we have

TOO(Q : L(L hk)a 8>W‘1’700(ghk) = TOO(Q : L(la h): S)W‘I’,Oo(gh)
Hence we have

(4.4.1) Zoo(goo, 1,8) = /000 /00 Yoo (@Q - t(1,u(z)t (b)), 8) W 00 (goor(z)(b)) b > dxdb

where dz, db are the usual Lebesgue measures.

Let KX = Kolz N H(R). To calculate Yoo (Q - ¢(1,u(z)t(b)),s) we need to write the Iwasawa
decomposition of Q-¢(1, u(z)t(b)). However, finding an explicit decomposition is not really necessary.
Indeed, we know that there exists some decomposition

Q- uter®) = (o (i) K

with K € K1 A € GL3(R) and that

(4.4.2) Yoo (Q - o(1,u(z)t (b)), s) = | det(A)|5T1/2) det(J (K, )7~
Now, let Alg’c =@ - t(1,u(z)t(b)). By explicit computation, we see that
01000 0
10000 O
» |0 0000 —1
=10 00 0 1 —%
00010 0
015b00 —%

By (4.4.2) we have
det(J (AL, 1)) = det(A)~t det(J(K,1)).
Since det(J(A%, 7)) = %2“) we have
(4.4.3) Yoo (Q - (1, u(z)t(b)), s) = | det(A)|5CH2) det(A) b (z — i(b% + 1)) "

On the other hand, we have
(A%)(i) = (AA% + X AY).
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By explicit computation, we see that

; b+ b% + 22 0 —z
(A)(i0) = 75— [ 0 VP2t 42241 0 |
b* +2b° + 2 + 1 _ 0 p2 4+ 1
-z 0 b+1
+ 0 0 0 }
+1 0 x
From thls we get det(A) = \/ﬁ

Therefore, we have
(4.4.4) Too(@Q - (1, u(x)t (D)), s) = b5F3 (0 + 1 + 202 4 22) 73EHYDH2 (4 (% 4 1)) ~*
On the other hand, we know that the normalized Whittaker function satisfies
W oo (u(z)t(b)) = €220

We will prove the proposition only for go, = 1, the calculations in the general case are similar.
We need to evaluate the integral

(4.4.5) / / b6s+tz b2 +1))” 3(s+1/2)— 8/2(:5 + z(b2 + 1))’3(“1/2)”/26’2””62”1’2d:pdb
Putting b = y , the above integral becomes

(4.4.6) / / B+t (x—i(y+ 1))~ 3(s+3)— %(x+z(y+1)) 3(s+3)+5 p2miz, =279y

Applying [5, (6.11)] to the inner integral, (4.4.6) becomes

(_1)6/2(271.)65—&-3
2T(3s+ 3 + HT'(3s+ 2 — &)

times

* on(142t 3s+i4L 3541 L R T (1+t)
(4.4.7) / e 22 (4 4 q)3statagdetas / y> Tz e YTy ) dt.
0 0

Now, fooo y35+£—71e_47ry(1+t)dy evaluates to

1
965~ (=1(r(] 4 1)) 37373035 + £/2 + 5)
Using this, and the formula
/Oo 6727r(1+2t)t38+%*%dt — 2763%*5*3672#71_7384*5/27%1-\(38 + g o g)
0

we see that (4.4.6) simplifies to
(_1)[/227637171.
6s+¢—1

W\I’,oo(l)

28



5. PROOF OF THE PULLBACK FORMULA

In this section, we will prove Theorem 2.4.1.

Recall the definition of £(g, s) from Subsection 2.4. Our main step in computing £(g, s) will be
the evaluation of the following integral:

(5.0.8) Ty(g,s) :/Qﬁ[]( )T(L(g,h),s)qf(h)Afl(det h)dh
119

By [18], we know that the integral above converges absolutely and uniformly on compact sets
for Re(s) large. We are going to evaluate the above integral for such s.

Note that G(A) = P(A) 1, KS. Moreover if k € Kvé, we may write

A0
= ((a9))7
where A\ = pa(k), so that us (k') = 1.

For any p € S3 we have, by the Bruhat decomposition,

KY = (P(Q,) N KS)US U(P(Qy) N KS)s1US U (P(Qy) NKS)s:UY.
Also, for p|M, we have, by Lemma 3.3.1,

KS = T[] (P@y) N KS)sIy,
s€Yp
Recall that we defined the compact subgroup UC of é(Af) in (2.2.4).

So write g = mj(a)ma(b)nk where k € [[, KS, p2(k) = 1 and further write k = kookramkur
where

ks € Kf;, kur € U¢
and kram = Hv(kram)m with
(1 ifvgS
(kram)v € {1,81,82} if v e Sy
{1,81,82,83,@,682,@84,685} if v e S;U.Ss.

Therefore we have

/ - 1(my (a)ma(b)nk, b(b~1h)), s)¥(h)A~  (det h)dh
Fl[mz b)](A

= pe(

/ - b)] Q - v(m1(a)ma(b)nkeam, b(b"'h)), s)T(h)A~ (det h)dh

(using properties from Subsection 3.2)
= Aa)|Npjg(a) - pa(d) " P2 (k)
X /~ T(Q - t(kram, h), 8) ¥ (bh)A™ (det h)dh
Fi(A)
(using (1.2.1)).

We write

Up(kram, 8) = /~ Y(Q - t(kram, h), s)¥(bh) A~ (det h)dh.
Fi(A)
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Thus we have
(5.0.9) Ty(g.s) = A@)| Ny g(a) - 2 () PO pyke) x Up(kram, s)
Recall the Whittaker expansion

(5.0.10) U(g)= Y Wy <<3 ?) g)

Therefore

(5.0.11) Up(kram, 8) = Y Z((é ?) b, kram,s>

where for g € F(A), kell, K ,,ug()—l,wedeﬁne
Z(g,k,s) = ﬁ Y(Q - u(k,h),s)Wyg(gh)A~ (det h)dh.
Fi(A)

Note that the uniqueness of the Whittaker function implies
Z(g,k, ) HZ (g, kv, ),

where the local zeta integral Z,(gy, ky, s) is deﬁned as in (3.3.2).
So, by the results of the previous two sections, we have

B(s)Wg(g) if (kram)v € Y, for all places v

5.0.12 Z(g, kram, 8) =
( ) (9, Fram, s) {0 otherwise

where we define
{1} ifv ¢ S U Sy
YQ; = {1,81} if v € Sy
{1,6} ifves.
From (5.0.9),(5.0.10),(5.0.11),(5.0.12) we conclude that

(5.0.13) Tu(g,s) = B(s)falg,s)
where fx(g, s) is defined as in Section 2.2.
We are now in a position to prove the Pullback formula.

Proof of Theorem 2.4.1. Recall the definition of B(s) from (2.4.2). Also recall that we defined
(5.0.14) E(g,s) = /N B Ex(u(g,h), s)W(h)A™ (det h)dh.

(@\F1[g](
The pullback formula states that

£(9,8) = B(s)Ewa(9,5)-
Since Er is left invariant by H(Q), we have

(5.0.15) E(g,s) :/N( - )ET(Q-L(g,h),s)\IJ(h)A_l(det h)dh.

By abuse of notation, we use R(Q) to denote its image in H(Q). Let V(Q) = QR(Q)Q . First,
we recall from [18] that [Pz (Q)\H(Q)/V(Q)|=2. We take the identity element as one of the double
coset representatives, and denote the other one by 7. Thus

H(Q) = P5(Q)V(Q) U P5(Q)rV(Q).
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Let us denote by R;, Ry the corresponding sets of coset representatives, i.e. R C V(Q), Ry C
7V (Q) and

= |_| P5(Q)s
sER1

and

Pr(Q@rV(@Q = | | P5(Q)s

SERy

Recall that we defined

ET(h7 S) = Z T(7h7 S)
PR (Q\H(Q)

for Re(s) large. We can write Ey(h,s) = EX(h,s) + E2(h, s) where

EX(h,s) = ZT'yhs
yeR

and

E2(h,s) = ZT’yhs
YER2

Now, by [18, 22.9] the orbit of 7 is 'negligible’ for our integral, that is for all g,

/~ B E%(Q - (g, h),s)¥(h)A~ ! (det h)dh = 0.
FL(Q\F1lg](A)

It follows that

(5.0.16) Elg.s) = /N o, PR, A et Ry
19

On the other hand, by [18, 2.7] we can take R; to be the following set:

(5.0.17) Ry ={Q-«(m(£)B,1)Q " : £ € Fi(Q), B € P(Q\G(Q)}

For Re(s) large, we therefore have

EY(@Q-ugh),s) = Y Y(Q-u((ma(&)Bg,h), s).

(eF(Q)
BEP(Q\G(Q)
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Substituting in (5.0.16) we have

Y Y(Q uma(€)Bg. ), ) (h)A™ (det h)dh
(eF(Q)
BeP(Q\G(Q)
> (@ u(Bg, & h), ) W€ h)AT (det £ h)dh
(eF(Q)
BeP(Q\G(Q)
= Y _ Y(Q - u(Bg,h),s)¥(h)A~" (det h)dh
seP@\G(@ "~ MHI*)
- Z T‘I/(Bgﬂs)
BEP(Q\G(Q)
=B(s) > falBg,s)
BEP(Q\G(Q)
= B(s)Ey (g, 5)

E(g,s) = /N N
Fi(Q\F1[g](A)

/E (Q\F1lg](4)

Thus

(5.0.18) Ev(i(g,h), s)¥(h)A~"(det h)dh = B(s)Ew.a(g,s)

/FV1 (@\Fi[g)(A)

for Re(s) large (so that all sums and integrals converge nicely and our manipulations are valid).
However, Ev(i(g,h), s) is slowly increasing away from its poles, while ¥ (h) is rapidly decreasing.
Thus the left side above converges absolutely for s € C away from the poles of the Eisenstein series.

Hence (5.0.18) holds as an identity of meromorphic functions.
([l

6. INTEGRAL REPRESENTATIONS FOR HOLOMORPHIC FORMS

6.1. Siegel newforms of squarefree level. For M a positive integer define the following global

congruence subgroups.
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7 M7 Z 7
Z Z Z 7
M7 M7 MZ Z
Z Z 7 7
7 Z 7 7
Ul(M) = Sp(4,Z) N M7 M7 7 7|
M7 MZ7Z 7 Z
Z M7 Z Z
Z Z Z Z
UQ(M) = Sp(47Z) N 7, M7 7 7 |
M7 M7 MZ Z
Z MZ Z Z
7Z 7 7 M 'Z
UO(M) = Sp(4,@) N M7 MZ7 7 7

M7Z MZ7Z MZ Z

When M = 1 each of the above groups is simply Sp(4,Z). For M > 1, the groups are all distinct.
If T’ is equal to one of the above groups, or (more generally) is any congruence subgroup, we define
Si(T") to be the space of Siegel cusp forms of degree 2 and weight k& with respect to the group I".
More precisely, let Hy = {Z € My(C)|Z = Z',i(Z — Z) is positive definite}. For any g =

(é g) € Glet J(9,Z) = CZ + D. Then f € Sp(I"”) if it is a holomorphic function on Hy,

satisfies f(vZ) = det(J(vy, Z))*f(Z) for v € I, Z € Hy and vanishes at the cusps. It is well-known
that f has a Fourier expansion

F(Z2) =" a(S, Fe(tr(S2)),
S>0
where e(z) = exp(2miz) and S runs through all symmetric semi-integral positive-definite matrices
of size two.
Now let M be a square-free positive integer. For any decomposition M = MM, into coprime
integers we define, following Schmidt [17], the subspace of oldforms Sy (B(M))° to be the sum of
the spaces

Sp(B(M:) N Up(M2)) + Sk(B(My) N Ur(Mz)) + Sk(B(My) NUz(Ma)).

For each prime p not dividing M there is the local Hecke algebra §),, of operators on Si(B(M))
and for each prime ¢ dividing M we have the Atkin-Lehner involution 7, also acting on Si(B(M)).
For details, the reader may refer to [17].

By a newform for the minimal congruence subgroup B(M ), we mean an element f € S (B(M))
with the following properties

(a) f lies in the orthogonal complement of the space Sy(B(M))°d.
(b) f is an eigenform for the local Hecke algebras $),, for all primes p not dividing M.
(c) f is an eigenform for the Atkin-Lehner involutions 7, for all primes ¢ dividing M.

Remark. By [17], if we assume the hypothesis that a nice L-function theory for GSp(4) exists,
(b) and (c) above follow from (a) and the assumption that f is an eigenform for the local Hecke
algebras at almost all primes.
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6.2. Description of F' and A. Let M be an odd square-free positive integer and
F(Z) =) a(T)e(tx(TZ))
T>0

be a Siegel newform for B(M) of even weight £.
We make the following assumption:

(6.2.1) a(T) # 0 for some T = (CbL g)

5 C
such that —d = b? — 4ac is the discriminant of the imaginary quadratic field Q(v/—d), and all
primes dividing M N are inert in Q(v/—d).

We define a function ® = & on G(A) by
©(790cko) = p2(9s0)' det(J(goo, 112)) ' F (9o (i)
where 7 € G(Q), goo € G(R)" and
ko € (H Kp)- (H Ip).
ptM pIM

Because we do not have strong multiplicity one for G we can only say that the representation of
G(A) generated by ® is a multiple of an irreducible representation 7. However that is enough for
Our purposes.

We know that @ = ®m, where

holomorphic discrete series if v = o0,
7, = ¢ unramified spherical principal series if v finite ,v { M,
§uStaspaywhere &, unramified, E2=1 ifv|M.

Put L = Q(v/—d). where d is the integer defined in (6.2.1). Thus, we have fixed a choice for the
imaginary quadratic field L, which was till now assumed to be more or less arbitrary.

Next we need to make a choice for A. Basically, we need A to be a Hecke character satisfying
the four assumptions of Section 1 such that F' has a non-trivial Bessel model for A.

We fix the character A and define the quantity a(A) as in [16, Subsection 8.3]. For details, the
reader may look at that paper.

6.3. The integral representation. The following theorem was proved in [16].

Theorem 6.3.1 ([16], Theorem 8.5.1).

Fulg,5)8(g)dg = C(s) - L(3s + ~, F x g)

/zcm)G(@)\G(A) 2

where C(s) =
Qgma(A)(4m) 334547375 (3s + 31 — 3) p0s—3
o1(M/f)Pyn(6s + € —1)MN (65 +1)L(3s + 1,0 x p(A))

ol 1 — apwyp=3s—3/2
where

f = ged(M,N),

QA = H (1 - T)7
r|A
r prime
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and o1(A), Pa, (4 are as defined earlier.

Remark. For related results, see [3], [14], [15].
Recall the definition of B(s) from (2.4.2) and let
A(s) = B(s)C(s).
In the next lemma we state a simple property that seems worthwhile to point out.

Lemma 6.3.2. A(s) has no zeroes or poles for Re(s) > 0.

Proof. This follows from a cursory examination of the definition of A(s); none of the zeroes or poles
of the constituent functions occur to the right of 0. O

Let R denote the subgroup of R consisting of elements h = (hy, hy) such that hy € G, hg € F
and po(hy) = pi(he). The above Theorem, along with our pullback formula, implies the following
result.

Theorem 6.3.3. We have

Er(cg1, 92), 5)8(91)¥(g2) A~ (det go)dg = A(s)L(35 + =, F x g)

/geZm)R(@)\R(A) 2

where g = (g1, 92)-
This new integral representation has a great advantage over the previous one: the Eisenstein
series Ey(g, s) is much simpler than Fg 5 (g, s) (even though it lives on a higher rank group). This

is because it is induced from a one-dimensional representation of the Siegel parabolic. Thus, it is
more suitable for applications, especially with regard to special value results.

Corollary 6.3.4. L(s, F' x g) can be continued to a meromorphic function on the entire complex
plane. It’s only possible pole to the right of the critical line Re(s)= % s at s = 1.

Proof. The integral representation of Theorem 6.3.3 immediately proves the meromorphic continu-
ation. Furthermore by [8], we know that the only possible poles of the Eisenstein series Ey (g, s) to
the right of s =0 are at s = % and s = % However, as we remark in the proof of Proposition 6.4.3,
there is no pole at s = % So the only possible pole of the Eisenstein series in that half plane is at
s = % which corresponds to a pole of the L-functions at s = 1. O

6.4. Eisenstein series on Hermitian domains. Let
GH(R) = {g € G(R) : pua(g) > O}.
Define the groups G+(R), HT(R), F*(R) similarly. B

Also recall the definitions of the sﬂymmfevtric dongains H,,, H,, from the section on notations. We
define the ‘standard embedding’ of Hy x H; into Hs by

(Z1, Z) (Zl Z2> :

We use the same notation (71, Z2) to denote an element of ]ﬁlg X }ﬁll and its image in ]ﬁlg under the
above embedding. Note that this embedding restricts to an embedding of Hy x Hj into Hi.
We also define another embedding u of Hy x Hj into Hs by

U(Zl, ZQ) = (Zl, —72)

Clearly this embedding also restricts to an embedding of Hs x H; into Hs.
Furthermore, the following is true, as can be verified by an easy calculation:
Let g1 € G1(R), g2 € Fi(R), such that g1 (i) = Z1, g2(i) = Zs. In the event that (Z1, Z2) € Ha xH;
we may even take g1 € G1(R), g2 € SLa(R).
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Then
U(Zl, ZQ) = L(gl, gg)’i.
Now, let us interpret the Eisenstein series of the last section as a function on ﬁg. Recall the
definitions of the sections Y,(s) € Indgg%l)(AvH -|I13%). Also, for Z € H,,, we set Z = %(Zt 7).

Lemma 6.4.1. Let goo € HT(R). Then
T oo (ger 5) = det(goo) /2 det(J (goo, 1)) " det (g (7)) 25 +1/2D-0/2

Proof. Let us write goo = m(A, v)nks where m(A,v) € M(A),n € N(A)and k € ng Then, (1.2.1)
and (1.4.6) tells us that
Too(goos §) = v 26F2) | det A|5+3 det (koo )% det (J (Koo, ) "
On the other hand, we can verify that
gooli) = v AX'

and therefore -

det(goo(i)) = v 2| det A|2.
Also we see that .,

J(goo, 1) = v(A) T T (Koo, 9)
which implies B

det(J(goo, 1)) = v det(A) " det(J (koo, 1)).
Finally B
det(goo) = v° det (koo ) det(A) det(A) L.

Putting the above equations together, we get the statement of the lemma. (|
Corollary 6.4.2. Let s € C, uy € fI(Af) be fized. Then the function X on fIﬂR) defined by

l

5 (goo) = det(goo) /% det (J (goo, 1)) B (1t goo, = + s-1/2)

3
depends only on goo(i).
Proof. We have
Br(tfgos,s) = > Too(Yooloor 5)L(vs1s, 5).
YEPg g \H(Q)
So, by the above lemma,
(6.4.1) S(geo) = Y, det(9)7?det(J(y, 2)) " det(v(2)) Y (vpug, )
VGPﬁ(Q)\ﬁ(Q)

where Z = goo (7).

O
Now,consider the coset decomposition
h
~ ~ ~ t ~
(6.4.2) F(A) =| |F@QF*(R) ( ‘ t’-‘) Ut
i=1 v
where t; € F(Aj), t: =1, ', and
F F F F
(6.4.3) v =115 116, T T
p%s pES3 pES1US)
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We note here that the constant h comes up because the class number of L may not be 1 and
because the det map from Ff{; to Zip is not surjective. In particular, note that if M = 1, we have
h = h(—d), the class number of L.

Also, we note that by the Cebotarev density theorem, we may choose ¢; such that (N, /Qti) =q; !
where ¢; corresponds to an ideal of Z that splits in L. In particular ged(q;, MN) = 1.

Now, let

_ t; Pt 5
I; = SLy(Z) N < t:‘) U ( (t;‘)‘1> F(R)
= Fo(M) N Fo(Nqi).
Also, we define the congruence subgroup I'ys n of Sps(Z) by
FM,N = B(M) N UQ(N)

Recall the definition of U¢ from (2.2.4). Let us define the compact open subgroup U of G(A )
by

(6.4.4) US =U%NG(A).

Observe that
FM,N = UGSp4(R) N Sp4(@).

t.
7

T, = L(l,Si) € ﬁl(Af).

Next, put

and

For Z € Hs, define the Eisenstein series EY(Z;s) by
(6.4.5) Bl (Z; 5) = det(goo) Y2 det(J (goos 1)) By (rigeo, 53 + £/6 — 1/2),

where goo € H(R) is such that g (i) = Z. We note that E%.(Z, s) is well defined by Corollary 6.4.2.
Now, consider the function E?r(Zl, Z;0) for Zy € Hy, Zy € Hy.

Proposition 6.4.3. Assume ¢ > 6. Then E%(Z1, Z2;0) is a modular form of weight £ for T pr N xT;.
Furthermore, for any sg, the function Efr(Zl,Z% s0) (which is not holomorphic in Z1, Zs unless
so = 0) transforms like E%(Z1, Z2;0) under the action of T'nrn x Ty

1

Proof. We know that Ex(g,s) converges absolutely and uniformly for s > 5. So if £ > 6, it

follows that E@(Z ;0) is holomorphic. Furthermore, the case ¢ = 6 corresponds to the point
s = % of Ex(g,s). From the general theory of Eisenstein series, we know that the residue of

Ev(g,s) restricted to KZ at s = 1 must be a constant function. However, because Ex(g, s) is an

eigenfunction of KX with non-trivial eigencharacter, this residue must be zero. Hence E%(Z;0) is
a holomorphic function of Z even for £ = 6.
Let A € I'pr,v, B € I';. It suffices to show that

EY(AZy, BZy; s0) = det(J(A, Z1))" det(J(B, Z3)) E¥(Z1, Zy; s0).
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2 denote g = (_ac _db) . Let g1 € G1(R), g2 € SLa(R) such that g1i = Z1, got = Zo.
Put s’ = s9/3+¢/6 —1/2. We have
FEY(AZy,BZs;s0) = B (u(AZy, —BZ3); 50)
= B («(Ag1, Bg)is s0)
= det(J(u(Ag1, Bga), 1)) Ex(rit(Ag1, Bg2), s')
= det(J (e(Ag1, Bp), 1)) Ex (u(Agr, 5:Bga), 5')

For g = <Z

Now, because s{lBsi € UF we have

Ex(u(Agy,5iBg),s') = Ex(1(g1,5:g2); ¢').
On the other hand, we can check that
det(J((Agr, Bp), 1))’ = det(J(A, Z1))" det(J(B, Z2))" det(J(g1,4))" det(J (g2,4))"
Putting everything together, we see that
E%(AZy, BZa;50) = det(J(A, Z1))" det(J (B, Zs)) Ei-(Z1, Za; s0)
as required. I

6.5. The integral representation in classical terms. Henceforth, we assume ¢ > 6. Recall
the definitions of the compact open subgroups U%, UF from (6.4.4), (6.4.3) respectively. Let us
define UR R(Ay) to be the subgroup consisting of elements (g, h) with g € U% h e UF and
pa(g) = pa(h). Also put KE = K, x KF Note that K*KZE is a compact subgroup of R(A).

Also, define Viyny = [Spa(Z) : FMN][KF UF], where KT = | J Kf. We now rephrase
Theorem 6.3.3 in classical terms.

Theorem 6.5.1. For any k, we have

ZA%/

r;

0—1—-2k _ ¢
L~k F xg)

where for i = 1,2, we define the invariant measure dZ; on Hs_; by

/ EY(Zy,—Zy; 1 — k)F(Z21)g(q; Z2) det(Y1)* det(Y2)*dZ1dZs
\H; JT'ps N \Hz

=V NA(

1 )
dZ; = - (det Y;) 4 dX;dY;
where Z; = X; +1Y;.

Proof. By Theorem 6.3.3, it suffices to prove that for g = (g1, g2),

{—1—2k — _
(6.5.1) VM,N/ Br(1(g1,92), s ®{01) ¥(g2)A ™ (det go)dg
Z()RQ\R(A)

(6.5.2) => A2(t) / B (Z1,—Za; 1 — k)F(Z21)g(q; Z2) det (Y1)’ det(Ya) dZ1dZ,
i $1 /52

where §; is a fundamental domain for I';\H; and §2 a fundamental domain for I'j; n\Hs. Now,
the quantity inside the integral in (6.5.1) is right invariant by UFKZ. Also, we note that the
volume of UFKZ is equal to (Vasn) ™! (recall that we normalize the volume of the maximal compact

subgroup to equal 1).
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Hence we see that (6.5.1) equals

0—1—-2k —

(6.5.3) ) 2(01) W (g2) A7 (det g2)dg

/ Ex(u(g1,92),
Z(A)R(Q\R(A)/URKE

Now, by strong approximation for Sps(A) and (6.4.2) we know that
Z(A)R(Q\R(A) /UK

h
=TT wssm®/Ko) % (G 1) (C\SLaR)/ 50

Suppose g € Sps(R), h € SLy(R). Also, put s; = (ti t%‘)’ ri = u(1,8;), g(i) = Z1,h(i) = Zs.

We have
{—1-2k {—1-2k
6 ) = ET(ri[’(gv h)u 6 )

:det(J( (g,h), )) KE’I”(Zh Z271_k)

On the other hand ®(g) = F(Z1)det(J(g,4))~¢ and U(s;h) = g(¢; Z2) det(J(h,i))~*
The result now follows from the observations

ydet(J(g,z’))P = det(Yl), | det(J(h,i))|* = det(Y2).
and the fact that the Haar measure dg equals dZ1dZ> under the above equivalence. (Il

Ex(u(g, sih),

Let us take a closer look at the quantity A( that appears in the statement of the above

theorem in the case when k is an integer, 1 < k < g — 2. Write a ~ b if a/b is rational. From the
definition of A(s), it is clear that

0—1-2k i th=20(A)Vd

A ~ :
( 6 ) Ll+1—2k,x_q)C(f —2k)((£ + 2 — 2k)
But it is well known that L(iﬂl__ 22];;’%”’), C(é,z,]f) and C(ﬂﬂﬁ 22,5 ) are all rational numbers. Tt follows
that
£—1-2k —
(6.5.4) Al——) ~ TTRFL=5(A).

7. NEAR HOLOMORPHY, HOLOMORPHIC PROJECTION AND RATIONALITY PROPERTIES

7.1. Rationality of holomorphic Eisenstein series. Suppose f1, fo are modular forms of weight
¢ for some congruence subgroup I' of Sps,(Z) containing {£1}. We define the Petersson inner
product

(f1, f2) = ;V(F)—l/ f1(2) fo(2)(det V) 1dX dY
T\H,,

where V(T') = [Span(Z) : T.

Note that these definitions are independent of our choice for I'.

We henceforth use ij for E% in order to show the dependence on A, ¢ and a(F, A) for a(A) to
show the dependence on F. Moreover, for any other positive even integer k, we use E}\ w(Z;s) to
denote the Eisenstein series that is defined similarly except that the integer ¢ has been réplaced by
k everywhere. In particular, we know that E}\k(Z ;0) is a holomorphic Eisenstein series (of weight
k), whenever k > 6.
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By a result of M. Harris [6, Lemma 3.3.5.3], we know how Aut(C) acts on the Fourier coefficients
of E}\k(Z ;0). In particular he proves the following result.

Proposition 7.1.1 (Harris). Let k > 6. The Fourier coefficients of E};’k(Z; 0) lie in Q. Further-
more, if o € Gal(Q®/Q), then

B} 1(Z;0)7 = Ejo ,(Z;0)
where ij’k(Z; 0)? is obtained by letting o act on the Fourier coefficients of Ef\,k(Z; 0).

7.2. Nearly holomorphic Eisenstein series. We can write any Z € ]ﬁln uniquely as Z = X +1Y
where X,Y are Hermitian and Y is positive definite. We can also write any Z € H,, uniquely as
Z = X +14Y where X,Y are symmetric and Y is positive definite. These decompositions are
compatible with each other in the obvious sense under the inclusion H,, C H,.

We briefly recall Shimura’s theory of differential operators and nearly holomorphic functions. A
thorough exposition of this material can be found in his book [19].

Let H temporarily stand for H,, or ]ﬁln For a non negative integer ¢, we let N'9(H) denote the
space of all polynomials of degree < ¢ in the entries of Y ! with holomorphic functions on H as
coefficients. _

Suppose I is a congruence subgroup of Spy, (if H = H,) or U(n,n) (if H = H,,). For a positive
integer k, we let N}(H,T") stand for the space of functions f € NY(H) satisfying

f(1Z) = det(J (v, 2))" f(2)

for all v € I', Z € H, with the standard additional (holomorphy at cusps) condition on the Fourier
expansion if H = Hy = H;y. It is well-known that A J(H,T) is finite dimensional. In particular, if
q =0, then NV, ,g (H,T) is simply the corresponding space of weight & modular forms.

We let N = n2 if H=H, and N = (n2 4 n)/2 if H = H,,.

Whenever convergent, the Petersson inner product for nearly holomorphic forms is defined ex-

actly as in the previous section.
Any f € NJ(H,T) has a Fourier expansion [19, p. 117] as follows:

f(2) = Z Qr((2rY)1)e2miTrTZ

TeL

where L is a suitable lattice and for each T, Q7 is a polynomial in N variables and of degree < ¢.
For an automorphism ¢ of C we define

fa(Z) _ Z Q%((Qﬂ_y[a])—l)e%riTrTZ

TeL

where Q7. is obtained by letting o act on the coefficients of ()7 and

il _ {Yt if H = H, and v—=d’ = —v/—d

Y otherwise

We say that f € N;(H,F;@) if f e NJH,T) and f7 = f for all 0 € Aut(C/Q). We will
occasionally omit the weight ¢ and the congruence subgroup I' when we do not wish to specify
those. In particular, we write ./\/; (H; Q) to denote Ur N;(H, I'; Q) where the union is taken over all
congruence subgroups I'.

Now, from (6.4.1), it is easy to see that for a positive integer k (assume k < % — 2 to ensure con-
vergence) we have E}IM(Z; 1—k) € N3¢+ (Hs). Then, exactly the same proof as Proposition 6.4.3
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tells us that the restriction of this function to Hy x Hj is a nearly holomorphic modular form with
respect to the appropriate subgroups. More precisely, we have

(721) E};\,E(Zlﬂ Z9;1 — k) € ./\/-42(]6_1) (HQ, FM,N) X ./\/_e(k_l) (Hl, Fz)

We remark here that for a general f € A3+~ (Hs) we can only say that f(Z1, Z2) € 3 N (Hy)®
N?2(H;) where the sum should be extended over all (A1, A2) with A\; + Ay = 3(k — 1). However, in
this case, we know by (6.4.1) the exact nature of the polynomial of degree 3(k — 1); thus we can
conclude that A\ =2(k — 1), Ao =k — 1.

To prove the desired algebraicity result for critical L-values, we will need to know rationality
properties for the nearly holomorphic modular forms in (7.2.1). That is the substance of the next
proposition.

Proposition 7.2.1. Let £ > 6 and let k be an integer satisfying 1 < k < % — 2. Then the function
ER,Z(Zlﬂ Z2;1 — k) on Hy x Hj belongs to

r3k=1) (/\Qz(k_l) (Hz, Tarv; Q) ®M(k_1) (Ha, Ti;@)) :
Furthermore, for an automorphism o of C, we have
(r 3 VEL (20, 2031 — k)7 = 7 30 VES, (21, Za;1 — ).

Proof. Since we already know (7.2.1) and since the Fourier coefficients of E/Z'\,Z(Zlv Za;1 — k) are
just sums of those of E% ,(Z;1— k), it is enough to prove that

(7.2.2) (e VEL (21— k)7 = VEL, (21— k).

For positive integers p, ¢, we have the (modified) Maass-Shimura differential operator A} that acts

on the space of nearly holomorphic forms of weight ¢ on Hj. This operator is defined in [19, p.
146]. By [19, Theorem 14.12], we know that
~ 3p e
APN(Hs; Q) € 7PN 5P (Hs; Q).
However, more is true; in fact

(7.2.3) ((mi) = PARF)7 = (wi) PAR(7)

whenever f € N (Hs). This easily follows from [19, p. 118] since the Maass-Shimura operators are
special cases of the operators considered there and the projection map is Aut(C)-equivariant. An
alternative way to directly see (7.2.3) is to observe that the action of the Maass-Shimura operator
on the Fourier coefficients of a nearly holomorphic form can be explicitly computed and observed to
satisfy the desired property. The details in the symplectic case were worked out by Panchishkin [13,
Theorem 3.7]; the calculations in the unitary case are very similar.

We know that Ej\,é+2—2k(Z?0) € Ny o, (Hs3;Q). So, we can apply (7.2.3) when t = 0,p =
k—1,g=0+2-2k, f= ER,HQ_Qk(Z; 0).

Moreover, by the result of Harris stated in the previous section,

El\ 49-9k(Z;0)7 = Elo 41 9_01(Z;0).
So, (7.2.2) will follow if we know that
(7.2.4) A?:gl(k_l)Ej\,uz—Qk(Z? 0) =c-#** V. B} (Z;1 k)

for some rational number ¢ (The superscript i should not be confused with the quantity i = v/—1
that appears above!).
But (7.2.4) is precisely the content of Shimura’s calculations in [19, (17.27)]. We remark here
that the Eisenstein series Shimura considers has different sections than ours at the finite places
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dividing M N; however that does not make a difference because the differential operator only
depends on the archimedean section. In particular, we apply [19, Theorem 12.13] to each term
of the definition of our Eisenstein series using (6.4.1) and observe that (7.2.4) follows with ¢ =
9-3(k—1) IZ 21(k 1)( — k + 1) where c(s) is defined as in [19, (17.20)].

O

7.3. Holomorphic projection. Shimura observed [19, p. 123] that for ¢ > n + t, there exists a
holomorphic projection operator 2 on N} (H,). For a nearly holomorphic form f € N} (H,), 2f is
a modular form of weight ¢ (i.e. an element of Ng(Hn)) For any cusp form g of weight ¢ on H,,

< fig>=<AUf,g>.
More precisely, by the proof of [19, Theorem 15.3], we can write
f=Af+ Lef'

where L, is a rational polynomial of certain differential operators and f’ is a certain nearly holo-
morphic form. The differential operators which are used to define L, are Aut(C)-equivariant by [19,
Theorem 14.12]. Thus, for an automorphism o of C, we have

f7 = (Af)7 + Lq(f).
So we can conclude that
A7) = (Af)7.

Furthermore because the space of modular forms is a direct sum of the space of Fisenstein series
and the space of cusp forms, there exists an orthogonal projection from the space of modular forms
on H, to the space of cusp forms on H,,. Because the space of Eisenstein series is preserved under
automorphisms of C, this cuspidal projection is also Aut(C)-equivariant.

From the above comments we conclude the existence of a projection map 2cysp from N, ;1 (Hy, T9)®
/\/'qt2 (Hy,T'1) to Sq(Ha, I'y) ®S,(Hy, ') for ¢ > 2+t; and congruence subgroups I's C Spy, 'y C SLs.
This projection map satisfies, for any €(Zy, Z2) € NJ'(Hg, I's) ® Ni2(Hy, '), FO) € S,(Hy,Ty),
gV e Sq(H;y,T'1), the following properties:

(2) (Reusp€(Z1, Z2), FD(Z1)), gV (22)) = ((€(Z1, Z2), FD(21)), 9N (Z2)),
(b) (QlCHSpQE)(7 = mcuSp((’EU)-
In particular, everything above can be applied to the case when (71, Z3) = 77*3(’“*1)ER (21, Za;1—

We use ¢;(z) to denote the cusp form g¢(g;z) on I'g(Ng¢;). We can rewrite Theorem 6.5.1 as
follows.

ZA EAz(ZhZQal_k)aF(Zl»vgi(ZQ»
Vi (—1-2k ¢
SvEvr e M

Note that we have used the fact that g; has real Fourier coefficients. Together with (6.5.4) the
above equation implies that

(7.3.1) ZA YUE) (21, Z2; 1 — k), F(Z1)), gi(Za)) ~ m™ 150 (F, A)L(é —k,F x g).
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8. DELIGNE’S CONJECTURE

8.1. Motives and periods. Let L(s, M) be the L-function associated to a motive M over Q.
Suppose M has coefficients in an algebraic number field E; then L(s, M) takes values in £ ®q C.
Note that E sits naturally inside £ ®g C. Let d be the rank of M and d* the dimensions of
the + eigenspace of the Betti realization of M. Deligne defined the motivic periods ¢*(M) and
conjectured that for all “critical points” m,
—L.(m’ M) €E
(27d) ™M c€ (M)
where € = (—1).

Now, let F', g have algebraic Fourier coefficients. Assuming the existence of motives Mg, M,
attached to F, g respectively, Yoshida computed the critical points for Mr ® M,. He also computed
the motivic periods ¢*(Mp ® M,) under the assumption that Deligne’s conjecture holds for the
degree 5 L-function for F'. We note here that Yoshida only deals with the full level case; however as
the periods remain the same (up to a rational number) for higher level, his results remain applicable
to our case.

Yoshida’s computations [21, Theorem 13] show that Deligne’s conjecture implies the following
reciprocity law:

1) (lmrxn Y tmr g
T 7T4m+3€—4 <P‘7 F> <97 g> 7T4m+3€—4<F047 Foc) <go¢7 ga>

forall2—%Smgg—l,aeAut(C).

In the next subsection we prove the above statement for all the critical points m to the right of
Re(s) = 5 except for the point 1. The proof for the critical values to the left of Re(s) = 3 would
follow from the expected functional equation. The proof that L(1, F' x g) behaves nicely under the
action of Aut(C) would probably require further work because we do not know that this quantity is
even finite (see Corollary 6.3.4). Thus, the problem of extending our result to the remaining critical
values is closely related to questions of analyticity and the functional equation for the L-function.
These questions are also of interest for other applications, such as transfer to GL(4) and will be
considered in a future paper.

We also note that the integral representation (Theorem 6.3.3) is of interest for several other
applications. Indeed, we hope that this integral representation will pave the way to stability,
hybrid subconvexity, non-vanishing, non-negativity and p-adic results for the L-function under
consideration. We intend to deal with these questions elsewhere.

8.2. The main result.

Theorem 8.2.1. Let ¢ > 6. Further, assume that F' has totally real algebraic Fourier coefficients
and define

Lt —k,F xg)
A(F,g;k) = 2~ :
00 = i (F g, 9)
Then, for k any integer satisfying 1 < k < % — 2, we have:
(a) A(F,g;k) € Q,
(b) For all « € Aut(C), A(F,g; k)* = A(F“, g“; k).

Proof. Let U be the least common multiple of M, N and all the ¢;. Let I'y be the principal
congruence subgroup of Spy(Z) of level U and I's the principal congruence subgroup of SLo(Z) of
level U. For each i, we can write

(8.2.1) Uousp (1 2V EY (21, Z0;1 = k) = > F{(Z1) ] (Z2)
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where F| (resp. f]) is a cusp form for I'; (resp. I'7); all of weight ¢. Then
(82.2) D g (FL F) = 72V DUER (20, Zoi 1 = k), F(21)), 9i(Za)).

T

We also have
(8.2.3) S D g WED®, F) = 73 F D (ELa (21, Zo;1 — k), F*(Z1), 67 (Z2))

r

using Proposition 7.2.1 and the properties of holomorphic projection stated above.
By (7.3.1) we know that

r<f{agi><F{7F>
(F,F){g,9)

(8.2.4) A(F,g;k) =W - (a(F,A)~"- ZA‘Q(ti)Z

for some rational number W.
Making o act on both sides of the above equation we get

(825)  A(F.g:k)* = W @Fa Am) - YA () (

)

Zr<f{7.qi><F1T7F>>a
(F,F)(g,9) '

We also note that (g,9) = (gi, gi)-
Now by a result of Garrett [4, p. 460], we know that for each r,

<<f{7gz'>(Ff,F>>a _ (((ff)“,g?M(F{)a,F%)
(F,F)(9,9) (Fo, Fo) g, 9%) )

so we have

820) ARGk =W @FARH) 1Y) o) (=D I ),

)

Using (8.2.4) for F“, g*, A%, we conclude that
A(F, g k) = A(F*, g% k).

Remark. The above result was already known in the completely unramified case (M =1, N = 1)
by the work of Bocherer and Heim [1] who used a different method.
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