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Mesoscopic systems in a slowly fluctuating environment are often well described by
superstatistical models. We develop a generalized statistical mechanics formalism for
superstatistical systems, by mapping the superstatistical complex system onto a system
of ordinary statistical mechanics with modified energy levels. We also briefly review
recent examples of applications of the superstatistics concept for three very different
subject areas, namely train delay statistics, turbulent tracer dynamics and cancer
survival statistics.
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1. Introduction

Nonlinear dynamical processes often create a fluctuating environment for a given
mesoscopic system [1]. This leads to mixing of the mesoscopic dynamics and that
of the environment. If there is sufficient time-scale separation, then very often
superstatistical models yield a good effective description. The superstatistics
concept has established itself as a powerful tool to describe general classes
of complex systems [1-16]. The basic idea is to characterize the complex
system under consideration by a superposition of several statistics on different
time scales; for example, one corresponding to ordinary statistical mechanics
(on a mesoscopic level modelled by a Langevin equation) and the other one
corresponding to a slowly varying inverse temperature field g(z, t) or some other
relevant parameter.

There may be either spatial or temporal variations of the environment. The
environment is represented by a suitable parameter entering the stochastic
differential equation describing the mesoscopic system. The superstatistics
concept can be applied in quite a general way, and a couple of interesting
applications for a variety of complex systems have been pointed out recently
[17-28]. Essential for this approach is the existence of sufficient time-scale
separation so that the system has enough time to relax to a local equilibrium
state and to stay within it for some time.
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The stationary distributions of superstatistical systems, obtained by averaging
over all §, typically exhibit non-Gaussian behaviour with fat tails, which can be
a power law, or a stretched exponential, or other functional forms as well [3]. In
general, the superstatistical parameter § need not be an inverse temperature
but can be an effective parameter in a stochastic differential equation, a
volatility in finance or just a local variance parameter extracted from some
experimental time series. There are interesting applications in hydrodynamic
turbulence [2,19,29,30], defect turbulence [17], cosmic rays [25] and other
scattering processes in high-energy physics [31,32], solar flares [18], share price
fluctuations [26,27,33,34], random matrix theory [20,21,35], random networks [36],
multiplicative-noise stochastic processes [37], wind velocity fluctuations [23,24],
hydroclimatic fluctuations [22], the statistics of train departure delays [38] and
survival statistics of cancer patients [39]. Maximum entropy principles can be
generalized in a suitable way to yield the relevant probability distributions that
characterize the various important universality classes in superstatistics [5,40-43].

In this paper, we shall develop a new theoretical approach to superstatistics,
by formally mapping the superstatistical system onto a system of ordinary
statistical mechanics where the energy levels are modified in a suitable way.
This approach yields a new interesting theoretical tool to further develop the
generalized statistical mechanics of superstatistical complex systems, and is
described in detail in §3. We also briefly review some recent examples of
applications of superstatistical techniques. Our three examples, all from very
different subject areas, are train delays on the British railway network, velocity
signals in hydrodynamic turbulence and the survival statistics of cancer patients.

2. Reminder: what is superstatistics?

The concept is best illustrated by starting with a particular example
of superstatistics; in fact, the one that was considered first in Wilk &
Wlodarczyk [10] and Beck [11]. Consider the following well-known formula:

o 1
—BE _
JO dﬂf(ﬂ)e = (1+(q_ 1)60E)1/(q_1)7

(2.1)

is the x? (or I') probability distribution, and 8y and ¢ are parameters (g > 1).
We see that averaged ordinary Boltzmann factors e ¥ with x2-distributed 8
yield an effective Boltzmann factor of g-exponential form, given by the right-
hand side of equation (2.1). The physical interpretation is that non-equilibrium
systems with temperature fluctuations give rise to an effective description in terms
of more general Boltzmann factors. In Wilk & Wlodarczyk [10] and Beck [11],
the x2-distribution was advocated for f(8), because at that time the aim was
to better understand g¢-statistics [44] from a dynamical point of view. General
f(B) was then suggested by Beck & Cohen [1]. In that paper also the name
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Figure 1. A spatially inhomogeneous situation of mesoscopic systems (sketched as circles) embedded
into a fluctuation environment with different inverse temperatures ;. A Brownian particle moves
through the different regions with different inverse temperatures. (Online version in colour.)

‘superstatistics’ was created. This name is simply an abbreviation for the fact
that there is a superposition of two (or several) statistics. In no way does this
name indicate that this type of statistics is ‘superior’ to others.

One can also construct dynamical realizations of superstatistics in terms of
Langevin equations with parameters that fluctuate on large time scales [11]. These
local Langevin equations decribe the mesoscopic system under consideration. The
situation is sketched in figure 1. The simplest example would be locally a linear
Langevin equation

=—yv+0aL(t), (2.3)

with slowly fluctuating parameters v, o. Here, L(t) denotes Gaussian white noise.
This describes the velocity v of a Brownian particle that moves through spatial
‘cells” with different local 8 :=1v/(2¢?) in each cell (a non-equilibrium situation).
If some probability distribution f(8) of the inverse temperature § for the various
cells is given, then the conditional probability given some fixed 8 in a given cell
is Gaussian, p(v|g) ~ e~ (1/2)8v’ the Jomt probablhty is p(v,B) =f(B)p(v|B) and
the marginal probability is p(v Io p(v|B)dB. Integration over § effectively
yields Boltzmann factors that are more general than Gaussian distributions,
which depend on the specific properties of f(B). If there are only finitely many
cells, then the integral is understood to approximate the average over a large
number of cells.

The principal idea of superstatistics is to generalize this example to much
broader systems. For example, 6 need not be an inverse temperature but can
in principle be any intensive parameter. Most importantly, one can generalize
to general probability densities f(B) and general Hamiltonians. In all cases, one
obtains a superposition of two different statistics: that of 8 and that of ordinary
statistical mechanics. Superstatistics hence describes complex non-equilibrium
systems with spatio-temporal fluctuations of an intensive parameter on a large
scale. The effective Boltzmann factors B(FE) for such systems are given by

B(E)= | r(e)e " a. (2.4)

0
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A lot of research has been done in this direction in recent years. If there is
locally Gaussian behaviour, then the theory of superstatistics is clearly related
to the theory of Gaussian-scale mixtures. More generally, one can prove a
superstatistical generalization of fluctuation theorems [4], develop a variational
principle for the large-energy asymptotics of general superstatistics [3], proceed
to generalized entropies for general superstatistics [5,40,43], let the g-values in
equation (2.1) fluctuate as well [7] and prove superstatistical versions of a central
limit theorem [8]. There are also relations with fractional reaction equations [45],
random matrix theory [20,21,35], networks [36] and path integrals [9]. Very
useful for practical applications is a superstatistical approach to time-series
analysis [2,24,27]. Applications have been pointed out for three-dimensional
hydrodynamic turbulence [2,19,29,30], wind velocity fluctuations [23,24], finance
and economics [26,28,33,34], blinking quantum dots [46], cosmic ray statistics [25]
and quite generally scattering processes in particle physics [31,32]. The concept
has also been useful to analyse hydroclimatic fluctuations [22] as well as the
statistics of train delays on the British railway network [38]. There are also
medical applications [39].

3. Mapping superstatistics onto conventional statistical mechanics

Consider a system of ordinary statistical mechanics with energy levels E; of
microstate 7. We are looking at a canonical ensemble and a priori the inverse
temperature § is fixed. Now look at identical copies of the system but with
different temperatures §; in each spatial cell j, at a given snapshot of time. This
is a non-equilibrium situation.

Let Bg :fgo f(B)BdB be the average inverse temperature. We may formally
consider a super-Hamiltonian describing the entire system, which in the different

spatial cells has effective energy levels E;, by writing

BoE;=B,E:. (3.1)
Apparently, this means the super-Hamiltonian has energy levels E~'§j ) given by
i =PBip, (3.2)
Bo

in cell 7.
Since ordinary statistical mechanics is valid for arbitrary energy levels, in
particular also for the EEJ), we may now do ordinary statistical mechanics for

the super-Hamiltonian and introduce the partition function Z(8) of the entire
system as

2(80) =Y e (33)
74t

= Z e_ﬂjEj’ (34)
i

~ J( £(8)eF dB, (3.5)

)
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where, in the last step, the sum over j is approximated by an integral. Since
20 . . .. . . .
Z(Bo)=2_;, e=f0E" is an ordinary partition function (though with exotic, locally
modified, energy levels), it is now possible to do ordinary statistical mechanics
for this superstatistical non-equilibrium system, with all the known formulae.

We regard the free energy of the superstatistical system as a function of the
mean inverse temperature By and define it as

F(60) = —% log Z(6). (3.6)

In the statistical mechanics formalism, it is often convenient to work with the
function ¥ (6y) := BoF(Bo). Defining kTy = 1/6y, one has

F=U-"1T,8 (3.7)
and
Y =8,U-385. (3.8)

But one has to be careful here what the meaning of the symbols U and § is: U
is now the mean energy of the energy levels F;, rather than F;, and indeed this
means that U is a global mean energy corresponding to the entire superstatistical
system consisting of many cells. One has

U= Z pE]’)EEJ) (3.9)
Jyt
- p(.j)&E- (3.10)
— 1 By '
],Z
1 o0
~ EL A6 (8)8 Ui (6), (3.11)

where U (8) = Zp ; 1s the local internal energy in a cell of inverse
temperature §. The entropy is still given by the Boltzmann—Gibbs—Shannon form,

but formed with the exotic energy levels E~£J ),

S=-— kZp logpz (3.12)

==k %ﬁ” (—log Z(80) — Bo ) (3.13)
gyl

=BoU + log Z(Bo). (3.14)

In this way, we have formally mapped the superstatistical non-equilibrium
system onto an (exotic) equilibrium system of ordinary statistical mechanics
with an average inverse temperature By and a new type of Hamiltonian,
corresponding to the energy levels E . We should remark that the above idea of
mapping superstatistics onto the statlstlcal mechanics of an exotic Hamiltonian is
completely new and different from previous attempts of developing a generalized
statistical mechanics for superstatistical systems [5,27,40,41].
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4. Possible superstatistical distributions f(3)

The distribution f(8) is determined by the dynamical large-scale structure of the
complex system under consideration. There have been attempts to derive the
specific form of f(B) relevant for a given complex system with given constraints
from a generalized maximum entropy principle. We do not elucidate this further
here but refer to Van der Straeten & Beck [43] and references therein for further
details. Actually, what we want to do here is to proceed to practical applications.
The relevant question is what type of f(8) is typically seen for experimental data
as generated by a generic complex system.

There seem to be three different superstatistics that are of utmost
importance [2]. These are (i) y?-superstatistics (= Tsallis statistics), (ii) inverse
x2-superstatistics, and (iii) lognormal superstatistics.

In case (i), f(B) is given by the I' distribution

£(8) = 1 (ﬂ)m /21 g=nB/26 (4.1)
T (3) \28 C |

where again (3 is the average of 8. This generates generalized Boltzmann factors
B(F) that decay with a power law; n is a parameter characterizing the number
of degrees of freedom.

In case (ii), f(B) is given by

n/2
f(ﬂ) _ sz(;) (%30) 677L/272e7m80/26' (4'2)
2

In this case, the generalized Boltzmann factors B(E) = [ f(8)e ¥ decay as e BVE
for large F.
Finally, in case (iii), f(8) is given by the lognormal distribution

I )

exp
V2msB 25s?

f(8)= , (4.3)

where u and s are suitable parameters. In the remaining sections, we briefly
describe one example for each of these three different cases.

5. Train departure delays

Traffic delays on the British railway network are reasonably well described by
x2-superstatistics. The probability density of observed train departure delays of
length ¢ has been analysed in detail by Briggs & Beck [38]. Millions of departure
times were automatically stored and evaluated. The zeroth-order theoretical
model for the waiting time ¢ is a Poisson process which predicts that the waiting
time distribution until the train finally departs is P(¢|8) = Be ™!, where 8 is some
parameter. But this does not agree with the actually observed data [38]. A much
better fit is given by a g-exponential (figure 2).
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Figure 2. Observed departure delay statistics on the British railway network (data from Briggs &
Beck [38]). The solid line is a g-exponential fit as given by equation (5.2). (Online version in colour.)

What may cause this power law that fits the data? The idea is that there
are fluctuations in the parameter § as well. These fluctuations describe large-
scale temporal or spatial variations of the British rail network environment,
which take place on a much larger time scale than the actual train departures.
B-Fluctuations are, for example, produced at the beginning of the holiday season
with lots of passengers, or if there are problems with the track or bad weather
conditions. Also there can be extreme events such as derailments, industrial
action, terror alerts, etc. The observed long-term distribution of train delays is
then a mixture of exponential distributions where the parameter § fluctuates,

e¢]

o0 = " H8)p(118) as=|" o). (5.1)

0 0
For a y2-distributed 8 with n degrees of freedom, one obtains
p(t)=C-(1+b(g—1))"077, (5:2)
where ¢=1+2/(n+2), b=20y/(2 — ¢) and C is a normalization constant.

6. Turbulent flows

Various aspects of hydrodynamic turbulence are quite well described by lognormal
superstatistics. In this case, the mesoscopic local dynamics corresponds to a single
tracer particle that is advected by the turbulent flow. The environment of the
tracer particle changes. For a while it will see regions of strong turbulent activity,
then it will move on to calmer regions, just to continue in yet another region of
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strong activity, and so on. This is a superstatistical dynamics similar to figure 1. In
‘Lagrangian turbulence’, one is interested in the statistics of velocity differences
u(t) :=v(t+ 1) — v(t) of the particle on a small time scale, 7. For 7 — 0, this
velocity difference becomes the local acceleration a(t) = u(t)/7. A superstatistical
Lagrangian model for three-dimensional velocity differences of the tracer particle
has been developed by Beck [29]. The mesoscopic dynamics is a superstatistical
Langevin equation of the form

u=—yu+ Bn x u+ aL(t). (6.1)

Here v and B are constants. The term proportional to B introduces some
rotational movement of the particle, simulating vortices in the flow. The noise
strength ¢ and the unit vector n evolve stochastically on a large time scale, T, and
T, respectively. T} is of the same order of magnitude as the integral time scale T7,
whereas y~! is of the same order of magnitude as the Kolmogorov time scale 7,).
In this model, the Reynolds number R, is basically given by the time scale ratio
Toy~ Tp/Ty~ R; > 1. The time scale T, > 7, describes the average life time
of a region of given vorticity surrounding the test particle. Further details are
described by Beck [29].

The parameter 8 is again defined to be §:=2y/¢?, but it does not have
the meaning of a physical inverse temperature in the flow. Rather, one has
B~ ~v'/2(e)~1/2¢, where v is the kinematic viscosity and (e) is the average energy
dissipation; € is known to fluctuate in turbulent flows. Kolmogorov’s theory
of 1961 suggests a lognormal distribution for e, which leads us to lognormal
superstatistics. For very small 7, the one-dimensional acceleration component
of the particle is given by a, = u,/7 and one gets the 1-point distribution

T 1/2 B (log E)z —(1/2)8r%a?
p(a;) = s ), dﬁﬁ expy——o5 (€ = (6.2)
s 2s

which agrees very well with experimentally measured data of the acceleration
statistics (figure 3).

The three-dimensional superstatistical model of Beck [29] predicts correlations
between the three acceleration components. An intrinsic property of the model
is that the acceleration a, in the a-direction is not statistically independent
of the acceleration a, in the y-direction. We may study the ratio R:=
p(az, ay)/(p(a;)p(ay)) of the joint probability p(a,, a,) to the product of 1-point
probabilities p(a,) and p(a,). For independent acceleration components, this ratio
would always be given by R =1, whereas the three-dimensional superstatistical
model yields the prediction

J‘O 6f —(1/2)87%( tz +a,/ dﬁ
J‘ BU2f(8)e=(1/2) 5r2a2 dﬁf BL2f(B)e~ (/26 a] a8’
The trivial result R =1 is obtained only for f(8) = 6(6 — Bo), i.e. no fluctuations
in the parameter 8 at all. Figure 4 shows R := p(a,, a,)/(p(a;)p(a,)) as predicted

by lognormal superstatistics: experimental measurements of acceleration
correlations yield very similar results to those predicted above [29,47].

(6.3)
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Figure 3. Measured probability density of small-scale velocity differences in Lagrangian turbulence
(data from [47]) and a fit of the form (6.2) (see [29] for more details).
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Figure 4. Predicted shape of correlations between acceleration components in a turbulent flow as
given by equation (6.3). f(8) is the lognormal distribution.

7. Survival statistics of cancer patients

Data of the survival statistics of cancer patients can be fitted well using models
based on inverse x?-superstatistics.

A superstatistical model of the progression of metastasis and the corresponding
survival statistics of cancer patients has been developed by Leon Chen &
Beck [39]. The final result that comes out of that model is the following prediction
for the probability density function of survival time ¢ of a randomly chosen patient
who is diagnosed with cancer at ¢ =0:

oo yn—19n,—21 n/2
p( ) ZJ t e Ag(nAO/Q) A—n/Q—Qe(—n/\OﬂA) da. (71)
o I'(n) I'(n/2)
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Figure 5. Survival time statistics of breast cancer patients diagnosed with cancer at ¢ =0, in linear
and logarithmic plots. The solid line is the superstatistical model prediction [39]. (a) linear, (b)
log, (¢) semi-log and (d) log-log. (Online version in colour.)

This can also be written as

nlo 3n/4 3n/4-1 nio
p(t) = RS (t) [—VQHMSKH/QH(\/QnAOt) - Kn/g(\/2n/10t):|, (7.2)

I'(n)I(n/2) \2

where K,(z) is the modified Bessel function. Note that this is a case of x*-
superstatistics. The role of the parameter § is now played by the parameter A,
which in a sense describes how aggressively the cancer propagates. This parameter
has fluctuations from patient to patient.

The above formula based on inverse y?-superstatistics is in good agreement
with real data of the survival statistics of breast cancer patients in the USA. The
superstatistical formula fits the observed distribution very well, in both linear
and logarithmic plots (figure 5).

When looking at the time scales in figure 5, one should keep in mind that
the data shown are survival distributions conditioned on the fact that death
occurs from cancer. Many patients, in particular if they are diagnosed at an
early stage and treated accordingly, will live a long healthy life and will die
from something other than cancer. These cases are not included in the data
shown above.
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8. Conclusion and outlook

In this paper, we have dealt with mesoscopic and other complex systems that
are embedded into a temporally changing or spatially fluctuating environment.
If there is sufficient time-scale separation, then a mixture of different statistics
(a superstatistical description) is an appropriate method to describe these types
of complex systems. Basically, this means that one mixes ordinary statistical
mechanics with another statistics of, for example, local temperature fluctuations.

In the first part of the paper, we have pointed out how superstatistical complex
systems can be mapped onto systems of ordinary statistical mechanics. The key
point is that one deforms the effective energy levels in a suitable way and then
applies the well-known techniques of ordinary statistical mechanics to this (exotic
type of) super-Hamiltonian.

In the second part of the paper, we summarized a few recent applications
of the superstatistical approach to real-world problems, which covered quite a
range of different subject areas. We studied train delay statistics, turbulent tracer
dynamics and survival statistics of cancer patients. Many other areas may benefit
from a generalized statistical mechanics formalism for superstatistical systems
as well.

In a year when there is a good chance to finally experimentally confirm the long-
awaited Higgs particle, it might be appropriate to end this paper by mentioning
that scattering processes in high-energy physics can also be well described by
superstatistical models. The experimentally observed power laws of differential
cross sections and energy spectra at very high energies have been modelled
in terms of superstatistical generalized statistical mechanics [25,31,32,48].
Superstatistical techniques have also been recently used to describe the space—
time foam in string theory [49], and a generalized statistical mechanics model
underlying chaotic types of vacuum fluctuations yields a Higgs mass prediction
of 154 GeV [50,51]. It seems that there is a lot of scope for relevant contributions of
generalized statistical mechanics in high-energy physics and quantum field theory.

I am very grateful to Dr Hugo Touchette for providing figure 1.
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