

Chapter 2

#P-completeness

Classical complexity theory is mainly concerned with complexity of decision problems,
e.g., “Is a given graph G Hamiltonian?”1 Formally, a decision problem is a predicate ϕ :
Σ∗ → {0, 1}, where Σ is some finite alphabet in which problem instances are encoded.2

Thus, x ∈ Σ∗ might encode a graph Gx (as an adjacency matrix, perhaps) and ϕ(x) is
true iff Gx is Hamiltonian.

The most basic distinction in the theory of computational complexity is between
predicates that can be decided in time polynomial in the size |x| of the instance, and
those that require greater (often exponential) time. This idea is formalised in the com-
plexity class P of polynomial-time predicates. A predicate ϕ belongs to the complexity
class P (and we say that ϕ is polynomial time) if it can be decided by a deterministic
Turing machine in time polynomial in the size of the input; more precisely, there is a
deterministic Turing machine T and a polynomial p such that, for every input x ∈ Σ∗,
T terminates after at most p(|x|) steps, accepting if ϕ(x) is true and rejecting otherwise.3

Before proceeding, a few vaguely philosophical remarks addressed to readers who have
only a passing acquaintance with computational complexity, with the aim of making
the chapter more accessible. One motivation for using a robust class of time bounds
(namely, all polynomial functions) in the above definition is to render the complexity
class P independent of the model of computation. We ought to be able to substitute any
“reasonable” sequential model of computation for the Turing machine T in the definition
and end up with the same class P. By sequential here, we mean that the model should
be able to perform just one atomic computational step in each time unit. The “Extended
Church-Turing Thesis” is the assertion that the class P is independent of the model of
computation used to define it. It is a thesis rather than a theorem, because we cannot
expect to formalise the condition that the model be “reasonable”. The upshot of all this
is that the reader unfamiliar with the Turing machine model should mentally replace it by
some more congenial model, e.g., that of C programs. (For a more expansive treatment
of the fundamentals of machine-based computational complexity, refer to standard texts
by Papadimitriou [67] or Garey and Johnson [36].)

The important complexity class NP is usually defined in terms of non-deterministic

1A closed path in G is one that returns to its starting point; a simple path is one in which no vertex
is repeated; a Hamilton cycle in G is a simple closed path that visits every vertex in G. A graph G is
Hamiltonian if it contains a Hamilton cycle.

2Σ∗ denotes the set of all finite sequences of symbols in Σ.
3Here, |x| denotes the length of the word x.

11

12 Chapter 2: #P-completeness

Turing machines. Indeed, NP stands for “N[ondeterministic] P[olynomial time]”. In the
interests of accessibility, however, we take an alternative but equivalent approach. We
say that a predicate ϕ : Σ∗ → {0, 1} belongs to the class NP iff there exists a polynomial-
time “witness-checking” predicate χ : Σ∗ × Σ∗ → {0, 1} and a polynomial p such that,
for all x ∈ Σ∗,

(2.1) ϕ(x) ⇐⇒ ∃w ∈ Σ∗. χ(x,w) ∧ |w| ≤ p(|x|) .

(Since the term “polynomial time” has been defined only for monadic predicates, it can-
not strictly be applied to χ. Formally, what we mean here is that there is a polynomial-
time Turing machine T that takes an input of the form x$y — where x, y ∈ Σ∗ and
$ /∈ Σ is a special separating symbol — and accepts iff χ(x, y) is true. The machine T
is required to halt in a number of steps polynomial in |x$y|.)

Example 2.1. Suppose x encodes an undirected graph G, y encodes a subgraph H of G,
and χ(x, y) is true iff y is a Hamilton cycle in G. The predicate χ is easily seen to be
polynomial time: one only needs to check that H is connected, that H spans G, and that
every vertex of H has degree two. Since χ is clearly a witness-checker for Hamiltonicity,
we see immediately that the problem of deciding whether a graph is Hamiltonian is in
the class NP. Many “natural” decision problems will be seen, on reflection, to belong to
the class NP.

As is quite widely known, it is possible to identify within NP a subset of “NP-
complete” predicates which are computationally the “hardest” in NP. Since we shall
shortly be revisiting the phenomenon of completeness in the context of the counting
complexity class #P, just a rough sketch of how this is done will suffice. The idea is
to define a notion of reducibility between predicates — polynomial-time many-one (or
Karp) reducibility — that allows us to compare their relative computational difficulty.
A predicate ϕ is NP-hard if every predicate in NP is reducible to ϕ; it is NP-complete
if, in addition, ϕ ∈ NP.

Logically, there are two possible scenarios: either P = NP, in which case all predicates
in NP are efficiently decidable, or P ⊂ NP, in which case no NP-complete predicate is
decidable in polynomial time. Informally, this dichotomy arises because the complete
problems are the hardest in NP; formally, it is because the complexity class P is closed
under polynomial-time many-one reducibility. Since the former scenario is thought to be
unlikely, NP-completeness provides strong circumstantial evidence for intractability. The
celebrated theorem of Cook provides a natural example of an NP-complete predicate,
namely deciding whether a propositional formula Φ in CNF has a model, i.e., whether
Φ is satisfiable. For convenience, this decision problem is referred to as “Sat”.

2.1 The class #P

Now we are interested extending the above framework to counting problems — e.g.,
“How many Hamiltonian cycles does a given graph have?” — which can be viewed as
functions f : Σ∗ → N mapping (encodings of) problem instances to natural numbers.
The class P must be slightly amended to account for the fact we are dealing with functions
with codomain N rather than predicates. A counting problem f : Σ∗ → N is said to

The class #P 13

belong to the complexity class4 FP if it is computable by a deterministic Turing machine
transducer5 in time polynomial in the size of the input. As we saw in Chapter 1 (see
Theorems 1.1 and 1.11), the following problems are in FP:

Name. #SpanningTrees

Instance. A graph G.

Output. The number of spanning trees in G.

Name. #PlanarPM

Instance. A planar graph G.

Output. The number of perfect matchings in G.

The analogue of NP for counting problems was introduced by Valiant [76]. A counting
problem f : Σ∗ → N is said to belong to the complexity class #P if there exist a
polynomial-time predicate χ : Σ∗ × Σ∗ → {0, 1} and a polynomial p such that, for all
x ∈ Σ∗,

(2.2) f(x) =
∣∣{w ∈ Σ∗ : χ(x,w) ∧ |w| ≤ p(|x|)

}∣∣ .
The problem of counting Hamilton cycles in a graph is in #P by identical reasoning to
that used in Example 2.1. The complexity class #P is very rich in natural counting
problems. Note that elementary considerations entail FP ⊆ #P.

Now, how could we convince ourselves that a problem f is not efficiently solvable?
Of course, one possibility would be to prove that f /∈ FP. Unfortunately, such absolute
results are beyond the capabilities of the current mathematical theory. Still, as in the case
of decision problems, it is possible to provide persuasive evidence for the intractability
of a counting problem, based on the assumption that there is some problem in #P that
is not computable in polynomial time, i.e., that FP 6= #P.6 With this in mind, we are
going to define a class of “most difficult” problems in #P, the so-called #P-complete
problems, which have the property that if they are in FP, then #P collapses to FP. In
other words, if FP ⊂ #P then no #P-complete counting problem is polynomial-time
solvable. For this purpose, we seem to need a notion of reducibility that is more general
than the usual many-one reducibility.

Given functions f, g : Σ∗ → N, we say that g is polynomial-time Turing (or Cook)
reducible to f , denoted g ≤T f , if there is a Turing machine with an oracle7 for f that
computes g in time polynomial in the input size. The relation ≤T is transitive; moreover,

(2.3) f ∈ FP ∧ g ≤T f ⇒ g ∈ FP .

4Standing for “F[unction] P[olynomial time]” or something similar.
5That is, by a TM with a write-only output tape.
6This is clearly the counting analogue of the notorious P 6= NP conjecture. Note, however, that

FP 6= #P might hold even in the unlikely event that P = NP!
7An oracle for f is an addition to the Turing machine model, featuring a write-only query tape and a

read-only response tape. A query q ∈ Σ∗ is first written onto the query tape; when the machine goes into
a special “query state” the query and response tapes are both cleared and the response f(x) written to
the response tape. The oracle is deemed to produce the response in just one time step. In conventional
programming language terms, an oracle is a subroutine or procedure, where we discount the time spent
executing the body of the procedure.

14 Chapter 2: #P-completeness

A function f is #P-hard if every function in #P is Turing reducible to f ; it is #P-
complete if, in addition, f ∈ #P. Just as with the class NP, we have a dichotomy: either
FP = #P or no #P-complete counting problem is polynomial-time solvable. Formally,
this follows from (2.3), which expresses the fact that FP is closed under polynomial-time
Turing reducibility.

What are examples of #P-complete problems? For one thing, the usual generic
reduction of a problem in NP to Sat used to prove Cook’s theorem is “parsimonious”,
i.e., it preserves the number of witnesses (satisfying assignments in the case of Sat). It
follows that #Sat is #P-complete:

Name. #Sat

Instance. A propositional formula Φ in conjunctive normal form (CNF).

Output. The number of models of (or satisfying assignments to) Φ.

More generally, it appears that NP-complete decision problems tend to give rise to #P-
complete counting problems. To be a little more precise: any polynomial-time witness
checking function χ gives rise to an NP decision problem Π via (2.1) and a corresponding
counting problem #Π via (2.2). Empirically, whenever the decision problem Π is NP-
complete, the corresponding counting problem #Π is #P-complete. Simon [70] lists
many examples of this phenomenon, and no counterexamples are known. What he
observes is that the existing reductions used to establish NP-completeness of decision
problems Π are often parsimonious and hence establish also #P-completeness of the
corresponding counting problem #Π. When the existing reduction is not parsimonious
it can be modified so that it becomes so.

Open Problem. Is it the case that for every polynomial-time witness-checking pred-
icate χ, the counting problem #Π is #P-complete whenever the decision problem Π
is NP-complete? I conjecture the answer is “no”, but resolving the question may be
difficult. Note that a negative answer could only reasonably be established relative to
some complexity theoretic assumption, since it would entail FP ⊂ #P. Indeed, if FP
were to equal #P then every function in #P would be trivially #P-complete.

2.2 A primal #P-complete problem

What makes the theory of #P-completeness interesting is that the converse to the above
conjecture is definitely false; that is, there are #P-complete counting problems #Π
corresponding to easy decision problems Π ∈ P. A celebrated example [76] is #Bipar-
titePM, that has an alternative formulation as 0,1-Perm:

Name. #BipartitePM

Instance. A bipartite graph G.

Output. The number of perfect matchings in G.

Name. 0,1-Perm

Instance. A square 0, 1-matrix A = (aij : 0 ≤ i, j < n).

A primal #P-complete problem 15

Output. The permanent

perA =
∑
σ∈Sn

n−1∏
i=0

ai,σ(i)

of A. Here, Sn denotes the symmetric group, i.e., the sum is over all
n! permutations of [n].

To see the correspondence, suppose, for convenience, that G has vertex set [n] + [n], and
interpret A as the adjacency matrix of G; thus aij = 1 if (i, j) is an edge of G and aij = 0
otherwise. Then perA is just the number of perfect matchings in G. In particular, the
following theorem implies that planarity (or some slightly weaker assumption) is crucial
for the Kasteleyn result (Theorem 1.11).

Theorem 2.2 (Valiant). 0,1-Perm (equivalently, #BipartitePM) is #P-complete.

It is clear that 0,1-Perm is in #P: the obvious “witnesses” are permutations σ
satisfying

∏
i ai,σ(i) = 1. To prove #P-hardness, we use a sequence of reductions starting

at #Exact3Cover and going via a couple of auxiliary problems #wBipartiteMatch
and #wBipartitePM.

Name. #Exact3Cover

Instance. A set X together with a collection T ⊆
(
X
3

)
of unordered triples8

of X.

Output. The number of subcollections S ⊆ T that cover X without overlaps;
that is every element of X should be contained in precisely one triple
in S.

Name. #wBipartiteMatch

Instance. A bipartite graph G with edge weights w : E(G)→ {1,−1,−5
3 ,

1
6}.

(Why exactly these weights are used will become clearer in the course
of the proof.)

Output. The “total weight” of matchings pmatch(G) =
∑

M w(M), where
M ranges over all matchings in G and the weight of a matching is
w(M) =

∏
e∈M w(e).

Name. #wBipartitePM

Instance. As for #wBipartiteMatch.

Output. As for #wBipartiteMatch, but with “perfect matchings” replac-
ing “matchings”.

Remark 2.3. More generally, we might consider a graph G with edge weighting w :
E(G) → Z ∪ C, where Z is a set of indeterminates. In this case the expression
pmatch(G) =

∑
M w(M) appearing in the definition of #wBipartiteMatch is a poly-

nomial in Z. If every edge is assigned a distinct indeterminate, then pmatch(G) is the
matching polynomial of G, i.e., the generating function for matchings in G.

8I’m not sure if
(
X
3

)
is a standard notation for “the set of all unordered triples from X”, but it seems

natural enough, given the notation 2X .

16 Chapter 2: #P-completeness

Since #Exact3Cover is the counting version of an NP-complete problem, we ex-
pect it to be #P-complete via parsimonious reduction.

Fact 2.4. #Exact3Cover is #P-complete.

Exercise 2.5. (This exercise is mainly directed to readers with some exposure to com-
putational complexity.) Garey and Johnson [36, §7.3] note Fact 2.4 without proof. Since
I am not aware of any published proof, we should maybe pause to provide one. Garey
and Johnson’s reduction [36, §3.1.2] from 3Sat (the restriction of Sat to formulas with
three literals per clause) to Exact3Cover (actually a special case of Exact3Cover
called “3-dimensional matching”) is almost parsimonious. The “truth setting compo-
nent” is fine (each truth assignment corresponds to exactly one pattern of triples). The
“garbage collection component” is also fine (it is not strictly parsimonious, but the num-
ber of patterns of triples is independent of the truth assignment, which is just as good).
The “satisfaction testing component” needs some attention, as the number of patterns
of triples depends on the truth assignment. However, with a slight modification, this
defect may be corrected. Finally, to do a thorough job, we really ought to modify Garey
and Johnson’s reduction [36, §3.1.1] from Sat to 3Sat to make it parsimonious too.

In the light of Fact 2.4, Theorem 2.2 will follow from the following series of lemmas:

Lemma A. #Exact3Cover ≤T #wBipartiteMatch.

Lemma B. #wBipartiteMatch ≤T #wBipartitePM.

Lemma C. #wBipartitePM ≤T #BipartitePM (≡ 0,1-Perm).

Proof of Lemma A. Our construction is based on the weighted bipartite graph H (de-
picted in Figure 2.1), where the weights of the edges on the left are as indicated, and the
edges labelled a1, a2 and a3 will presently all be assigned weight 1. Initially, however,
to facilitate discussion, we assign to these edges distinct indeterminates z1, z2 and z3,
respectively.

a1

a2

a3

v1

v2

v3

1

1

1

1

1

6

1

6
1

6

−

5

3

Figure 2.1: The graph H.

By direct computation, the matching polynomial of H, with weights as specified, is

(2.4) pmatch(H) = (1 + z1z2z3)/3.

Let us see how to verify (2.4) by calculating the coefficient of z1z2z3; the other coefficients
can be calculated similarly. (Note that there there are only four calculations since, by
symmetry, only the degree of the monomial is significant.) So suppose we include all

A primal #P-complete problem 17

three edges a1, a2 and a3, as we must do in order to get a matching that contributes to
the coefficient of z1z2z3. Then we can either add no further edge at all, or add the lower
left edge with weight 1, or the upper left edge with weight −5

3 . Thus, the total weight
of such matchings is (1 + 1− 5

3)z1z2z3 = 1
3z1z2z3.

Equation (2.4) succinctly expresses the key properties of H that we use. Suppose
that H is an (induced) subgraph of a larger graph G, and that H is connected to the rest
of G only via the vertices v1, v2 and v3; more precisely, there are no edges of G incident
to vertices V (H) \ {v1, v2, v3} other than the ones depicted. Consider some matching
M ′ ⊆ E(G) \ (E(H) \ {a1, a2, a3}) in G, i.e., one that does not use edges from H except
perhaps a1, a2 and a3. We call a matching M ⊇ M ′ in G an extension of M ′ if it
agrees with M ′ on the edge set E(G) \ (E(H) \ {a1, a2, a3}). If M ′ includes all three
edges ai, then the total weight of extensions of M ′ to a matching M on the whole of G
is 1

3w(M ′); a similar claim holds if M ′ excludes all three edges ai. In contrast, if M
includes some edges ai and excludes others, then the total weight of extensions of M ′ is
zero. Informally, H acts as a “coordinator” of the three edges ai.

Using the facts encapsulated in (2.4), we proceed with the reduction of #Exact-
3Cover to #wBipartiteMatch. An instance of #Exact3Cover consists of an
underlying set X, and a collection T ⊆

(
X
3

)
of triples; for convenience set n := |X| and

m := |T |. We construct a bipartite graph G as follows. Take a separate copy Ht of H
for each triple t = {α, β, γ} ∈ T and label the three pendant edges of Ht with atα, atβ,

and atγ , respectively. Furthermore, for each α ∈ X, introduce vertices vα and uα, and
connect them by an edge {vα, uα} of weight −1. Finally, identify the right endpoint of
the edge atα with the vertex vα whenever α ∈ t (see Figure 2.2).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Hs

s = {α, γ, δ}

Ht

t = {α, β, γ}

asδ

asα

asγ

atα

atβ

atγ

vδ uδ

vε uε

vα uα

vβ uβ

vγ uγ

−1

−1

−1

−1

−1

−1

−1

Figure 2.2: A sketch of the graph G.

Recall that the matching polynomial of G is a sum over matchings M in G of the
weight w(M) of M . We partition this sum according to the restriction A = M ∩ I of M
to I, where I := {atα : t ∈ T ∧ α ∈ t}. Computing the total weight of extensions of A to
a matching in G is straightforward. For each of the subgraphs Ht, equation (2.4) gives
the total weight of extensions of A to that subgraph. For each of the edges {vα, uα},
the total weight of extensions of A to that edge is simply 1 if vα is covered by A and
(1− 1) = 0 otherwise. Expressing these considerations symbolically yields the following

18 Chapter 2: #P-completeness

expression for the matching polynomial of G:

(2.5) pmatch(G) =
∑
M

w(M) =
∑
A⊆I

∏
t∈T

ϕt(A)
∏
α∈X

ψα(A) ,

where

ϕt(A) =


1
3 , if atα ∈ A for all α ∈ t;
1
3 , if atα /∈ A for all α ∈ t;
0, otherwise,

and

ψα(A) =

{
1, if atα ∈ A for some t 3 α
0, otherwise.

.

Each edge subset A contributing a non-zero term to the sum (2.5) corresponds to
an exact 3-cover of X: no element α of X is covered twice (property of a matching),
no element of X is uncovered (property of ψα), and no triple t is subdivided (property
of ϕt). Since every exact 3-cover contributes (13)m to (2.5), we obtain

(2.6) pmatch(G) =

(
1

3

)m ∣∣{ exact 3-covers of X by triples in T }
∣∣.

Thus, assuming we have an oracle for the left hand side of (2.6), we can compute the
number of exact three covers in time polynomial in m and n, and hence polynomial in
the size of the #Exact3Cover instance (X,T).

Proof of Lemma B. Let G be an instance of #wBipartiteMatch, that is, a bipartite
graph with vertex set V = R ∪ B and edge set E, where

(
R
2

)
∩ E =

(
B
2

)
∩ E = ∅, and

edge weights from {1,−1, 16 ,−
5
3}. Set r := |R| and b := |B|, so that r + b = n := |V |.

For 0 ≤ k ≤ min{r, b} (the maximal possible cardinality of a matching in G), we
construct a bipartite graph graph Gk as follows. Take a set R′ and a set B′ of new
vertices, |R′| = b − k and |B′| = r − k and connect each vertex in R with each vertex
in B′ and each vertex in R with each vertex in R′ by new edges of weight 1 (see Figure
2.3).

G

B′
R′

B
R

Figure 2.3: The graph Gk.

In a similar vein to the proof of Lemma A, we observe that∑
M ′ is a perfect
matching in Gk

w(M ′) = (r − k)! (b− k)!
∑

M is a k-
matching in G

w(M) .

Thus, we can compute the total weight of matchings in G by invoking our oracle for
#wBipartitePM on every Gk and summing over k.

A primal #P-complete problem 19

Proof of Lemma C. Let G = (V,E) be an instance of #BipartitePM, with |V | = n.
We get rid of the weights one by one using interpolation. Consider a certain weight
ζ ∈ {16 ,−1,−5

3}. If we replace it by an indeterminate z, then

p(z) :=
∑

M is a perfect
matching in G

w(M)

is a polynomial of degree d ≤ 1
2n. If we can evaluate p at d + 1 distinct points, say at

k = 1, . . . , d+ 1, we can interpolate to find p(ζ). (Refer to Valiant [78] for a discussion
of efficient interpolation.) In order to find p(k) for fixed k, we construct a graph Gk
from G by replacing each edge {u, v} of weight z by k disjoint paths of length 3 between
u and v such that each edge on these paths has weight 1 (see Figure 2.4).

.

.

.

z = k

1

1

1

1

1

1

1

1

1

1

1

1

u u vv























k

Figure 2.4: Substituting k disjoint paths for an edge.

Then p(k) =
∣∣{perfect matchings in Gk}

∣∣, and we can determine the right hand side
by means of our oracle for #BipartitePM. This completes the proof of the last lemma,
and hence of the theorem.

Remarks 2.6. (a) The intermediate problems in the above proof are not in #P; how-
ever, they are “#P-easy”, i.e., Turing reducible to a function in #P.

(b) #P-hard counting problems are ubiquitous. In fact, the counting problems in
FP are very much the exceptions. The ones we encountered in Chapter 1 —
counting trees in directed and undirected graphs (and the related Eulerian circuits
in a directed graph), and perfect matchings in a graph (and the related partition
function of a planar ferromagnetic Ising system) — are pretty much the only non-
trivial examples.

(c) Our reduction from #Exact3Cover to #BipartitePM used polynomial in-
terpolation in an essential way. Indeed, interpolation features prominently in a
majority of #P-completeness proofs. The decision to define #P-completeness
with respect to Turing reducibility rather than many-one reducibility is largely
motivated by the need to perform many polynomial evaluations (which equate to
oracle calls) rather than just one. It is not clear whether the phenomenon of #P-
completeness would be as ubiquitous if many-one reducibility were to be used in
place of Turing.

(d) Following from the previous observation: Polynomial interpolation is not numer-
ically stable, and does not preserve closeness of approximation. Specifically, we
may need to evaluate a polynomial to very great accuracy in order to know some

20 Chapter 2: #P-completeness

coefficient even approximately. Thus we cannot deduce from the reductions in Lem-
mas A–C above that approximating the permanent is computationally hard, even
though approximating #Exact3Cover is. We exploit this loophole in Chapter 5.

(e) Every problem in NP is trivially #P-easy. It is natural to ask how much bigger
#P is than NP. The answer seems to be that it is much bigger. The complexity
class PH (Polynomial Hierarchy) is defined similarly to NP, except that arbitrary
quantification is allowed in equivalence (2.1), in place of simple existential quantifi-
cation. PH seems intuitively to be “much bigger” than NP. Yet it is a consequence
of Toda’s theorem (see [73]) that every problem in PH is #P-easy!

2.3 Computing the permanent is hard on average

While many NP-complete problems are easy to decide on random instances, this does
not seem to be the case for counting problems. For example, consider an (imperfect)
algorithm A for computing the permanent of n× n matrices A over the field GF(p), for
all n ∈ N and all primes p, with the following specification:

1. A has runtime polynomial in n and p;

2. For each n and each p, A must give the correct result except on some fraction
1

3(n+1) of all n× n matrices over GF(p).

Theorem 2.7. No algorithm A with the above specification exists unless every problem
in #P admits a polynomial-time randomised algorithm with low9 error probability.10

Proof. It suffices to show that some particular #P-complete problem, namely 0,1-Perm,
admits a polynomial-time randomised algorithm with low error probability. Given an
n × n matrix A with entries from {0, 1}, if we know perA (mod pi) for a sequence
p1, p2, . . . , pn of n distinct primes larger than n + 1, then we can use “Chinese remain-
dering” to evaluate perA. The method is as follows. If a and b are relatively coprime
natural numbers, we can write 1 = ca + db with integer coefficients c, d, which can
be found by means of the Euclidian algorithm. Now suppose we know the residues
r = x mod a and s = x mod b of an integer x. If we set y := rdb + sca, we have x ≡ y
(mod a) and x ≡ y (mod b), and hence x ≡ y (mod ab), by relative primality. Thus,
inductively, we can compute (perA) mod p1p2 . . . pn from the n values (perA) mod pi.
But since perA is a natural number not larger than n! < p1p2 . . . pn, it is uniquely deter-
mined by its residue modulo p1p2 . . . pn. Moreover, the Prime Number Theorem ensures
that we may take the pi’s to be no larger than O(n lnn); in particular, we can find them
by brute force in time polynomial in n.

Thus, it remains to show how, for a fixed prime n+2 ≤ p ≤ O(n lnn), we can employ
A to compute (perA) mod p with low error probability. For this purpose, we select a

9We can take “low” to mean 1
3
, since this may be reduced to an arbitrarily small value by repeatedly

running A and taking a majority vote. Note that the error probability decreases to zero exponentially
as a function of the number of trials.

10The error probability is with respect to random choices made by the algorithm. The input is assumed
non-random.

The permanent is hard on average 21

matrix R u.a.r. from all n × n matrices over GF(p). Let z be an indeterminate and
consider

p(z) := per(A+ zR),

regarded as a polynomial of degree at most n with coefficients in GF(p). Using A,
we evaluate (in time polynomial in n and p, hence in n) p(z) at n + 1 points z =
1, 2, . . . , n + 1. Observe that, since the numbers 1, . . . , n + 1 are invertible modulo p,
A+R, A+ 2R, . . . , A+ (n+ 1)R are again random matrices (over GF(p)). Thus, with
probability at least 1− (n+ 1) 1

3(n+1) = 2
3 , A will give the correct answer in all instances.

Now we interpolate to find p(0) = (perA) mod p.

Remarks 2.8. (a) Feige and Lund [33] have considerably sharpened Theorem 2.7
using techniques from the theory of error-correcting codes.

(b) The property (of a problem) of being as hard on average as in the worst case
holds quite generally in high enough complexity classes. Refer to Feigenbaum and
Fortnow [34] for a discussion of this phenomenon.

Open Problem. What is the complexity of computing the permanent of a random 0, 1-
matrix? It is reasonable to conjecture that computing the permanent of a 0, 1-matrix
exactly is as hard on average as it is in the worst case. However, this purely combinatorial
version of the problem leaves no space for the interpolation that was at the heart of the
proof of Theorem 2.7.

