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The formalism of statistical mechanics can be generalised by starting from more general measures of information
than the Shannon entropy and maximising those subject to suitable constraints. We discuss some of the most
important examples of information measures that are useful for the description of complex systems. Examples
treated are the Rényi entropy, Tsallis entropy, Abe entropy, Kaniadakis entropy, Sharma–Mittal entropies, and a
few more. Important concepts such as the axiomatic foundations, composability and Lesche stability of information
measures are briefly discussed. Potential applications in physics include complex systems with long-range
interactions and metastable states, scattering processes in particle physics, hydrodynamic turbulence, defect
turbulence, optical lattices, and quite generally driven nonequilibrium systems with fluctuations of temperature.
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1. How to measure information

1.1. Prologue

How should one measure information? There is no
unique answer to this. There are many different
information measures, and what measure of informa-
tion is the most suitable one will in general depend on
the problem under consideration. Also, there are
different types of information. For example, the
information a reader gets from reading a book on
quantum field theory is different from the one he gets
from reading Shakespeare’s Romeo and Juliet. In
general one has to distinguish between elementary
and advanced information concepts. The elementary
information is just related to technical details such
as, for example, the probability to observe certain
letters in a long sequence of words (see Figure 1). The
advanced information is related to the information the
reader really gets out of reading and understanding a
given text, i.e. this concept requires coupling to a very
complex system such as the brain of a human being.

In physics, the missing information on the concrete
state of a system is related to the entropy of the system.
Entropy is an elementary information concept. Many
different physical definitions of entropy can be given,
and what makes up a ‘physically relevant entropy’ is
often subject to ‘heated’ discussions. Misunderstand-
ings with respect to the name ‘entropy’ seem to be the
rule rather than the exception within the past 130
years. Generally one may use the name ‘entropy’ as a
synonym for a possible quantity to measure missing

information, keeping in mind that large classes of
possible functions will potentially do the job, depend-
ing on application.

The entire formalism of statistical mechanics can be
regarded as being based on maximising the entropy
(¼ missing information) of the system under considera-
tion subject to suitable constraints, and hence naturally
the question arises how to measure this missing
information in the first place [1]. While normally one
chooses the Shannon information measure, in principle
more general information measures (that contain the
Shannon information as a special case) can be chosen as
well. These then formally lead to generalised versions of
statistical mechanics when they are maximised [2–7].

In this paper we describe some generalised infor-
mation and entropy measures that are useful in this
context. We discuss their most important properties,
and point out potential physical applications. The
physical examples we choose are the statistics of
cosmic rays [8], defect turbulence [9], and optical
lattices [10,11], but the general techniques developed
have applications for a variety of other complex
systems as well, such as driven nonequilibrium systems
with large-scale fluctuations of temperature (so-called
superstatistical systems [12,13]), hydrodynamic turbu-
lence [14,15] scattering processes in particle physics
[16,17], gravitationally interacting systems [18,19] and
Hamiltonian systems with long-range interactions and
metastable states [19,20]. There are applications out-
side physics as well, for example in mathematical
finance [22], biology [23] and medicine [24].
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1.2. Basic concepts

One usually restricts the concept of an information
measure to an information that is a function of a given
probability distribution of events (and nothing else).1

The basic idea is as follows. Consider a sample set of
W possible events. In physics events are often identified
as possible microstates of the system. Let the
probability that event i occurs be denoted as pi. One
has from normalisation

XW
i¼1

pi ¼ 1: ð1Þ

We do not know which event will occur. But suppose
that one of these events, say j, finally takes place. Then
we have clearly gained some information, because
before the event occurred we did not know which event
would occur.

Suppose that the probability pj of that observed
event j is close to 1. This means we gain very little
information by the observed occurrence of event j,
because this event was very likely anyway. On the
other hand, if pj is close to zero, then we gain a lot of
information by the actual occurrence of event j,
because we did not really expect this event to happen.
The information gain due to the occurrence of a single
event j can be measured by a function h(pj), which
should be close to zero for pj close to 1. For example,
we could choose h(pj) ¼ log pj, the logarithm to some
suitable basis a. If this choice of a is a ¼ 2 then h is
sometimes called a ‘bit-number’ [1]. But various other

functions h(pj) are possible as well, depending on the
application one has in mind. In other words, an
information measure should better be regarded as a
man-made construction useful for physicists who don’t
fully understand a complex system but try to do so
with their limited tools and ability. Once again we
emphasise that an information measure is not a
universally fixed quantity. This fact has led to many
misunderstandings in the community.

In a long sequence of independent trials, in order to
determine an average information gain by the sequence
of observed events i we have to weight the information
gain associated with a single event with the probability
pi that event i actually occurs. That is to say, for a
given function h the average information gained during
a long sequence of trials is

IðfpigÞ ¼
XW
i¼1

pihðpiÞ: ð2Þ

Many information measures studied in the literature
are indeed of this simple trace form. But other forms
are possible as well. One then defines the entropy S as
‘missing information’, i.e.

S ¼ �I: ð3Þ

This means the entropy is defined as our missing infor-
mation on the actual occurrence of events, given that we
only know the probability distribution of the events.

If the probability distribution is sharply peaked
around one almost certain event j, we gain very little
information from our long-term experiment of inde-
pendent trials: the event j will occur almost all of the
time, which we already knew before. However, if all
events are uniformly distributed, i.e. pi ¼ 1/W for all i,
we get a large amount of information by doing this
experiment, because before we did the experiment we
had no idea which events would actually occur, since
they were all equally likely. In this sense, it is
reasonable to assume that an (elementary) information
measure should take on an extremum (maximum or
minimum, depending on sign) for the uniform dis-
tribution. Moreover, events i that cannot occur
(pi ¼ 0) do not influence our gain of information in
the experiment at all. In this way we arrive at the most
basic principles an information measure should satisfy.

1.3. The Khinchin axioms

There is a more formal way to select suitable
(elementary) information measures, by formulating a
set of axioms and then searching for information
measures that satisfy these axioms. A priori, there is an
infinite set of possible information measures, not only of

Figure 1. There is no obvious way to measure the
information contents of given symbol sequences. While it is
relatively easy to distinguish between a random sequence of
symbols and Shakespeare’s Romeo and Juliet in terms of
suitable elementary information measures, it is less obvious
how to distinguish the fact that the advanced information
contents given by Shakespeare’s Romeo and Juliet is different
from the one given by a book on quantum field theory.
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the simple form (2) but of more general forms as well,
based on arbitrary functions of the entire set of pi. How
can we select the most suitable ones, given certain
requirements we have in mind? Of course, what is ‘most
suitable’ in this context will in general depend on the
application we have in mind. The most appropriate way
of dealing with this problem is to postulate some basic
and essential properties the information measure one is
interested in should have, and then to derive
the functional form(s) that follows from these postulates.

Khinchin [25] has formulated four axioms that
describe the properties a ‘classical’ information mea-
sure I should have (by ‘classical’ we mean an
information measure yielding ordinary Boltzmann–
Gibbs type of statistical mechanics):

Axiom 1

I ¼ Iðp1; . . . ; pWÞ: ð4Þ

That is to say, the informationmeasure Ionlydepends
on the probabilities pi of the events and nothing else.

Axiom 2

IðW�1; . . . ;W�1Þ � Iðp1; . . . ; pWÞ: ð5Þ

This means the information measure I takes on an
absolute minimum for the uniform distribution
(W71, . . . ,W71), any other probability distribution
has an information content that is larger or equal to
that of the uniform distribution.

Axiom 3

Iðp1; . . . ; pWÞ ¼ Iðp1; . . . ; pW; 0Þ: ð6Þ

This means the information measure I should not
change if the sample set of events is enlarged by
another event that has probability zero.

Axiom 4

I pI;IIij

n o� �
¼ I pIi

� �� �
þ
X
i

pIi I pII jjið Þ
� �� �

: ð7Þ

This axiom is slightly more complicated and
requires a longer explanation. The axiom deals with
the composition of two systems I and II (not
necessarily independent). The probabilities of the first
system are pIi , those of the second system are pIIj . The
joint system I,II is described by the joint probabilities
pI;IIij ¼ pIi p

IIðjjiÞ, where pII(j|i) is the conditional prob-
ability of event j in system II under the condition that
event i has already occurred in system I. I({pII(jji)}) is
the conditional information of system II formed with

the conditional probabilities pII(jji), i.e. under the
condition that system I is in state i.

The meaning of the above axiom is that it
postulates that the information measure should be
independent of the way the information is collected.
We can first collect the information in the subsystem
II, assuming a given event i in system I, and then sum
the result over all possible events i in system I,
weighting with the probabilities pIi .

For the special case that system I and II are inde
pendent the probability of the joint system factorises as

pI;IIij ¼ pIi p
II
j ; ð8Þ

and only in this case, Axiom 4 reduces to the rule of
additivity of information for independent subsystems:

IðfpI;IIij gÞ ¼ IðfpIigÞ þ IðfpIIj gÞ: ð9Þ

Whereas there is no doubt about Axioms 1–3, the
reader immediately notices that Axiom 4 requires a
much longer explanation. From a physical point of
view, Axiom 4 is a much less obvious property. Why
should information be independent from the way we
collect it?

To illustrate this point, we may consider a simple
example of an information-collecting system, a first-
year undergraduate student trying to understand
physics. This student will learn much more if he first
attends a course on classical mechanics, collecting all
available information there, and then attends a course
on quantum mechanics. If he does it the other way
round, he will probably hardly understand anything in
the course on quantum mechanics, since he does not
have the necessary prerequisites. So attending the
quantum mechanics course first leads to zero informa-
tion gain. Apparently, the order in which the informa-
tion of the two courses (the two subsystems) is
collected is very important and leads to different
results in the achieved knowledge.

In general complex systems, the order in which
information is collected can be very relevant. This is a
kind of information hysteresis phenomenon. In these
cases we have situations where the replacement of
Axiom 4 by something more general makes physical
sense. We will come back to this in Section 3.

1.4. The Shannon entropy

It is easy to verify that the celebrated Shannon
entropy, defined by

S ¼ �k
XW
i¼1

pi ln pi; ð10Þ
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satisfies all four of the Khinchin axioms. Indeed, up to
an arbitrary multiplicative constant, one can easily
show (see, e.g. [1]) that this is the only entropic form
that satisfies all four Khinchin axions, and that it
follows uniquely (up to a multiplicative constant) from
these postulates. k denotes the Boltzmann constant,
which in the remaining sections will be set equal to 1.
For the uniform distribution, pi ¼ 1/W, the Shannon
entropy takes on its maximum value

S ¼ k lnW; ð11Þ

which is Boltzmann’s famous formula, carved on his
grave in Vienna (Figure 2). Maximising the Shannon
entropy subject to suitable constraints leads to
ordinary statistical mechanics (see Section 4.3). In
thermodynamic equilibrium, the Shannon entropy can
be identified as the ‘physical’ entropy of the system,
with the usual thermodynamic relations. Generally, the
Shannon entropy has an enormous range of applica-
tions not only in equilibrium statistical mechanics but
also in coding theory, computer science, etc.

It is easy to verify that S is a concave
function of the probabilities pi, which is an important
property to formulate statistical mechanics.
Remember that concavity of a differentiable function
f(x) means f00(x) � 0 for all x. For the Shannon
entropy one has

@

@pi
S ¼ � ln pi � 1; ð12Þ

@2

@pi@pj
S ¼ � 1

pi
dij � 0; ð13Þ

and hence, as a sum of concave functions of the pi, it is
concave.

In classical mechanics, one often has a continuous
variable u with some probability density p(u),
rather than discrete microstates i with probabilities
pi. In this case the normalisation condition readsR1
�1 pðuÞ du ¼ 1, and the Shannon entropy associated
with this probability density is defined as

S ¼ �
Z 1
�1

du pðuÞ lnðspðuÞÞ; ð14Þ

where s is a scale parameter that has the same dimension
as the variable u. For example, if u is a velocity
(measured in units of m s71), then p(u), as a probability
density of velocities, has the dimension s m71, since
p(u)du is a dimensionless quantity. As a consequence,
one needs to introduce the scale parameters in Equation
(14) to make the argument of the logarithm
dimensionless.

Besides the Shannon information, there are lots
of other information measures. We will discuss some
of the most important examples in the next section.
Some information measures are more suitable than
others for the description of various types of
complex systems. We will discuss the axiomatic
foundations that lead to certain classes of informa-
tion measures. Important properties to check for a
given information measure are convexity, additivity,
composability, and stability. These properties can
help to select the most suitable generalised informa-
tion measure to describe a given class of complex
systems.

2. More general information measures

2.1. The Rényi entropies

We may replace Axiom 4 by the less stringent
condition (9), which just states that the entropy of
independent systems should be additive. In this case
one ends up with other information measures which

Figure 2. The grave of Boltzmann in Vienna. On top of the
gravestone the formula S ¼ k log W is engraved. Boltzmann
laid the foundations for statistical mechanics, but his ideas
were not widely accepted during his time. He committed
suicide in 1906.
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are called the Rényi entropies [26]. These are defined
for an arbitrary real parameter q as

SðRÞq ¼ 1

q� 1
ln
X
i

p
q
i : ð15Þ

The summation is over all events i with pi 6¼ 0. The
Rényi entropies satisfy the Khinchin Axioms 1–3 and
the additivity condition (9). Indeed, they follow uniquely
from these conditions, up to a multiplicative constant.
For q ! 1 they reduce to the Shannon entropy:

lim
q!1

SðRÞq ¼ S; ð16Þ

as can be easily derived by setting q ¼ 1 þ e and doing
a perturbative expansion in the small parameter e in
Equation (15).

The Rényi information measures are important for
the characterisation of multifractal sets (i.e. fractals
with a probability measure on their support [1]), as
well as for certain types of applications in computer
science. But do they provide a good information
measure to develop a generalised statistical mechanics
for complex systems?

At first sight it looks nice that the Rényi entropies
are additive for independent subsystems for general q,
just as the Shannon entropy is for q ¼ 1. But for non-
independent subsystems I and II this simplicity
vanishes immediately: there is no simple formula of
expressing the total Rényi entropy of a joint system as
a simple function of the Rényi entropies of the
interacting subsystems.

Does it still make sense to generalise statistical
mechanics using the Rényi entropies? Another pro-
blem arises if one checks whether the Rényi entropies
are a concave function of the probabilities. The Rényi
entropies do not possess a definite concavity – the
second derivative with respect to the pi can be positive
or negative. For formulating a generalised statis-
tical mechanics, this poses a serious problem. Other
generalised information measures are better candi-
dates – we will describe some of those in the following.

2.2. The Tsallis entropies

The Tsallis entropies (also called q-entropies) are given
by the following expression [2]:

SðTÞq ¼
1

q� 1
1�

XW
i¼1

p
q
i

 !
: ð17Þ

One finds definitions similar to Equation (17) already
in earlier papers such as e.g. [27], but it was Tsallis in
his seminal paper [2] who for the first time suggested to
generalise statistical mechanics using these entropic

forms. Again q 2 R is a real parameter, the entropic
index. As the reader immediately sees, the Tsallis
entropies are different from the Rényi entropies: there
is no logarithm anymore. A relation between Rényi
and Tsallis entropies is easily derived by writing

X
i

p
q
i ¼ 1� ðq� 1ÞSðTÞq ¼ exp ðq� 1ÞSðRÞq

h i
; ð18Þ

which implies

SðTÞq ¼
1

q� 1
1� exp ðq� 1ÞSðRÞq

h i� �
: ð19Þ

Apparently the Tsallis entropy is a monotonous
function of the Rényi entropy, so any maximum of
the Tsallis entropy will also be a maximum of the
Rényi entropy and vice versa. But still, Tsallis
entropies have many distinguished properties that
make them a better candidate for generalising statis-
tical mechanics than, say, the Rényi entropies.

One such property is concavity. One easily verifies
that

@

@pi
SðTÞq ¼ �

q

q� 1
p
q�1
i ; ð20Þ

@2

@pi@pj
SðTÞq ¼ �qp

q�2
i dij: ð21Þ

This means S
ðTÞ
q is concave for all q 4 0 (convex for all

q 5 0). This property is missing for the Rényi
entropies. Another such property is the so-called
Lesche-stability, which is satisfied for the Tsallis
entropies but not satisfied by the Rényi entropies (see
Section 3.3 for more details).

The Tsallis entropies also contain the Shannon
entropy

S ¼ �
XW
i¼1

pi ln pi ð22Þ

as a special case. Letting q! 1 we have

S
ðTÞ
1 ¼ lim

q!1
SðTÞq ¼ S: ð23Þ

As expected from a good information measure, the
Tsallis entropies take on their extremum for the uniform
distribution pi ¼ 1/W 8i. This extremum is given by

SðTÞq ¼
W1�q � 1

1� q
; ð24Þ

which, in the limit q! 1, reproduces Boltzmann’s
celebrated formula S ¼ 1nW.

It is also useful to write down the definition of
Tsallis entropies for a continuous probability density
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p(u) with
R1
�1 pðuÞ du ¼ 1, rather than a discrete set of

probabilities pi with
P

i pi ¼ 1. In this case one defines

SðTÞq ¼
1

q� 1
1�

Z þ1
�1

du

s
ðspðuÞÞq

� 	
; ð25Þ

where again s is a scale parameter that has the same
dimension as the variable u. It is introduced for a
similar reason as before, namely to make the integral in
Equation (25) dimensionless so that it can be
subtracted from 1. For q ! 1 Equation (25) reduces
to the Shannon entropy

S
ðTÞ
1 ¼ S ¼ �

Z 1
�1

dupðuÞ lnðspðuÞÞ: ð26Þ

A fundamental property of the Tsallis entropies is
the fact that they are not additive for independent
subsystems. In fact, they have no chance to do so, since
they are different from the Rényi entropies, the only
solution to Equation (9).

To investigate this in more detail, let us consider
two independent subsystems I and II with probabilities
pIi and pIIj , respectively. The probabilities of joint
events i, j for the combined system I,II are pij ¼ pIi p

II
j .

We may then consider the Tsallis entropy for the first
system, denoted as SI

q, that of the second system,
denoted as SII

q , and that of the joint system, denoted as
SI;II
q . One has

SI;II
q ¼ SI

q þ SII
q � ðq� 1ÞSI

qS
II
q : ð27Þ

Proof of Equation (27): We may writeX
i

ðpIi Þ
q ¼ 1� ðq� 1ÞSI

q; ð28Þ

X
j

ðpIIj Þ
q ¼ 1� ðq� 1ÞSII

q ; ð29Þ

X
i;j

p
q
ij ¼

X
i

ðpIi Þ
q
X
j

ðpIIj Þ
q ¼ 1� ðq� 1ÞSI;II

q : ð30Þ

From Equations (28) and (29) it also follows thatX
i

ðpIi Þ
q
X
j

ðpIIj Þ
q ¼ 1� ðq� 1ÞSI

q � ðq� 1ÞSII
q

þ ðq� 1Þ2SI
qS

II
q : ð31Þ

Combining Equations (30) and (31) one ends up with
Equation (27). ¤

Apparently, if we put together two independent
subsystems then the Tsallis entropy is not additive but
there is a correction term proportional to q71, which

vanishes for q ¼ 1 only, i.e. for the case where the Tsallis
entropy reduces to the Shannon entropy. Equation (27)
is sometimes called the ‘pseudo-additivity’ property.

Equation (27) has given rise to the name non-
extensive statistical mechanics. If we formulate a
generalised statistical mechanics based on maximising
Tsallis entropies, then the (Tsallis) entropy of indepen-
dent systems is not additive (Figure 3). However, it
turns out that for special types of correlated sub-
systems, the Tsallis entropies do become additive if the
subsystems are put together [28]. This means, for these
types of correlated complex systems a description in
terms of Tsallis entropies in fact can make things
simpler as compared to using the Shannon entropy,
which is non-additive for correlated subsystems.

2.3. Landsberg–Vedral entropy

Let us continue with a few other examples of general-
ised information measures. Consider

SðLÞq ¼
1

q� 1

1PW
i¼1 p

q
i

� 1

 !
: ð32Þ

This measure was studied by Landsberg and Vedral
[29]. One immediately sees that the Landsberg–Vedral
entropy is related to the Tsallis entropy S

ðTÞ
q by

SðLÞq ¼
S
ðTÞ
qPW
i¼1 p

q
i

; ð33Þ

Figure 3. If the nonadditive entropies Sq are used to
measure information, then the information contents of two
systems I, II (blue) that are put together is not equal to the
sum of the information contents of the isolated single
systems. In other words, there is always an interaction
between the subsystems (red).
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and hence S
ðLÞ
q is sometimes also called normalised

Tsallis entropy. S
ðLÞ
q also contains the Shannon entropy

as a special case

lim
q!1

SðLÞq ¼ S ð34Þ

and one readily verifies that it also satisfies a
pseudo-additivity condition for independent systems,
namely

SðLÞI;IIq ¼ SðLÞIq þ SðLÞIIq þ ðq� 1ÞSðLÞIq SðLÞIIq : ð35Þ

This means that in the pseudo-additivity relation (27)
the role of (q71) and 7(q71) is exchanged.

2.4. Abe entropy

Abe [30] introduced a kind of symmetric modification
of the Tsallis entropy, which is invariant under the
exchange q  ! q71. This is given by

SAbe
q ¼ �

X
i

p
q
i � p

q�1

i

q� q�1
: ð36Þ

This symmetric choice in q and q71 is inspired by the
theory of quantum groups which often exhibits
invariance under the ‘duality transformation’ q ! q71.
Like Tsallis entropy, the Abe entropy is also concave.
In fact, it is related to the Tsallis entropy ST

q by

SAbe
q ¼

ðq� 1ÞST
q � ðq�1 � 1ÞST

q�1

q� q�1
: ð37Þ

Clearly the relevant range of q is now just the unit
interval (0,1], due to the symmetry q ! q71: Replacing
q by q71 in Equation (36) does not change anything.

2.5. Kaniadakis entropy

The Kaniadakis entropy (also called k-entropy) is
defined by the following expression [4]

Sk ¼ �
X
i

p1þki � p1�ki

2k
: ð38Þ

Again this is a kind of deformed Shannon entropy,
which reduces to the original Shannon entropy for
k ¼ 0. We also note that for small k, and by writing
q ¼ 1 þ k, q71 � 17k, the Kaniadakis entropy ap-
proaches the Abe entropy. Kaniadakis was motivated
to introduce this entropic form by special relativity:
the relativistic sum of two velocities of particles of
mass m in special relativity satisfies a similar relation as
the Kaniadakis entropy does, identifying k ¼ 1/mc.
Kaniadakis entropies are also concave and Lesche
stable (see Section 3.3).

2.6. Sharma–Mittal entropies

These are two-parameter families of entropic forms
[31]. They can be written in the form

Sk;r ¼ �
X
i

pri
pki � p�ki

2k

� 	
: ð39Þ

Interestingly, they contain many of the entropies
mentioned so far as special cases. The Tsallis entropy
is obtained for r ¼ k and q ¼ 1–2k. The Kaniadakis
entropy is obtained for r ¼ 0. The Abe entropy is
obtained for k ¼ 1

2 ðq� q�1Þ and r ¼ 1
2 ðqþ q�1Þ � 1.

The Sharma–Mittal entropies are concave and Lesche
stable.

3. Selecting a suitable information measure

3.1. Axiomatic foundations

The Khinchin axioms apparently are the right axioms
to obtain the Shannon entropy in a unique way, but
this concept may be too narrow-minded if one wants to
describe general complex systems. In physics, for
example, one may be interested in nonequilibrium
systems with a stationary state, glassy systems,
long transient behaviour in systems with long-range
interactions, systems with multifractal phase space
structure etc. In all these cases one should be open-
minded to allow for generalisations of Axiom 4, since it
is this axiom that is least obvious in the given
circumstances.

Abe [32] has shown that the Tsallis entropy follows
uniquely (up to an arbitrary multiplicative constant)
from the following generalised version of the Khinchin
axioms. Axioms 1–3 are kept, and Axiom 4 is replaced
by the following more general version:

New Axiom 4

SI;II
q ¼ SI

q þ SIIjI
q � ðq� 1ÞSI

qS
IIjI
q : ð40Þ

Here S
IIjI
q is the conditional entropy formed

with the conditional probabilities p(jji) and averaged
over all states i using the so-called escort distributions
Pi:

SIIjI
q ¼

X
i

PiSqðfpðjjiÞgÞ: ð41Þ

Escort distributions Pi were introduced quite generally
in [1] and are defined for any given probability
distribution pi by

Pi ¼
p
q
iP
i p

q
i

: ð42Þ
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For q ¼ 1, the new axiom 4 reduces to the old
Khinchin Axiom 4, i.e. SI;II

q ¼ SI
q þ S

IIjI
q . For indepen-

dent systems I and II, the new Axiom 4 reduces to the
pseudo-additivity property (27).

The meaning of the new Axiom 4 is quite clear. It is
a kind of minimal extension of the old Axiom 4: if we
collect information from two subsystems, the total
information should be the sum of the information
collected from system I and the conditional infor-
mation from system II, plus a correction term.
This correction term can a priori be anything, but we
want to restrict ourselves to information measures
where

SI;II ¼ SI þ SIIjI þ gðSI;SIIjIÞ; ð43Þ

where g(x, y) is some function. The property that the
entropy of the composed system can be expressed as a
function of the entropies of the single systems is
sometimes referred to as the composability property.
Clearly, the function g must depend on the entropies of
both subsystems, for symmetry reasons. The simplest
form one can imagine is that it is given by

gðx; yÞ ¼ const � xy; ð44Þ

i.e. it is proportional to both the entropy of the first
system and that of the second system. Calling the
proportionality constant (q7 1),we endupwith the new
Axiom 4.

It should, however, be noted that we may well
formulate other axioms, which then lead to other types
of information measures. The above generalisation is
perhaps the one that requires least modifications as
compared to the Shannon entropy case. But clearly,
depending on the class of complex systems considered,
and depending on what properties we want to describe,
other axioms may turn out to be more useful. For
example, Wada and Suyari [33] have suggested a set of
axioms that uniquely lead to the Sharma–Mittal entropy.

3.2. Composability

Suppose we have a given complex system which
consists of subsystems that interact in a complicated
way. Let us first analyse two subsystems I and II in an
isolated way and then put these two dependent systems
I and II together. Can we then express the generalised
information we have on the total system as a simple
function of the information we have on the single
systems? This question is sometimes referred to as the
composability problem.

The Tsallis entropies are composable in a very
simple way. Suppose the two systems I and II are not
independent. In this case one can still write the joint

probability pij as a product of the single probability pi
and conditional probability p(jji), i.e. the probability of
event j under the condition that event i has already
occurred is

pij ¼ pðijjÞpj: ð45Þ

The conditional Tsallis entropy associated with system
II (under the condition that system I is in state i) is
given by

SIIji
q ¼

1

q� 1
1�

X
j

pðjjiÞq
 !

: ð46Þ

One readily verifies the relation

SI
q þ

X
i

p
q
i S

IIji
q ¼ SI;II

q : ð47Þ

This equation is very similar to that satisfied by the
Shannon entropy inAxiom 4. In fact, the only difference
is that there is now an exponent q that wasn’t there
before. It means our collection of information is biased:
instead of weighting the events in system I with pi we
weight them with p

q
i . For q ¼ 1 the above equation of

course reduces to the fourth of theKhinchin axioms, but
only in this case. Hence, for general q 6¼ 1, the Tsallis
information is not independent of the way it is collected
for the various subsystems.

To appreciate the simple composability property of
theTsallis entropy, let us comparewithother entropy-like
functions, for example the Rényi entropy. For the Rényi
entropy there is no simple composability property similar
to Equation (47). Only the exponential of the Renyi
entropy satisfies a relatively simple equation, namely

exp ðq� 1ÞSðRÞI;IIq

� �
¼
X
i

p
q
i exp ðq� 1ÞSðRÞIIjiq

� �
:

ð48Þ

However, by taking the exponential one clearly
removes the logarithm in the definition of the Rényi
entropies in Equation (15). This means one is
effectively back to the Tsallis entropies.

3.3. Lesche stability

Physical systems contain noise. A necessary require-
ment for a generalised entropic form S[p] to make
physical sense is that it must be stable under small
perturbations. This means a small perturbation of the
set of probabilities p :¼ {pi} to a new set p0 ¼ {pi0}
should have only a small effect on the value Smax of
Sq[p] in the thermodynamic state that maximises the
entropy. This should in particular be true in the limit
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W ! ? (recall that W denotes the number of
microstates). The stability condition can be mathema-
tically expressed as follows [34].

Stability condition

For every e 4 0 there is a d 4 0 such that

jjp� p0jj1 � d) S½p� � S½p0�
Smax










 < e ð49Þ

for arbitrarily large W. Here jjAjj1 ¼
PW

i¼1 jAij denotes
the L1 norm of an observable A.

Abe [35] has proved that the Tsallis entropies are
Lesche stable, i.e. they satisfy Equation (49) for all q,
whereas the Rényi entropies and the Landsberg
entropies are not stable for any q 6¼ 1 (for a discrete
set of probabilities pi with W ! ?). This is an
important criterion to single out generalised entropies
that may have potential physical meaning. According
to the stability criterion, the Tsallis entropies are stable
and thus may be associated with physical states,
whereas the other two examples of entropic forms
have a stability problem. Kaniadakis entropies and
Sharma–Mittal entropies are also Lesche stable. Only
entropies that are Lesche stable are good candidates
for physically relevant information measures. For a
recent re-investigation of these types of stability
problems in a physical setting, see [36].

4. Maximising generalised entropies

4.1. A rigorous derivation of statistical mechanics?

The rigorous foundations of statistical mechanics are a
kind of miracle. There is little progress in rigorously
deriving statistical mechanics from the microscopic
classical Hamiltonian equations of motion, neither
there is a rigorous derivation starting from quantum
mechanics or quantum field theory. It is almost
surprising how well statistical mechanics works in
daily life, given its lack of rigorous derivation from
other microscopic theories.

The problem is that for a rigorous derivation of
statistical mechanics from dynamical systems theory one
needs the underlying dynamical system to be ergodic, and
even that is not enough: it should have the stronger
property of mixing. Ergodicity essentially means that
typical trajectories fill out the entire phase space (which
implies that for typical trajectories the time average is
equal to the ensemble average) and mixing means
asymptotic independence, i.e. the correlation function
of distant events decays to zero if the time difference
between the events goes to infinity. For strongly chaotic
dynamical systems (i.e. those exhibiting exponential
sensitive dependence on the initial conditions) one

normally expects the mixing property to hold (though
there are some mathematical subtleties here). From a
mathematical point of view, the mixing property is the
theoretical ingredient that is needed to guarantee the
approach to an equilibrium state in statistical mechanics.

Unfortunately, ergodicity and mixing can only be
rigorously proved for simple toy examples of dynami-
cal systems, for example the discrete-time map
xnþ1 ¼ 1� 2x2n with initial values in the interval
[71,1] or other very simple toy models (see, e.g. [1]).
For realistic systems of physical relevance, such as the
Hamiltonian equations of a large number of weakly or
strongly interacting particles, a rigorous mathematical
proof of the mixing property does not exist, and the
deeper reason why statistical mechanics works so well
in typical situations remains a miracle.

4.2. Jaynes’ information theory

In view of the fact that there are no rigorous
foundations of statistical mechanics, one usually sticks
to some simple principle such as the maximum entropy
principle in order to ‘derive’ it. Jaynes has given a
simple and plausible interpretation of the maximum
entropy principle [37]. His interpretation is purely
based on concepts from information theory, and
applicable to many problems, not only to equilibrium
statistical mechanics.

In simple words, the idea is as follows. Assume we
have only limited information on a system containing
many particles or constituents. We may know the
mean values of some observables Ms, s ¼ 1, . . . , s but
nothing else. For example, we may just know one such
quantity, the mean energy of all particles and nothing
else (s ¼ 1). What probability distributions pi should
we now assume, given that we have such limited
information on the system?

Suppose we measure information with some infor-
mation measure I({pi}) ¼: I[p]. Among all distributions
possible that lead to the above known mean values Ms

we should select those that donot contain anyunjustified
prejudices. In other words, our information measure for
the relevant probabilities should take on a minimum, or
the entropy (¼ negative information) should take a
maximum, given the constraints. For, if the information
associated with the selected probability distribution
does not take on aminimum, we have more information
than the minimum information, but this means we are
pre-occupied by a certain belief or additional informa-
tion, which we should have entered as a condition of
constraint in the first place.

Of course, if we have no knowledge on the system
at all (s ¼ 0), the principle yields the uniform
distribution pi ¼ 1/W, i ¼ 1, . . . ,W of events. For
this to happen, the information measure I[p] must only
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satisfy the second Khinchin axiom, nothing else. In
statistical mechanics, the corresponding ensemble is
the microcanonical ensemble.

If some constraints are given, we have to minimise
the information (¼ maximise the entropy) subject to the
given constraints. A constraintmeans that we know that
some observable ~M of the system, which takes on the
values Mi in the microstates i, takes on the fixed mean
value M. In total, there can be s such constraints,
corresponding to s different observables ~Ms:X

i

piM
s
i ¼Ms ðs ¼ 1; . . . ; sÞ: ð50Þ

For example, for the canonical ensemble of equili-
brium statistical mechanics one has the constraint that
the mean value U of the energies Ei in the various
microstates is fixed: X

i

piEi ¼ U: ð51Þ

We may also regard the fact that the probabilities pi
are always normalised as a constraint obtained for the
special choice ~M ¼ 1:X

i

pi ¼ 1: ð52Þ

To find the distributions that maximise the entropy
under the given constraints one can use the method of
Lagrange multipliers. One simply defines a function
C[p] which is the information measure under con-
sideration plus the condition of constraints multiplied
by some constants bs (the Lagrange multipliers):

C½p� ¼ I½p� þ
X
s

bs
X
i

piM
s
i

 !
: ð53Þ

One then looks for the minimum of this function in the
space of all possible probabilities pi. In practice, these
distributions pi are easily obtained by evaluating the
condition

@

@pi
C½p� ¼ 0 ði ¼ 1; . . . ;WÞ; ð54Þ

which means that C has a local extremum. We obtain

@

@pi
I½p� þ

X
s

bsM
s
i ¼ 0: ð55Þ

All this is true for any information measure I[p], it need
not be the Shannon information. At this point we see
why it is important that the information measure I[p]

is convex: we need a well-defined inverse function of
(@/@pi)I[p], in order to uniquely solve Equation (55) for
the pi. This means (@/@pi)I[p] should be a monotonous
function, which means that I[p] must be convex.

Note that Jaynes’ principle is (in principle) applic-
able to all kinds of complex systems, many different
types of observables, and various types of information
measures. There is no reason to restrict it to
equilibrium statistical mechanics only. It is generally
applicable to all kinds of problems where one has
missing information on the actual microscopic state of
the system and wants to make a good (unbiased) guess
of what is happening and what should be done. The
concept of avoiding unjustified prejudices applies in
quite a general way. An important question is which
information measure is relevant for which system.
Clearly, the Shannon entropy is the right information
measure to analyse standard types of systems in
equilibrium statistical mechanics. But other systems
of more complex nature can potentially be described
more effectively if one uses different information
measures, for examples those introduced in the
previous section.

4.3. Ordinary statistical mechanics

For ordinary statistical mechanics, one has
I½p� ¼

P
i pi ln pi and (@/@pi)I[p] ¼ 1 þ lnpi. For the

example of a canonical ensemble Equation (53) reads

C½p� ¼
X
i

pi ln pi þ a
X
i

pi þ b
X
i

piEi ð56Þ

and Equation (55) leads to

ln pi þ 1þ aþ bEi ¼ 0: ð57Þ

Hence, the maximum entropy principle leads to the
canonical distributions

pi ¼
1

Z
exp ð�bEiÞ: ð58Þ

The partition function Z is related to the Lagrange
multiplier a by

Z :¼
X
i

exp ð�bEiÞ ¼ exp ð1þ aÞ: ð59Þ

4.4. Generalised statistical mechanics

More generally we may start from a generalised
information measure of the trace form

I½p� ¼ �S½p� ¼
X
i

pihðpiÞ; ð60Þ
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where h is some suitable function, as introduced
before. Tsallis entropy, Abe entropy, Kaniadakis
entropy, Sharma–Mittal entropy and Shannon entropy
are examples that can all be cast into this general form,
with different functions h of course. Again let us
consider the canonical ensemble (the extension to
further constraints/other ensembles is straightfor-
ward). The functional to be maximised is then

C½p� ¼
X
i

pihðpiÞ þ a
X
i

pi þ b
X
i

piEi: ð61Þ

By evaluating the condition

@

@pi
C½p� ¼ 0 ð62Þ

we obtain

hðpiÞ þ pih
0ðpiÞ þ aþ bEi ¼ 0: ð63Þ

Defining a function g by

gðpiÞ :¼ hðpiÞ þ pih
0ðpiÞ; ð64Þ

we end up with

gðpiÞ ¼ �a� bEi: ð65Þ

Hence, if a unique inverse function g71 exists, we
have

pi ¼ g�1ð�a� bEiÞ ð65Þ

and this is the generalised canonical distribution of the
generalised statistical mechanics.

Let us consider a few examples of interesting
functions h. For the Shannon entropy one has of
course

hðpiÞ ¼ ln pi: ð67Þ

For the Tsallis entropy,

hðpiÞ ¼
p
q�1
i � 1

q� 1
¼: log2�qðpiÞ: ð68Þ

This is like a deformed logarithm that approaches the
ordinary logarithm for q ! 1. In fact, a useful
definition commonly used in the field is the so-called
q-logarithm defined by

logqðxÞ :¼ x1�q � 1

1� q
: ð69Þ

Its inverse function is the q-exponential

exp qðxÞ :¼ ð1þ ð1� qÞxÞ1=ð1�qÞ: ð70Þ

For the Kaniadakis entropy one has

hðpiÞ ¼
pki � p�ki

2k
¼: lnkðxÞ; ð71Þ

where the k-logarithm is defined as

lnkðxÞ ¼
xk � x�k

2k
: ð72Þ

Its inverse is the k-exponential

exp kðxÞ ¼ ð1þ k2x2Þ1=2 þ kx
� �1=k

: ð73Þ

Essentially, the generalised canonical distributions
obtained by maximising Tsallis entropies are given
by q-exponentials of the energy Ei and those by
maximising Kaniadakis entropies are k-exponentials.
Both decay with a power law for large values of the
energy Ei.

4.5. Nonextensive statistical mechanics

Let us consider in somewhat more detail a generalised
statistical mechanics based on Tsallis entropies. If we
start from the Tsallis entropies S

ðTÞ
q and maximise those

subject to suitable constraint, the corresponding
formalism is called nonextensive statistical mechanics.
We have

IðTÞq ½p� ¼ �SðTÞq ½p� ¼
�1
q� 1

1�
X
i

p
q
i

 !
; ð74Þ

thus

@

@pi
IðTÞq ½p� ¼

q

q� 1
p
q�1
i : ð75Þ

For a canonical ensemble Equation (55) leads to

q

q� 1
p
q�1
i þ aþ bEi ¼ 0: ð76Þ

Thus, the maximum entropy principle leads to general-
ised canonical distributions of the form

pi ¼
1

Zq
ð1� bðq� 1ÞEiÞ1=ðq�1Þ; ð77Þ

Contemporary Physics 505



where Zq is a normalisation constant. This is the
original formula Tsallis introduced in his paper [2].
These days, however, the convention has become to
replace the parameter q by q0 ¼ 27q and then rename
q0 ! q. That is to say, the generalised canonical
distributions in nonextensive statistical mechanics are
given by the following q-exponentials:

pi ¼
1

Zq
ð1þ bðq� 1ÞEiÞ�1=ðq�1Þ: ð78Þ

They live on a bounded support for q 5 1 and exhibit
power-law decays for q 4 1.

Starting from such a q-generalised approach, one
can easily derive formal q-generalised thermodynamic
relations. The details depend a bit on how the
constraints on energy are taken into account [3]. All
relevant thermodynamic quantities now get an index q.
Typical examples of such formulas are

1=T ¼ b ¼ @SðTÞq =@Uq; 8q ð79Þ
with

XW
i¼1
ðpiÞq ¼ ð �ZqÞ1�q; ð80Þ

Fq � Uq � TSq ¼ �
1

b
ðZqÞ1�q � 1

1� q
ð81Þ

and

Uq ¼ �
@

@b
ðZqÞ1�q � 1

1� q
; ð82Þ

where

ðZqÞ1�q � 1

1� q
¼ ð

�ZqÞ1�q � 1

1� q
� bUq ð83Þ

and

XW
i¼1

PiEi ¼
PW

i¼1 p
q
i EiPW

i¼1 p
q
i

¼ Uq: ð84Þ

There are some ambiguities on how to take into
account the constraints, using for example the original
pi or the escort distributions Pi, but we will not
comment on these technicalities here.

5. Some physical examples

5.1. Making contact with experimental data

It should be clear that direct physical measurements of
generalised entropy measures are impossible since
these are basically man-made information-theoretic

tools. However, what can be measured is the stationary
probability distribution of certain observables of a
given complex system, as well as possibly some
correlations between subsystems. As we have illu-
strated before, measured probability densities in some
complex system that deviate from the usual Boltzmann
factor exp(7bE) can then be formally interpreted as
being due to the maximisation of a more general
information measure that is suitable as an effective
description for the system under consideration.

In this approach one regards the complex system as
a kind of ‘black box’. Indeed many phenomena in
physics, biology, economics, social sciences, etc. are so
complicated that there is not a simple equation
describing them, or at least we do not know this
equation. A priori we do not know what is the most
suitable way to measure information for any output
that we get from our black box. But if a distribution pi
of some observable output is experimentally measured,
we can indirectly construct a generalised entropic form
that takes a maximum for this particular observed
distribution. This allows us to make contact with
experimental measurements, make some predictions,
e.g. on correlations of subsystems and translate the
rather abstract information theoretical concepts into
physical reality.

5.2. Statistics of cosmic rays

Our first example of making contact to concrete
measurements is cosmic ray statistics [8]. The Earth
is constantly bombarded with highly energetic parti-
cles, cosmic rays. Experimental data of the measured
cosmic ray energy spectrum are shown in Figure 4. It
has been known for a long time that the observed
distribution of cosmic rays with a given energy E

Figure 4. Measured energy spectrum of cosmic rays and a
fit by Equation (85) with q ¼ 1.215. The ‘knee’ and ‘ankle’
are structures that go beyond the simple model considered
here.
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exhibits strongly pronounced power laws rather than
exponential decay. It turns out that the observed
distribution is very well fitted over a very large range of
energies by the formula

pðEÞ ¼ C � E2

ð1þ bðq� 1ÞEÞ1=ðq�1Þ
: ð85Þ

Here E is the energy of the cosmic ray particles,

E ¼ c2p2x þ c2p2y þ c2p2z þm2c4
� �1=2

; ð86Þ

b ¼ (k ~T)71 is an effective inverse temperature variable,
and C is a constant representing the total flux rate. For
highly relativistic particles the rest mass m can be
neglected and one has E � cjpj. The reader immedi-
ately recognises the distribution (85) as a q-generalised
relativistic Maxwell–Boltzmann distribution, which
maximises the Tsallis entropy. The factor E2 takes
into account the available phase space volume. As seen
in Figure 4, the cosmic ray spectrum is very well fitted
by the distribution (85) if the entropic index q is chosen
as q ¼ 1.215 and if the effective temperature parameter
is given by k ~T ¼ b71 ¼ 107 MeV. Hence, the mea-
sured cosmic ray spectrum effectively maximises the
Tsallis entropy.

The deeper reason why this is so could be
temperature fluctuations during the production process
of the primary cosmic ray particles [8]. Consider quite
generally a superposition of ordinary Maxwell–Boltz-
mann distributions with different inverse temperatures b:

pðEÞ �
Z

fðbÞE2exp ð�bEÞ db: ð87Þ

Here f(b) is the probability density to observe a given
inverse temperature b. If f(b) is a Gamma distribution,
then the integration in Equation (87) can be performed
and one ends up with Equation (85) (see [8] for more
details). This is the basic idea underlying so-called
superstatistical models [12]: one does a kind of
generalised statistical mechanics where the inverse
temperature b is a random variable as well.

The effective temperature parameter ~T (a kind of
average temperature in the above superstatistical
model) is of the same order of magnitude as the so-
called Hagedorn temperature TH [38], an effective
temperature well known from collider experiments.
The fact that we get from the fits something of the
order of the Hagedorn temperature is encouraging.
The Hagedorn temperature is much smaller than the
centre-of-mass energy ECMS of a typical collision
process and represents a kind of ‘boiling temperature’
of nuclear matter at the confinement phase transition.

It is a kind of maximum temperature that can be
reached in a collision experiment. Even the largest
ECMS cannot produce a larger average temperature
than TH due to the fact that the number of possible
particle states grows exponentially.

Similar predictions derived from nonextensive
statistical mechanics also fit measured differential
cross-sections in eþe7annihilation processes and other
scattering data very well (see e.g. [16,17] for more
details). The hadronic cascade process underlying these
scattering data is not well understood, though it can be
simulated by Monte Carlo simulations. If we don’t
have any better theory, then the simplest model to
reproduce the measured cross-sections is indeed a
generalised Hagedorn theory where the Shannon
entropy is replaced by Tsallis entropy [17].

5.3. Defect turbulence

Our next example is the so-called ‘defect turbulence’.
Defect turbulence shares with ordinary turbulence only
the name as otherwise it is very different. It is a
phenomenon related to convection and has nothing to
do with fully developed hydrodynamic turbulence.
Consider a Rayleigh–Bénard convection experiment: a
liquid is heated from below and cooled from above.
For large enough temperature differences, interesting
convection patterns start to evolve. An inclined layer
convection experiment [9] is a kind of Rayleigh–
Bénard experiment where the apparatus is tilted by
an angle (say 308), moreover, the liquid is confined
between two very narrow plates. For large temperature
differences, the convection rolls evolve chaotically. Of
particular interest are the defects in this pattern, i.e.
points where two convection rolls merge into one (see
Figure 5). These defects behave very much like
particles. They have a well-defined position and
velocity, they are created and annihilated in pairs,
and one can even formally attribute a ‘charge’ to them:
there are positive and negative defects, as indicated by
the black and white boxes in Figure 5. But the theory
underlying these highly nonlinear excitations is pretty
unclear, they are like a ‘black box’ complex system
whose measured output is velocity.

The probability density of defect velocities has been
experimentally measured with high statistics [9]. As
shown in Figure 6, the measured distribution is well
fitted by a q-Gaussian with q � 1.45. The defects are
also observed to exhibit anomalous diffusion. Their
position X(t) roughly obeys an anomalous diffusion
law of the type

X2ðtÞ
� �

� ta; ð88Þ

with a � 1.3. The relation a � 2/(37q) can be
theoretically derived [9].
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Apparently defects are a very complicated non-
linear system with complicated interactions in a
nonequilibrium environment. Their dynamics is not
fully understood so far. But we see that effectively they
seem to behave like a gas of nonextensive statistical
mechanics that leads to q-exponential Boltzmann
factors rather than ordinary Boltzmann factors.

5.4. Optical lattices

Optical lattices are standing-wave potentials obtained
by superpositions of counter-propagating laser beams.
One obtains easily tunable periodic potentials in which
atoms can perform normal and anomalous quantum

transport processes. If the potential is very deep, there
is diffusive motion. If it is very shallow, there is ballistic
motion. In between, there is a regime with anomalous
diffusion that is of interest here.

Optical lattices can be theoretically described by a
nonlinear Fokker–Planck equation for the Wigner
function W(p,t) (the Wigner function is an important
statistical tool for the quantum mechanical description
in the phase space). The above Fokker–Planck
equation admits Tsallis statistics as a stationary
solution. This was pointed out by Lutz [10]. The
equation is given by

@W

@t
¼ � @

@p
½KðpÞW� þ @

@p
DðpÞ @W

@p


 �
; ð89Þ

where

KðpÞ ¼ � ap

1þ ðp=pcÞ2
ð90Þ

is a momentum-dependent drift force and

DðpÞ ¼ D0 þ
D1

1þ ðp=pcÞ2
ð91Þ

is a momentum-dependent diffusion constant. The
stationary solution is

WðpÞ ¼ C
1

ð1þ bðq� 1ÞEÞ1=ðq�1Þ
; ð92Þ

where

E ¼ 1

2
p2; ð93Þ

b ¼ a
D0 þD1

; ð94Þ

q ¼ 1þ 2D0

ap2c
: ð95Þ

So the optical lattice effectively maximises Tsallis
entropy in its nonequilibrim stationary state. Another
way to express the entropic index in terms of physical
parameters is the formula

q ¼ 1þ 44ER

U0
; ð96Þ

where ER is the so-called recoil energy and U0 is the
potential depth. These types of q-exponential predic-
tions have been experimentally confirmed [11].

Figure 5. Convection rolls and defects (black and white
boxes) as observed in the experiment of Daniels et al. [9]

Figure 6. Measured probability density of defect velocities
and fit with a q-Gaussian with q ¼ 1.45.
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Lutz’ microscopic theory thus yields a theory of the
relevant entropic index q in terms of system
parameters.

5.5. Epilogue

There are many other examples of physical systems
where generalised entropies yield a useful tool to
effectively describe the complex system under consid-
eration. Important examples include Hamiltonian
systems with long-range interactions that exhibit
metastable states [19,20] as well as driven nonequili-
brium systems with large-scale fluctuations of tempera-
ture or energy dissipation, i.e. superstatistical systems
[12,39,40]. The best way to define generalised entropies
for superstatistical systems is still the subject of
current research [6,41,42]. Superstatistical turbulence
models yield excellent agreement with experimental
data [13–15]. Generalised statistical mechanics methods
have also applications outside physics, for example in
mathematical finance [22,43], for traffic delay statistics
[44], for biological systems [7], or in the medical sciences
[24]. It is often in these types of complex systems that
one does not have a concrete equation of motion and
hence is forced to do certain ‘unbiased guesses’ on the
behaviour of the system – which for sufficiently
complex systems may lead to other entropic forms
than the usual Shannon entropy that are effectively
maximised. The beauty of the formalism is that it can
be applied to a large variety of complex systems from
different subject areas, without knowing the details of
the dynamics.

Note

1. An exception to this rule is the Fisher information, which
depends on gradients of the probability density but will
not be discussed here.
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