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Abstract. We review some of the statistical properties of higher-disienal superstatistical
stochastic models. As an example, we analyse the stoclpasperties of a superstatistical model
of 3-dimensional Lagrangian turbulence, and compare wiffeemental data. Excellent agreement
is obtained for various measured quantities, such as aatiele probability densities, Lagrangian
scaling exponents, correlations between acceleratiorpooents, and time decay of correlations.
We comment on how to proceed from superstatistics to a thaymamic description.
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A SHORT REMINDER: WHAT IS SUPERSTATISTICS?

Complex systems often exhibit a dynamics on two time scéléast one as represented
by a given stochastic process and a slow one for the parasneft¢nat process. As a
very simple example consider the following linear Langesquation

V=—w+oL(t) (1)

with parametery, o that fluctuate on a long time scale [1]. It describes the vglacof
a Brownian particle that moves through spatial ‘cells’ wdlifferent local inverse tem-
peratureB := y/(20?) in each cell (a nonequilibrium situation). Assume, for eypéen
that the probability distribution g8 in the various cells is g2-distribution of degrea,

£(B) ~ B2 e Fo. 2)

Then the conditional probability ip(v|3)) ~ e 2P¥ the joint probability isp(v, 3) =
f(B)p(v|B), and the marginal probability is(v) = [5° f(B)p(v|B)dB. Integration yields

1
(1+3B(g—wAVa-y

p(v) ~ 3)

i.e. we obtain power-law stationary distributions just asTsallis statistics [2] with
q=1+:2;, B =2Bo/(3—0q), wherefo = [ f(B)Bdp is the average 8.

All this has a very broad interpretion and can be generalinedarious ways—8
need not to be inverse temperature. One can generalize tive azxample to general
probability densities (8) and general Hamiltonians in statistical mechanics. One the
has a superposition of two different statistics: thapfoind that of ordinary statistical



mechanics. The short name for thissigperstatistic$3]. Superstatistics describes com-
plexnonequilibrium systemaith spatio-temporal fluctuations of an intensive parameter
(e.g. inverse temperature) on a large scale.

Define an effective Boltzmann factB(E) by

B(E) = | f(B)e Pedp

wheref ([) is the probability distribution of andE the energy of the system. Many re-
sults can be proved faeneral f(3). Here we list some recent theoretical developments
of the superstatistics concept:

« Can prove superstatistical generalizations of fluctuat@orems [4]

« Can develop a variational principle for the large-energyngstotics of general
superstatistics [5] (depending d103), one can get not only power laws for large
but e.g. also stretched exponentials)

+ Can formally define generalized entropies for general sip#stics [6, 7]

+ Can study various theoretical extensions and workoutssodtiperstatistics concept
[8,9, 10, 11, 12, 13]

« Can prove a superstatistical version of a Central Limit Teeoleading to Tsallis
statistics [14]

+ Can relate it to fractional reaction equations [15]

+ Can consider superstatistical random matrix theory [16]

« Can apply superstatistical techniques to networks [17]tane series [18]

...and some more practical applications:

« Can apply superstatistical methods to analyse the statiefi 3d hydrodynamic
turbulence [1, 18, 19, 20, 21, 22]

« Can apply it to atmospheric turbulence (wind velocity flattans at Florence
airport [23, 24]) and defect turbulence [25]

« Can apply superstatistical methods to finance [26, 27]

« Can apply it to solar flares [28], and even to print queues [29]

« Can apply it to cosmic ray statistics [30]

« Can apply it to various scattering processes in particlesysy{31, 32]
« Can apply it to hydroclimatic fluctuations [33]

« Can apply it to British train delay statistics [34]

PHYSICALLY RELEVANT SUPERSTATISTICAL
UNIVERSALITY CLASSES

Basically, there ar8 physically relevant universality classgs]:

. (a) x?-superstatistics=£ Tsallis statistics)
- (b) inversex?-superstatistics



+ (c) lognormal superstatistics

Why? Consider, e.g., case (a). Assume there are many mapizs@andom variables
¢j, ] =1,...,J, contributing tof in an additive way. For larg8, their sum% Zlefj
will approach a Gaussian random variabledue to the (ordinary) Central Limit The-
orem. There can be Gaussian random variablés, ..., X, due to various relevant de-
grees of freedom in the complex system. Siifices positive we may square th§g to
obtain something positive. The suh= S ; X2 is thenx?-distributed with degree,
ie.,

1 n \"? n/2-1." 25
= — | — 0
0= () o7 “
wheref3 is the average @B. Integration as described in section 1 yields Tsallis stiat
as a special case of superstatistics.

(b) The same considerations can be applied if the ‘tempera@r?® rather thang
itself is the sum of several squared Gaussian random vasgadnising out of many
microscopic degrees of freedofij. The resultingf (B) is the inversey-distribution:

n/2 nBo
(e = () B ®)
2

It generates superstatistical distributign@E) ~ [ f(8)e PE that decay ag PVE for
largeE [5].

(c) B may be generated by multiplicative random processes. @enailocal cascade
random variableX; = ﬂle ¢j, whereJ is the number of cascade steps and §hare

positive microscopic random variables. By the Central ltimheorem,%logxl =

%zf;llogfj becomes Gaussian for large HenceX; is log-normally distributed.

In general there may be such product contributions tf, i.e., 8 = []iL,X. Then
logB = ¥ ;logX; is a sum of Gaussian random variables; hence it is Gaussiaalhs
Thusp is log-normally distributed, i.e.,

_(InB)2
f(8)= = exp{ oo } ©

Lognormal superstatistics is relevant in turbulence [18,2D, 21, 22].

APPLICATION TO LAGRANGIAN TURBULENCE

Turbulence is a spatio-temporal chaotic state of the Ne®iekes equation. Energy is
dissipated in a cascade-like process. Bodenschatz et2al 3R 36] obtained rather
precise measurements of the accelerai@n of a single tracer particle in a turbulent
flow. One can now construct a superstatistical Lagrangiadehtor 3-dimensional
velocity differencesi(t) := V(t + 1) — V(t) of such a tracer particle (note theé U/ 1 for
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FIGURE 1. Distribution of acceleration as measured by Bodenscha&z 38] and as predicted by
eq.(8),~3.

smallt). This model is given by the superstatistical stochasftieshintial equation [19]
U= —yl+Brxd+ol(t). (7)

The new thing as compared to previous work is the term inngithe vector product.
It describes fluctuating enstrophy (rotational energyuartbthe test particle. Whilg
andB are constants, the noise strengtiand the unit vecton evolve stochastically on a
large time scal@,; andTg, respectively. One hdg y ~ Ry >> 1, whereR, is the Taylor
scale Reynolds number. The time scgialescribes the average life time of a region of
given vorticity surrounding the test particle.

Define := 2y/o0?, then in this modeB 1 ~ v1/2(g)~1/2¢, wherev is the kinematic
viscosity and ¢) the average energy dissipation. The probability densitii@Etochastic
proces$B(t) is assumed to be a lognormal distribution as given in eqF@&)very small
T an acceleration component of the particle is givenaRy= ux/7 and one gets the
following prediction for the stationary distribution:

® —(logB)2 1322
p(ax) = %S/O dB Bl/zexp{(%{“)} e 2PT ®)

This compares very well with the experimentally measurezbability distribution of
acceleration, see Fig. 1.

CORRELATIONSINDUCED BY SUPERSTATISTICS

3-dimensional superstatistics induces correlations éetthe components, ay, a, of
the acceleration vect@. Consider the rati® := p(ax,ay)/(p(ax) p(ay)). For indepen-
dent acceleration components this ratio would always bergbyR = 1. However, our



FIGURE 2. The quantitityR as given by eq. (9) for lognormal superstatistics.

3-d superstatistical model yields the prediction

_ Js BT (B)e 2P F)dp
Jg BY2f(B)e 2P [ L2f(B)e P Hdp

This is a very general formula, it is also valid for Tsalligtsstics, wheref (3) is the
x2-distribution. Note thaR = 1 for f(B8) = 6(B — fo), i.e. if there are no fluctuations in
B then all components are independent random variables.

Fig. 2 showsR = p(ax,ay)/(p(ax)p(ay)) as predicted by lognormal superstatistics.
The figure strongly resemblésas experimentally measured by Bodenschatz et al. [22]
in a turbulent flow, see Fig. 3.

Besides correlations between components one can alsoioemporal correlations.
The superstatistical model [19] allows for the calculatadriemporal correlation func-
tions as well. In particular, we may be interested in tempooarelation functions of
single componentsy of velocity differences, i.eC(t) = (ux(t’+t)ux(t’)). By averaging
over the possible random vectai®ne arrives at the formula

R 9)

C(t) = %(u)z()e‘yt(z cosBt + 1), (10)

I.e. there is rapid (exponential) decay with a zero-cragsitt* = %nB—l. Exponential
decay and zero-crossings are also observed for the expgahdata. The model [19]
also correctly reproduces the experimentally observetitfat the correlation function

of the absolute valué| decays very slowly as compared to that of the single compo-
nents. Moreover, it correctly describes the fact that ety lags behind dissipation
[37].
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FIGURE 3. log,gRas measured by Bodenschatz et al. [22].

LAGRANGIAN SCALING EXPONENTS

The moments of velocity differences of a single Lagrangest particle that is embed-
ded in a turbulent flow scale differently from those measimeadfixed laboratory frame.
Our superstatistical model [19] allows for the analyticleasion of the Lagrangian scal-
ing exponents. The moments of velocity difference comptsgon a time scale are
obtained as S

(ud) = (j — Dt m 2wl (11)
Assuming simple scaling laws of the form ~ T8, W= e ~ 1°, wherea andb are
so far arbitrary real numbers, on geisl) ~ 16 ~ 1-3+P51°, Hence the Lagrangian

scaling exponents are given Jy=—5j+ gjz. Usually one assumes = 1, hence we
geta= 3b— 1 thus

1 e 1,00
(= (5+A7)i -5 (12)
whereA? := —%b. This prediction is in good agreement with the recent meaments

of Bodenschatz et al. [36], see Fig. 4.

FROM SUPERSTATISTICSTO (GENERALIZED)
THERMODYNAMICS

We end this paper with some more general thoughts. Can wegddoom superstatistics
as a merely statistical technique to a profmermodynamic descripti@ilhere are some
early attempts in this direction by Tsallis and Souza [6]rdHeve want to follow a
somewhat different approach [7]: One starts quite genefiadm two random variables
E andB (representing energy and invere temperature) and thend=raghe following



FIGURE 4. Lagrangian scaling exponents. Data points: MeasureméBisaenschatz et al. [36]. Solid
line: Theoretical prediction of the superstatistical mio@’ = 0.085) [19]. Dashed lines: Some other
competing models [38].

effective entropy for a superstatistical system

SE.B| = SE[B]+S8)
= [dBt(B)BU(B)+nZ(B)— [dB(BIINT(B),

whereU is the local internal energy arflthe local partition function. One can do ther-
modynamics with this extended entropy function. It reduoasdinary thermodynamics
for f(B) = &(B — Po). For sharply peaked distributiorigf3) this is a slightly deformed
thermodynamics, which can be evaluated in a perturbative @ae can also maximize
this entropy with respect to appropriate constraintg ito get e.g. a lognormal distribu-
tion for f(f3), or generally some other distributidi{3) depending on the constraints.
For more detalils, see [7].

SUMMARY

+ Superstatistics (a ‘statistics of a statistics’) provideghysical reason why more
general types of Boltzmann factors (e.g. of power-law typsy relevant for
nonequilibrium systems with fluctuations of an intensiveapaeter.

. There is evidence for three major physically relevant ursaty classesy?-
superstatistics= Tsallis statistics, inversg?-superstatistics, and lognormal super-
statistics. These arise as universal limit statistics fanyndifferent complex sys-
tems.

+ Superstatistical techniques have been successfullyepidia variety of complex
systems.
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« A superstatistical model of Lagrangian turbulence [19]nskcellent agreement
with the experimental data for probability densities, etations between compo-
nents, decay of correlations, and Lagrangian scaling expsn

+ The long-term aim is to find a good thermodynamic descriptiwrgeneral super-
statistical systems.
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