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The dynamics of coupled intermittent maps is used to model the correlated struc-

ture of genomic sequences. The use of intermittent maps, as opposed to other simple

chaotic maps, is particularly suited for the production of long range correlation fea-

tures which are observed in the genomic sequences of higher eucaryotes. A weighted

network approach to symbolic sequences is introduced and it is shown that coupled

intermittent polynomial maps produce degree and link size distributions with power

law exponents similar to the ones observed in real genomes. The proposed network

approach to symbolic sequences is generic and can be applied to any symbol sequence

(artificial or natural).
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I. INTRODUCTION

Some 20 years ago, in 1992, the presence of long range correlations in genomic sequences

was first reported in three seminal papers [1–3]. Since then many attempts were made

to record, classify and model these genomic correlations and to connect them with the

functionality and evolution of the current day genome [1–9]. Despite these many attempts a

conclusive explanation of the presence and the role of long range correlations in the genome

is still missing.

http://lanl.arxiv.org/abs/1205.2249v1
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In an earlier publication [10], one of the current authors (A.P.) and P. Katsaloulis have

searched for a hierarchical process which could produce long range correlations similar to

the ones observed in genomic sequences. To this end, they introduced a 2D density corre-

lation matrix M which is based on the frequency of appearance of blocks/strings of size s.

They calculated the multifractal properties of DNA from this matrix and from its multiple

superpositions to create strings of longer lengths. In fact, their approach corresponds to

a description of all strings of multiple lengths 2s, 4s · · ·, assuming that the correlations are

negligible for length scales l > s. This method produces correlations up to finite scales,

which are comparable with the ones observed in the genome at the same length scales [10].

Nevertheless, long-range correlations are known to persist over many scales in DNA and are

not limited to a finite length scale [11, 12]. In a further quest for dynamical mechanisms

producing long range correlations over extended scales the current study uses the dynamics

of intermittent maps to produce symbol sequences with characteristics similar to DNA.

Intermittent maps are well-known to produce a variety of interesting features such as

metastable behaviour and anomalous transport, often characterised by long-term correla-

tions and power laws [13–19]. That is why they are particularly suited for the modelling of

the dynamics of DNA strands with long range features, such as the genome of higher eu-

caryotes. In particular, the polynomial map[20] is particularly suited for the DNA modeling

due to its simplicity, versatility and the large parameter range which gives rise to long range

characteristics. This map will be used in the modeling of genomic data by first transform-

ing the times series generated by the map into a symbol sequence and then comparing its

statistics with that of whole eucaryotic chromosomes.

For the comparison between the dynamics produced by the intermittent polynomial map

and that of genomic sequences a novel network approach will first be established. For this,

the time series produced by the polynomial maps will be transformed into symbol sequences

and then associated networks will be constructed. The properties of these networks (degree

distribution, link size distribution, clustering coefficients) will be computed both for the

polynomial map and for the genomic sequences and the statistics will be compared. It will

turn out that the use of single polynomial maps is not enough to produce the exact power

law exponents observed in the network description of the genome. The solution to this

problem is given by weakly coupling the polynomial maps on a lattice. The weak coupling

modifies the power law exponents of the zero-coupling limit and produces power law tails
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comparable to the ones observed for the genome data.

This work has the following structure: In the next section the dynamics of the inter-

mittent polynomial map is briefly recapitulated and the corresponding symbol sequence is

constructed. The construction of a dynamical weighted network method for the description

of correlations in symbol sequences is presented in the same section. In Sec. III the network

method is applied to both, human chromosomes and symbol sequence of the intermittent

polynomial map. Comparative results are presented and discussed. In Sec. IV, coupled

polynomial maps are discussed. It is shown that small couplings give exponents very close

to the ones observed for genomic sequences. In our concluding remarks of section V the

general use of the network method is summarized.

II. INTERMITTENT MAPS AND ASSOCIATED NETWORKS

In this section we first recall the dynamics of the polynomial map and describe the trans-

formation to symbol sequence for later comparison with genomic sequences. It is important

to note here that uniformly distributed symbol frequencies will not be assumed in the cur-

rent study. The symbol frequency produced by the map will depend on the chosen partition

of the phase space and will be dictated by comparison with real genomic sequences where

the symbol frequencies have different average values for each symbol.

A. The Polynomial Map

The polynomial map is defined by the following iteration scheme [19, 21]

xn+1 =







xn(1 + 2αxα
n), if xn ≤ 0.5

2xn, if xn > 0.5
n = 1, 2... (1)

where n is a discrete time index and xn ∈ [0, 1] is taken modulo 1 for all n and α > 0. For

0 < α < 1 the map is ergodic. Figure 1 shows the graph of xn+1 vs. xn of the polynomial

map for a parameter α = 0.5 located in the center of the ergodic regime. Note that near

xn ∼ 0 the slope is close to 1 and hence intermittent behavior is produced. In a symbolic

dynamics approach, the laminar phase of intermittent behavior corresponds to repetitions of

the same symbol for quite a long time, which is then interrupted by chaotic outbursts [22].

The symbol repetitions generate long-term correlations. A similar feature is also observed
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Figure 1: (Colour online) The polynomial map with parameter value α = 0.5.

in genomic sequences. For DNA very often particular substrings of symbols are repeated

again and again, causing a dynamics that is significantly different from random behaviour

and exhibiting long-term correlations. For this reason it is obvious that intermittent maps,

as opposed to simple, fully developed chaotic maps, are good candidates to model sequences

of symbols with similar statistics as in genomes.

B. Symbol Sequences Associated with Maps

The symbolic dynamics technique for the analysis of maps has a long tradition (see, e.g.,

[22] for an introduction). The resulting sequences carry the correlations inherited by the

map and provide the means of understanding the dynamical behavior in a coarse-grained

way.

To comply with the structure of genomic sequences we use a translation based

on m = 4 symbols. The phase space is partitioned into four segments

[0,M1), [M1,M2), [M2,M3), [M3, 1], where Mi, i = 1, 2, 3 are real numbers, chosen

in such a way that the frequency of appearance of the four nucleotides in a partic-

ular chromosome is reproduced by the map. Using this phase space partition the

time series produced by Eq. 1 is transformed into a sequence L = l1, l2, l3, . . .,

with symbols taken from a 4-letter alphabet representing the four nucleotides: li ∈
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[A(Adenine), G(Guanine), C(Cytosine), T (Thymine)].

li =



























A, if 0 ≤ xi < M1

G, if M1 ≤ xi < M2

C, if M2 ≤ xi < M3

T, if M3 ≤ xi < 1

i = 1, 2... (2)

As a particular example we consider Human Chromosome 20, where the individual nu-

cleotide frequencies are: pA = 0.282856, pC = 0.215134, pG = 0.215896 and pT = 0.286114.

To calculate the Mi values, we first determine the invariant density of the polynomial map,

i.e. we iterate the map and calculate the local density of points, or probability p(x) that a

specific value will occur between x and x+ dx. For this chromosome the Mi i = 1, · · ·4, are

determined as:
∫M1

0
p(x)dx = pA = 0.282856

∫M2

M1

p(x)dx = pG = 0.215896
∫M3

M2

p(x)dx = pC = 0.215134

(3)

By using the transformation Eq. 2 of map Eq. 1 with Mj values given by Eq. 3 an

arbitrarily long symbol sequence li, i = 1, · · · , N is produced, whose correlations are dictated

by the polynomial map and whose symbol frequencies correspond to the ones of chromosome

20.

C. Network Approach to Symbolic Sequences

In this section a general relation between networks and symbol sequences is established.

This construction is generic and holds for any symbol sequence whether it is a natural or

experimental symbol sequence (eg. natural languages, DNA) or an artificial sequence. In the

second category random sequences are included, as well as sequences obtained via certain

rules/algorithms and sequences obtained e.g. by map iteration processes, as described in the

previous section.

Consider a generic symbolic sequence

L = l1, l2, · · · li · · · lN (4)

of length N , where the symbols li take values from a finite alphabet of size m. For our

approach the sequence L is covered with (divided into) segments (blocks, strings) of size
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s << N . The maximum number of all possible strings of size s with symbols taken from an

alphabet with m symbols is

Smax = ms (5)

To fully cover the sequence, N/s segments are needed . As a concrete example consider

covering the binary (m = 2) sequence L = {001010001101011011001} by strings of size

s = 3. The following substrings occur: S1 = {001}, S2 = {010}, S3 = {101}, S4 = {011}

with string S1 occurring three times and string S4 occurring twice.

In uncorrelated, random sequences of infinite size all strings Si, i = 1, · · ·Smax of length

s occur with the same probability

pi = 1/Smax, i = 1, · · ·Smax (6)

while for correlated and natural sequences Eq. 6 usually does not hold. In natural and

correlated sequences the total number of observed strings is denoted by V and is always

V ≤ Smax.

Within the ensembles of possible Si consider furthermore the probability bij of string

i = [I1, I2 · · · Is] to be followed by string j = [J1, J2 · · ·Js] (both having the same length

s). The elements bij are identified actually as conditional probabilities: having located the

string i in the sequence L, the element bij represents the conditional probability that it is

followed by the string j. b is a square matrix of size V × V . The matrix b can be related

to the joint probability of finding the combined string i ⊗ j = [I1, I2 · · · Is, J1, J2 · · ·Js] of

length 2s as follows:

bij =
pi⊗j

pi
=

p[I1,I2···Is,J1,J2···Js]
p[I1,···,Is]

(7)

Based on the conditional probability bij of string i to be followed by string j on a very

long sequence L, an associated, abstract network can be constructed whose nodes are the

strings Si, i = 1, · · ·V of length s. Thus the number of nodes, or network capacity V , is

at most Smax. An edge is drawn between two nodes i and j if the corresponding strings

i = [I1, I2 · · · Is] and j = [J1, J2 · · ·Js] are found in direct succession anywhere in the sequence

L. The edge between i and j nodes is weighted with the frequency of finding strings i and
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j in succession and thus the conditional probability matrix element bij gives the weight of

the edge between nodes i and j. In the network notation the matrix bij is identified as

the connectivity or adjacency matrix. Note that in general bij 6= bji for genomic or natural

symbolic sequences. Thus the adjacency matrix created by genomic sequences indicates that

the corresponding network belongs to the class of directed networks/graphs.

In the abstract networks generated by symbolic sequences as proposed above, loops (some-

times also called ”self-loops” or ”buckles”) are often present, since it is quite common that a

certain string will be followed by an identical string. Loops do not occur in social networks,

for example, where an individual does not interact with himself. On the other hand, in

food distribution networks between cities self-loops on nodes are allowed, since food maybe

consumed (or distributed) in the city it was produced. Loops are also observed in genomic

networks, brain neuron networks, cardio-vascular system etc. [23–26]. In terms of the el-

ements of the connectivity matrix, the presence of loops means bii 6= 0. In graph theory,

graphs which contain loops are often called multigraphs.

Having defined the nodes and links in the network corresponding to a symbol sequence

we proceed in identifying the various network parameters. The degree ki of a node i, which

corresponds to the symbolic string i = [I1, I2, · · · Is], is usually defined as the number of links

originating from the node i towards any other node in the system. For weighted networks,

as in the case of symbol sequences, each link is weighted with the appropriate weighting

factor and the degree ki expresses the cumulative weighted linking of the particular node i

to all other network nodes. In the case of symbol sequences, (where the links are identified

as the conditional probabilities bij), the outflowing degree ki of string i is calculated as

ki =

V
∑

j=1

bij =

∑V

j=1 pi⊗j

pi
= 1 (8)

Thus, when we use the conditional probability bij , all nodes carry the same outflowing

degree (normalized to 1), since each string is always followed by another string within the V

possible strings. However, since we are dealing with directed networks, we also have to take

into account the inflowing degrees of freedom. The probability to observe a certain string i

is then given by the balance between inflow and outflow.

In the case of symbol sequences we identify the degree ki of a node i as the frequency

of appearance of the corresponding string i, to be consistent with the distributed weights

carried by the nodes . This definition makes sense: For dynamical systems with a Markov
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partition the invariant probabilities of string sequences are determined by the balance be-

tween inflowing and outflowing iterates (a direct consequence of the fixed-point property

of the Perron-Frobenius operator). Hence the net balance of flow along the links fixes the

invariant density and hence also the probabilities of symbol sequences in a coarse-grained

description.

The distribution of nodes which carry degree k is denoted by P (k). This means we now

look at the set of all observed frequencies of symbol sequences, and consider the probabil-

ity distribution of these frequencies. For example, if all symbol sequence probabilities are

the same, as for example for uncorrelated random sequences of infinite length, then P (k)

corresponds to a sharply peaked delta distribution. The quantity P (k) is called the degree

distribution. It characterizes the network globally and classifies it to be a scale-free network

if P (k) has power law tails,

P (k) ∼ k−γ . (9)

γ is the power law exponent expressing the scale-free nature of the network and it is typically

in the range 2 < γ < 3, although in some cases γ may lie outside this interval.

Apart from the degree distribution, one of the most important variables in the theory of

complex networks is the local clustering coefficient cn around the node n, which describes

the local structure of the network around that specific node. The local clustering coefficient

is defined as:

cn =

∑

i,j bnibijbjn
∑

i 6=j bnibjn
(10)

In Eq. 10 the numerator is related to the total weighted number of closed triangles

originating from node n, while the denominator gives the maximum number of possible

triangles originating on the same node [27, 28]. Sometimes it is possible to find the functional

form of the clustering coefficient c(k) of nodes having degree k. This is an important property

of the network and indicates an underlying hierarchical structure [29]. For hierarchical

networks a power law form is achieved

c(k) ∼ k−b (11)

where the exponent b takes a positive value for hierarchical networks, while it is constant

for random uncorrelated networks and for scale free networks. In many natural networks
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b ∼ 1 [29]. In general it is difficult to find such a relation. It is important here to make

the distinction between c(k), which is the functional form of the clustering coefficient as a

function of the degree k, and ci which is the clustering coefficient of node i.

The global clustering coefficient c(V ), defined as the average of the local clustering ones,

characterises globally the connectivity in the network and in general depends on the size V

of the network.

c(V ) =< ci >=
1

V

V
∑

i=1

ci. (12)

For many real systems c(V ) is independent of V . In particular, the global clustering

coefficient in random uncorrelated networks decreases as [30]

c(V ) ∼ V −1. (13)

In the case of scale-free, highly clustered and complex networks Eq. 13 changes to

c(V ) ∼ V −ν . (14)

The distribution of clustering coefficients P (c) takes a power law form in scale free net-

works,

P (c) ∼ c−β. (15)

For random, uncorrelated networks, it was shown by Watts and Strogatz that the local

clustering coefficients have an exponential type of distribution [29, 30].

In view of the presence of self-loops in genomic sequences, their contributions in the

node degrees and the clustering coefficients need to be commented on. In the numerator

of Eq. 10 the presence of the term bkkbkkbkk might seem strange in social networks but in

the representation of symbolic sequence it represents the phenomenon of repeats, i.e. the

repetition of the same string a number of times in the sequence. If the node j represents

the string j ≡ [J1, J2, · · ·Js], where Ji are symbols, then the term bjjbjjbjj denotes the

presence of string j ⊗ j ⊗ j ⊗ j in the sequence. Repetitions are very frequent in genomic

sequences, in particular for primates. In the human genome one sequence repeat alone (the

ALU-sequence) comprises approximately 11.5% of the human genome, while the total repeat

content reaches 35% of the human DNA.
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III. NETWORK PROPERTIES OF DNA SEQUENCES AND OF

INTERMITTENT MAPS

A. DNA sequences

In this section we first apply the network approach to genomic sequences, following the

ideas described in the previous section. As working examples we use chromosomes 10, 14

and 20 from the human genome.

In natural sequences such as in DNA most often bij 6= bji. In genomic sequences the two

strands of the helix have complimentary structure. Let us call the two strands C1 and C2.

This means that if a nucleotide A is found in a certain position in C1 a nucleotide T will be

found in the sequence C2 in the same position. Similarly, T is the compliment of A, C is

the compliment of G and G is the compliment of C. Consider e.g. the string S1 = [AGGT ]

followed by S ′
1 = [CGTT ] both found in strand C1. Then in strand C2, the following strings

will be found: S2 = [TCCA] and S ′
2 = [GCAA]. Thus if we denote by ˜ the complimentary

strings and strands, we have the following relation for the weighting matrices,

bij(s) = b̃̃ij̃(s) (16)

It is then sufficient to compute the network characteristics of one of the two strands and to

mirror its properties to the other strand according to Eq. 16.

In Fig. 2a the degree distribution of the symbolic network characterising the chromosome

20 genomic sequence of Homo sapiens is presented. Strings of different sizes were considered,

up to s = 9. In the x−axis the degree k characterising the total link strength carried by a

node is plotted, normalised with the total number of (weighted) links. This normalisation

is needed because the total number of links is a decreasing function of the length L of the

symbol sequence. The y−axis shows the distribution of nodes of degree k. For comparison,

the dashed line represents a pure power law distribution with exponent γ = −3.

In Fig. 2b the distribution of individual link sizes (weights bij) is plotted independently

of the node to which they belong. String sizes s = 1−6 are shown, taken also for the human

chromosome 20. Longer string sizes are not possible to investigate due to computational

limitations, since the size of the matrix b grows exponentially with s. The observed form

of the P (b) distribution is very similar to that of P (k) in Fig. 2a. This is not unexpected

since the values in the latter figure represent cumulative link weights originating from one
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Figure 2: (Colour online) Distribution functions related to the network derived from the Human

chromosome 20. a)The Degree Distribution P (k) of the network of strings with various sizes s.

The dashed line corresponds to a power law decay with exponent γ ∼ −3. b) The Distribution

P (b) of link weights bij between nodes. The dashed line corresponds to an exact power law with

exponent γ1 = −3. The yellow bullets correspond to a random and uncorrelated sequence with

s = 5. Strings of various sizes s are plotted with different colours as indicated in the figure.

node. Again the dashed line corresponds to power law behaviour with exponent γ1 = −3.

The two exponents may not be exactly identical, due partly to stochasticity and partly to

the fact that the degree is a sum over a finite number of link sizes (over a node). If the

number of links on a node were infinite then the two distributions would posses exactly the

same exponent γ ≡ γ1. For comparison, the P (b) distribution calculated from a random

and uncorrelated symbol sequence of the same size as chromosome 20 is plotted with yellow

bullets. The segmentation was done with s = 5. In contrast to the genomic data, the

random symbol sequence shows a hump around the mean value 5 × 10−7 and then drops

abruptly (step-like), as is expected for finite, uncorrelated random sequences.

Note that for the case of symbol sequences the degree of a node coincides with the fre-

quency of appearance of the particular string of length s. For s = 1 (one-letter words)

there are only 4 configurations and all of them have similar frequency. That results in a

narrow range distribution with little structure. For s = 2 (two-letter words) a first appear-

ance of two maxima is observed, which correspond to the presence of multiple T and A in

the sequence. The minimum values correspond to the infrequent presence of the complex

GC in the system, which is known to be related to the presence of functional units called

promoters. For 2 < s < 6 the presence of a larger number of strings/nodes in the network
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Figure 3: (Colour online) The degree distributions for 3 different human chromosomes. The degree

distribution of a random symbol sequence of the same size is also shown (humped distribution).

smoothes the two well-pronounced maxima into a two-humped distribution. Again, the two

maxima correspond to the presence of multiple A and T strings, while the minimum is again

corresponding to the complexes of GC and CG followed by one of the other four bps. For

s > 5 a power law degree distribution establishes gradually, which indicates the scale free

character of this symbolic network.

For comparison, the degree distributions as computed for human chromosomes 10, 14 and

20 are plotted together in Fig. 3. The degree distributions of the three chromosomes are

qualitatively similar, which may point to a universal type of scaling. In the same figure the

degree distribution of a random sequence of the same size as chromosome 20 is plotted. The

random distribution is single-humped and is symmetric around its mean value, as expected

for random uncorrelated sequences. Clearly, for infinitely long random sequences one expects

convergence to a δ-function, whereas for genomic sequences the distribution is much broader.

To further explore the network connectivity we compute the size distribution of clustering

coefficients, throughout the network. Due to computer memory limitations only strings of

size s ≤ 6 can be computed. To suppress fluctuations, the cumulative size distribution

Pcum(c) is calculated as

Pcum(C) =

∫ ∞

C

P (c)dc. (17)
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Figure 4: (Colour online) The cumulative distribution of clustering coefficients Pcum(c) is plotted

as a function of the size c for human chromosomes 14 (red line), 20 (blue line) and a random

sequence (black line) of equal size with chromosome 20. String size is s = 6. For comparison the

dashed line presents a pure power law decay with exponent −1.7.

For power law distributions of the form 15, the cumulative size distribution also follows a

similar power law, as

Pcum(C) ∼

∫ ∞

C

c−βdc ∼ C−β+1. (18)

In Fig. 4 the cumulative clustering coefficient distribution is plotted as a function of

the coefficient size C. Data from chromosomes 20 and 14 are plotted together with data

taken from an artificial random symbol sequence whose symbol frequencies are the same

as in chromosome 20. In a double logarithmic scale the genomic cumulative distributions

exhibit an almost linear regime for large sizes, indicating the presence of a power law. This

behavior becomes more prominent as the string size increases. In comparison, the data

from the large-length random sequence has an abrupt, almost step-like decay, indicating a

very sharply peaked Gaussian (δ-like) distribution, whose cumulative distribution function

is very close to a step-like function.
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B. Polynomial map

Methods to construct networks from maps or a given time series have been previously

addressed in refs. [31–34], using as a particular examples the tent map, the cusp map, or

the logistic map. In [31], the phase space of the maps is segmented into a number of cells

and each cell corresponds to a node of the network. The connectivity matrix is then defined

by the frequency of transitions between the different cells/nodes of the network.

The current approach is inspired by [31], but the transition from the map to the network is

achieved using symbolic sequence generated by the map. In other words, the map dynamics

is first mirrored on a symbol sequence as explained in sec. II B and then the network is

constructed from the symbol sequence as discussed in sec. IIC. The choice of the polynomial

map, mentioned briefly in sec. IIA, is based on its intermittent behaviour and its capacity

to give rise to time series (and corresponding symbol sequences) with long range features,

as opposed to the dynamics of the logistic map and other non-intermittent maps giving rise

to nearly uncorrelated behavior.

In Fig. 5a the cumulative degree distribution for the polynomial map is shown for various

values of string sizes s and parameter value α = 0.5. The sequence size was chosen as

L = 4.3 · 107, of comparable size as chromosome 20. In our plots we have chosen the

cumulative degree distribution rather than the probability density function to somewhat

smoothen out fluctuations. The frequency of appearance of each nucleotide is chosen as in

Eq. 3 and corresponds to those of human chromosome 20. For this particular parameter

value, all string sizes point towards the same exponent γ(a = 0.5) ∼ 3. Note that the

number of allowed string configurations V generated by the polynomial map is far less than

the number of strings observed in human genomic sequences. As an example we note that

VDNA(s = 9) = 244925 < 49 = 262144, while Vpoly(s = 9) = 1790.

In Fig. 5b the cumulative degree distribution for the polynomial map is shown for various

values of the parameter value α and string sizes s = 9. It is obvious that the exponent γ

is a decreasing function of the parameter α. By appropriate choice of the value of α we

can achieve the same power law exponent as the one observed in the human chromosome.

On the other hand, the number of configurations generated by the polynomial map (∼

1700) is far less than observed in genomic sequences (∼ 250000 in chromosome 20). This

difference is non-trivial, it covers 2 orders of magnitude. To achieve the diversity of the string
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Figure 5: (Colour online) Network symbol representation of the polynomial map. a) Cumulative

degree distribution for parameter value α = 0.5 and various string sizes. The dashed line corre-

sponds to an exact power law with exponent γ = −3. b) Cumulative degree distribution for string

size s = 9 and various parameter values.

configurations together with the degree distribution scaling observed in genomic sequences,

a diffusive coupling is introduced in the next section between a large number of polynomial

maps (considered as ”units”). This will create a large variety of string configurations together

with similar exponents as for genomic networks.

IV. NETWORK PROPERTIES OF COUPLED POLYNOMIAL MAPS

Coupled Map Lattices (CML) have been extensively used for the modelling of many phys-

ical systems which involve interactions between many spatially separated constituents. A lot

of emphasis of research activity has been put on spatio-temporal chaos and synchronization

phenomena arising in CMLs [35–41].
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For the coupling of polynomial maps, in the present study, a simple, 1-dimensional chain

arrangement with periodic boundary conditions is assumed. The periodic boundary condi-

tions are chosen simply for convenience and they do not affect, qualitatively or quantitatively,

the results in the limit of very long chains, as considered here.

Our linear chain arrangement consists of L = 108 polynomial maps coupled to their

nearest neighbours with a coupling constant r. The dynamics is

xi
n+1 =







(1− r)xi
n(1 + 2α(xi

n)
α) + 1

2
r [xi+1

n (1 + 2α(xi+1
n )α) + xi−1

n (1 + 2α(xi−1
n )α)] if xn ≤ 0.5

(1− r)2xn +
1
2
r [2xi+1

n + 2xi−1
n ] if xn > 0.5

(19)

The values xi
n are taken modulo 1 for all n, as in Eq. 1. The index i = 1, 2 · · · runs over

all local maps, while n = 1, 2, · · · is a temporal index. Random initial conditions are chosen

for each map. The parameter value is chosen as α = 0.5 and the number of iterations in our

simulation is T = 5000, sufficiently high for the maps to enter their dynamic equilibrium

regime. At T = 5000 the state of each map is recorded and a transformation to a symbol

sequence is performed using Eq. 3, with the same 1-point symbol sequences as for the

chromosome data. At the final stage the symbol sequence is divided into strings of size s

and the corresponding network connectivity matrix b is constructed according to the method

described in Sec. IIC.

In Figs. 6, 7 and 8 the cumulative degree distribution Pcum(k), the link size distribution

P (b), and the cumulative distribution of clustering coefficients Pcum(c) are plotted for various

values of the coupling constant r. For comparison, the corresponding data for chromosome

20 are also plotted in each figure.

For the calculation of the degree distribution window size s = 9 is used. In Fig. 6

the cumulative distribution is plotted. Comparison of the different curves reveals that the

coupled polynomial maps with parameter α = 0.5 and coupling constant of the order of

r ∼ 0.35 assimilate relatively well the sequence structure of Chromosome 20.

For the calculation of the link size distribution strings of size s = 6 were employed. This is

because transition matrices of size 4s×4s need to be considered which are very demanding in

computer memory. The results for s = 6 are plotted in Fig. 7 both for Human Chromosome

20 (black solid line) and coupled polynomial maps with parameter α = 0.5 and various

values of the coupling constant r. Again the best fit is observed for r ∼ 0.35 despite the

fact of using a different (smaller) string size s for the calculations. This shows that the
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Figure 6: (Colour online) Coupled polynomial maps on a linear chain. The Cumulative Degree

Distribution Pcum(k) of the network is plotted for various values of the coupling constant r. For

comparison the corresponding data for chromosome 20 are plotted with the black solid line. Pa-

rameter values are α = 0.5, T = 5000, L = 4.3 107, s = 9. The symbol frequencies were chosen

as in Eq. 3. Various values of the coupling constant r are plotted, as indicated in the legend.

similarities between the statistics of chromosomes and coupled polynomial maps are robust

to variations in the size of window used in the creation of the network, provided that s is

not too small (s > 5). The observed power law exponent is again of the order ∼ 3, as

represented by the straight line in the double logarithmic scale in Fig. 7.

Finally, the distributions of clustering coefficients are presented in Fig. 8. Again, the

genomic data (Chromosome 20) are plotted together with sequences resulting from coupled

polynomial maps with α = 0.5 and various coupling rates r. The results are consistent with

the previous findings. While for small values of r the distribution of clustering coefficients

drops abruptly as in random sequences, as r grows the distribution develops a long tail

which approaches the tails of DNA sequences around the coupling values r ∼ 0.35− 0.40.

We notice that uncoupled polynomial maps can not well represent the complexity of DNA

sequences, although they are known to produce intermittency with long range correlations.

On the other hand, a medium size coupling between polynomial maps is able to create the

appropriate correlations and to resemble the structure of DNA in many levels of complexity.

From the last three figures one can see that a coupling constant of the order of r = 0.35 is
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Figure 7: (Colour online) Coupled polynomial maps on a linear chain: The Link Size Distributions

P (b) of link weights bij between all the nodes is plotted for various values of the coupling r. The

data of chromosome 20 are represented by the black solid line. Parameter values are α = 0.5, T =

5000, L = 4.3 · 107, s = 6. The symbol frequencies were chosen as in Eq. 3. Results for various

coupling rates r are shown. The solid straight line represents an exact power law with exponent

-3.
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for various values of the coupling r. For comparison the data of chromosome 20 are plotted as a

black solid line. All parameters (including nucleotide frequencies) are chosen as in Fig. 7.
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enough to adjust the power law exponents to values close to the ones observed in genomic

sequences. The need for a coupling between neighboring units to properly assimilate DNA

sequences demonstrates the presence of local interactions between the adjacent nucleotide

strings which create the correlated, mosaic structure of the genome.

Similar conclusions are obtained from the network analysis of other chromosomes. Just

slight variations in the values of the exponents and the necessary coupling constants are noted

due to the difference in the symbol frequencies in the chromosomes and due to stochastic

effects.

From our analysis we also see that quite generally coupled polynomial maps give rise

to complex small-world networks, via the corresponding symbol sequences and transition

matrix, while the network exponents can be adjusted by varying the coupling constant r.

V. CONCLUSIONS

The dynamics of coupled intermittent maps was used to model the correlated structure

of genomic sequences via a network approach. The weighted network approach to symbolic

sequence was first introduced and applied to genomic and random, uncorrelated sequences

and then compared with the corresponding statistics of coupled intermittent maps. For the

modelling the use of intermittent maps appears to be necessary in order to retrieve the scal-

ing properties observed in the primary structure of DNA. It was first shown that although

the dynamics of single intermittent maps produce long range correlated symbolic sequences,

with a variety of power law exponents depending on the choice of the parameters, they do

not produce the diversity of genomic strings observed in DNA sequences. To overcome this

limitation coupled map lattices were considered, with diffusive coupling between neighbor-

ing units on a 1-dimensional lattice. It was shown that a medium size coupling between

neighboring polynomial maps is sufficient to produce a) power law exponents comparable

with the ones obtained from genomic data and b) a statistical distribution of string frequen-

cies similar to real DNA sequences. Our results are consistent with the known existence of

complicated patterns of correlations between adjacent segments in DNA.

The reported results concern the primary structure of human chromosomes. The network

method can be applied to any genomic sequence provided it is long enough to assure reason-

able statistics. It would be of great interest to study further classes of organisms with this
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method and explore the range of values of the network exponents for different organisms.

Additionally, the proposed network approach to symbol sequences may be used to construct

quite generally networks from any symbol sequence (natural, experimental or artificial) and

to test for scaling characteristics.
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