

Chapter 3

Sampling and counting

Accumulated evidence of the kind described in the previous chapter suggests that exact
counting of combinatorial structures is rarely possible in polynomial time. However, it
is in the nature of that evidence1 that it does not rule out the possibility of approximate
counting (within arbitrarily small specified relative error). Nor does it rule out the
possibility of sampling structures at random from an almost uniform distribution, or even
from the precisely uniform distribution (in a suitably defined model of computation),
come to that. Indeed these two quests — approximate counting and almost uniform
sampling — are intimately related, as we’ll see presently.

The aim of this chapter is to illustrate, by means of a concrete example, how almost
uniform sampling can be employed for approximate counting, and, after that, how almost
uniform sampling can be achieved using Markov chain simulation. But first, let’s make
precise the various notions we’ve been talking about informally until now.

3.1 Preliminaries

Consider the problem: given a graph G, return a matching M chosen uniformly at
random (u.a.r.) from the set of all matchings in G. In order to discuss sampling problems
such as this one we obviously need a model of computation that allows random choices.
Less obviously, we also need such a model to discuss approximate counting problems:
e.g., given a graph G, compute an estimate of the number of matchings in G that is
accurate to within ±10%.

A probabilistic Turing machine is a Turing machine T equipped with special coin
tossing states. Each coin-tossing state q has two possible successor states qh and qt.
When T enters state q, it moves on the next step to state qh with probability 1

2 and
to state qt with probability 1

2 . Various notions of what it means for a probabilistic
Turing machine to decide a predicate or approximate a function (in each case, with high
probability) are possible, leading to various randomised complexity classes.

The probabilistic Turing machine is the usual basis for defining randomised complex-
ity classes, but, more pragmatically, we can alternatively take as our model a random
access machine (RAM) equipped with coin-tossing instructions, or a simple programming
language that incorporates a random choice statement with two outcomes (themselves

1Specifically, the property of it described Remark 2.6(d).

23

24 Chapter 3: Sampling and counting

statements) that are mutually exclusive and each executed with probability 1
2 . All of

these possible models are equivalent, modulo polynomial transformations in run-time.
So when the phrase “randomised algorithm” is used in this and subsequent chapters, we
are usually free to think in terms of any of the above models. However, when specific
time bounds are presented (as opposed to general claims that some algorithm is polyno-
mial time) we shall be taking a RAM or conventional programming language view. For
a more expansive treatment of these issues, see Papadimitriou’s textbook [67, Chaps 2
& 11].

A randomised approximation scheme for a counting problem f : Σ∗ → N (e.g.,
the number of matchings in a graph) is a randomised algorithm that takes as input
an instance x ∈ Σ∗ (e.g., an encoding of a graph G) and an error tolerance ε > 0, and
outputs a number N ∈ N (a random variable of the “coin tosses” made by the algorithm)
such that, for every instance x,

(3.1) Pr
[
e−εf(x) ≤ N ≤ eεf(x)

]
≥ 3

4
.

We speak of a fully polynomial randomised approximation scheme, or FPRAS, if the
algorithm runs in time bounded by a polynomial in |x| and ε−1.

Remarks 3.1. (a) The number 3
4 appearing in (3.1) could be replaced by any number

in the open interval (12 , 1).

(b) To first order in ε, the event described in 3.1 is equivalent to (1 − ε)f(x) ≤ N ≤
(1 + ε)f(x), and this is how the requirement of a “randomised approximation
scheme” is more usually specified. However the current definition is equivalent,
and has certain technical advantages; specifically, a sequence of approximations of
the form e−εξi+1 ≤ ξi ≤ eεξi+1 compose gracefully.

For two probability distributions π and π′ on a countable set Ω, define the total
variation distance between π and π′ to be

(3.2) ‖π − π′‖TV :=
1

2

∑
ω∈Ω
|π(ω)− π′(ω)| = max

A⊆Ω
|π(A)− π′(A)| .

A sampling problem is specified by a relation S ⊆ Σ∗×Σ∗ between problem instances x
and “solutions” w ∈ S(x).2 For example, x might be the encoding of a graph G, and
S(x) the set of encodings of all matchings in G. An almost uniform sampler for a
solution set S ⊆ Σ∗ × Σ∗ (e.g., the set of all matchings in a graph) is a randomised
algorithm that takes as input an instance x ∈ Σ∗ (e.g., an encoding of a graph G) and
an sampling tolerance δ > 0, and outputs a solution W ∈ S(x) (a random variable of
the “coin tosses” made by the algorithm) such that the variation distance between the
distribution of W and the uniform distribution on S(x) is at most δ.3 An almost uniform
sampler is fully polynomial if it runs in time bounded by a polynomial in x and log δ−1.
We abbreviate “fully-polynomial almost uniform sampler” to FPAUS.

2We write S(x) for the set {w : xS w} to avoid awkwardness.
3If S(x) = ∅ we allow the almost uniform sampler to return a special undefined symbol ⊥, otherwise

it cannot discharge its obligation.

Reducing counting to sampling 25

Remarks 3.2. (a) The definitions of FPRAS and FPAUS have obvious parallels.
Note however that the dependence of the run-time on the “tolerance” (ε or δ,
respectively) is very different: polynomial in ε−1 versus log δ−1 respectively. This
difference is deliberate. As we shall see, the relative error in the estimate for f(x)
can be improved only at great computational expense, whereas the sampling dis-
tribution on S(x) can be made very close to uniform relatively cheaply.

(b) For simplicity, the definitions have be specialised to the case of a uniform distri-
bution on the solution set S(x). However, one could easily generalise the notion of
“almost uniform sampler” to general distributions.

The “witness checking predicate” view of the classes NP and #P presented in Chap-
ter 2 carries across smoothly to sampling problems. A witness checking predicate
χ ⊆ Σ∗ ×Σ∗ and polynomial p define a sampling problem S ⊆ Σ∗ ×Σ∗ via

(3.3) S(x) = {w ∈ Σ∗ : χ(x,w) ∧ |w| ≤ p(|x|)},

where particular attention focuses on polynomial-time predicates χ (c.f. (2.1) and (2.2)).
If χ is the “Hamilton cycle” checker of Chapter 2, then the related sampling problem S(x)
is that of sampling almost uniformly at random a Hamilton cycle in the graph G encoded
by x. So we see that each combinatorial structure gives rise to a trio of related problems:
decision, counting and sampling. Furthermore, the second of these at least may be
considered in exact (FP) and approximate (FPRAS) forms.

Remark 3.3. The distinction between exactly and almost uniform sampling seems less
crucial, and, in any case, technical complications arise when one attempts to define
exactly uniform sampling: think of the problem that arises when |S(x)| = 3 and we
are using the probabilistic Turing machine as our model of computation (or refer to
Sinclair [72]).

3.2 Reducing approximate counting
to almost uniform sampling

Fix a witness-checking predicate χ and consider the associated counting and sampling
problems, f : Σ∗ → N and S ⊆ Σ∗ × Σ∗ defined by (2.2) and (3.3), respectively. It
is known — under some quite mild condition on χ termed “self-reducibility,” which
often holds in practice — that the computational complexity of approximating f(x) and
sampling almost uniformly from S(x) are closely related. In particular, f admits an
FPRAS if and only if S admits an FPAUS. For full details, refer to Jerrum, Valiant
and Vazirani [49]. Here we shall explore this relationship in only one direction (FPAUS
implies FPRAS) and then only in the context of a specific combinatorial structure,
namely matchings in a graph. This reduces the technical complications while retaining
the main ideas.

Let M(G) denote the set of matchings (of all sizes) in a graph G.

Proposition 3.4. Let G be a graph with n vertices and m edges, where m ≥ 1 to avoid
trivialities. If there is an almost uniform sampler for M(G) with run-time bounded by
T (n,m, ε), then there is a randomised approximation scheme for |M(G)| with run-time

26 Chapter 3: Sampling and counting

bounded by cm2ε−2 T (n,m, ε/6m), for some constant c. In particular, if there is an
FPAUS for M(G) then there is an FPRAS for |M(G)|.

Proof. Denote the postulated almost uniform sampler by S. The approximation scheme
proceeds as follows. Given G with E(G) = {e1, . . . , em} (in any order), we consider
the graphs Gi := (V (G), {e1, . . . , ei}) for 0 ≤ i ≤ m. Thus, Gi−1 is obtained from Gi
by deleting the edge ei. The quantity |M(G)| which we would like to estimate can be
expressed as a product

(3.4) |M(G)| = (%1%2 . . . %m)−1

of ratios

%i :=
|M(Gi−1)|
|M(Gi)|

.

(Here we use the fact that |M(G0)| = 1.) Observe that M(Gi−1) ⊆ M(Gi) and that
M(Gi) \M(Gi−1) can be mapped injectively into M(Gi−1) by sending M to M \ {ei}.
Hence,

(3.5)
1

2
≤ %i ≤ 1 .

We may assume 0 < ε ≤ 1 and m ≥ 1. In order to estimate the %i’s, we run
our sampler S on Gi with δ = ε/6m and obtain a random matching Mi from M(Gi).
Let Zi be the indicator variable of the event that Mi is, in fact, in M(Gi−1), and set
µi := EZi = Pr[Zi = 1]. By choice of δ and the definition of the variation distance,

(3.6) %i −
ε

6m
≤ µi ≤ %i +

ε

6m
,

or, from (3.5),

(3.7)
(

1− ε

3m

)
%i ≤ µi ≤

(
1 +

ε

3m

)
%i ;

so the sample mean of a sufficiently large number s of independent copies4 Z
(1)
i , . . . , Z

(s)
i

of the random variable Zi will provide a good estimate for %i. Specifically, let s :=

d74ε−2me ≤ 75ε−2m, and Zi := s−1
∑s

j=1 Z
(j)
i .

Note that VarZi = E[(Zi − µi)2] = Pr[Zi = 1](1 − µi)2 + Pr[Zi = 0]µ2i = µi(1 − µi)
and that inequalities (3.5) and (3.7) imply µi ≥ 1/3. Thus, µ−2i VarZi = µ−1i − 1 ≤ 2,
and hence

(3.8)
VarZi
µ2i

≤ 2

s
≤ ε2

37m
.

As our estimator for |M(G)|, we use the random variable

N :=

(m∏
i=1

Zi

)−1
.

4Obtained from s independent runs of S on Gi.

Reducing counting to sampling 27

Note that E[Z1Z2 . . . Zm] = µ1µ2 . . . µm, and furthermore

Var[Z1Z2 . . . Zm]

(µ1µ2 . . . µm)2
=

E[Z
2
1 Z

2
2 . . . Z

2
m]

µ21µ
2
2 . . . µ

2
m

− 1

=

m∏
i=1

E[Z
2
i]

µ2i
− 1 since r.v’s Zi are independent

=

m∏
i=1

(
1 +

VarZi
µ2i

)
− 1

≤
(

1 +
ε2

37m

)m
− 1 by (3.8)

≤ exp

(
ε2

37

)
− 1

≤ ε2

36
,

since ex/(k+1) ≤ 1 + x/k for 0 ≤ x ≤ 1 and k ∈ N+. Thus, by Chebychev’s Inequality,

(3.9)
(

1− ε

3

)
µ1µ2 . . . µm ≤ Z1Z2 . . . Zm ≤

(
1 +

ε

3

)
µ1µ2 . . . µm,

with probability at least 1 − (ε/3)−2(ε2/36) = 3
4 . Since e−x/k ≤ 1 − x/(k + 1) for

0 ≤ x ≤ 1 and k ∈ N+, we have the following weakening of inequality (3.9):

e−ε/2µ1µ2 . . . µm ≤ Z1Z2 . . . Zm ≤ eε/2µ1µ2 . . . µm.

But from (3.7), using again the fact about the exponential function, we have

e−ε/2%1%2 . . . %m ≤ µ1µ2 . . . µm ≤ eε/2%1%2 . . . %m ,

which combined with the previous inequality implies

e−ε%1%2 . . . %m ≤ Z1Z2 . . . Zm ≤ eε%1%2 . . . %m

with probability at least 3
4 . Since Z1Z2 . . . Zm = N−1 and %1%2 . . . %m = |M(G)|−1, our

estimator N for |M(G)| satisfies requirement (3.1). Thus the algorithm that computes
computes N as above is an FPRAS for |M(G)|.

The run-time of the algorithm is dominated by the number of samples required,
which is sm ≤ 75ε−2m2, multiplied by the time-per-sample, which is T (n,m, ε); the
claimed time-bound is immediate.

Exercise 3.5. Prove a result analogous to Proposition 3.4 with (proper vertex) q-
colourings of a graph replacing matchings. Assume that the number of colours q is
strictly greater than the maximum degree ∆ of G. There is no need to repeat all the
calculation, which is in fact identical. The key thing is to obtain an inequality akin
to (3.5), but for colourings in place of matchings.

In light of the connection between approximate counting and almost uniform sam-
pling, methods for sampling from complex combinatorially defined sets gain additional
significance. The most powerful technique known to us is Markov chain simulation.

28 Chapter 3: Sampling and counting

3.3 Markov chains

We deal exclusively in this section with discrete-time Markov chains on a finite state
space Ω. Many of the definitions and claims extend to countable state spaces with
only minor complication. In Chapter 6 we shall need to employ Markov chains with
continuous state spaces, but the corresponding definitions and basic facts will be left until
they are required. See Grimmett and Stirzaker’s textbook [39] for a more comprehensive
treatment.

A sequence (Xt ∈ Ω)∞t=0 of random variables (r.v’s) is a Markov chain (MC), with
state space Ω, if

(3.10) Pr[Xt+1 = y | Xt = xt, Xt−1 = xt−1, . . . , X0 = x0] = Pr[Xt+1 = y | Xt = xt],

for all t ∈ N and all xt, xt−1, . . . , x0 ∈ Ω. Equation (3.10) encapsulates the Markovian
property whereby the history of the MC prior to time t is forgotten. We deal only
with (time-) homogeneous MCs, i.e., ones for which the right-hand side of (3.10) is
independent of t. In this case, we may write

P (x, y) := Pr[Xt+1 = y | Xt = x],

where P is the transition matrix of the MC. The transition matrix P describes single-
step transition probabilities; the t-step transition probabilities P t are given inductively
by

P t(x, y) :=

{
I(x, y), if t = 0;∑

y′∈Ω P
t−1(x, y′)P (y′, y), if t > 0,

where I denotes the identity matrix I(x, y) := δxy. Thus P t(x, y) = Pr[Xt = y | X0 = x].
A stationary distribution of an MC with transition matrix P is a probability distri-

bution π : Ω → [0, 1] satisfying

π(y) =
∑
x∈Ω

π(x)P (x, y).

Thus if X0 is distributed as π then so is X1 (and hence so is Xt for all t ∈ N). A finite MC
always has at least one stationary distribution. An MC is irreducible if, for all x, y ∈ Ω,
there exists a t ∈ N such that P t(x, y) > 0; it is aperiodic if gcd{t : P t(x, x) > 0} = 1
for all x ∈ Ω.5 A (finite-state) MC is ergodic if it is both irreducible and aperiodic.

Theorem 3.6. An ergodic MC has a unique stationary distribution π; moreover the MC
tends to π in the sense that P t(x, y)→ π(y), as t→∞, for all x ∈ Ω.

Informally, an ergodic MC eventually “forgets” its starting state. Computation of
the stationary distribution is facilitated by the following little lemma:

Lemma 3.7. Suppose P is the transition matrix of an MC. If the function π′ : Ω → [0, 1]
satisfies

π′(x)P (x, y) = π′(y)P (y, x), for all x, y ∈ Ω,(3.11)

and
5In the case of an irreducible MC, it is sufficient to verify the condition gcd{t : P t(x, x) > 0} = 1 for

just one state x ∈ Ω.

Markov chains 29

∑
x∈Ω

π′(x) = 1,

then π′ is a stationary distribution of the MC. If the MC is ergodic, then clearly π′ = π
is the unique stationary distribution.

Proof. We just need to check that π′ is invariant. Suppose X0 is distributed as π′. Then

Pr[X1 = y] =
∑
x∈Ω

π′(x)P (x, y) =
∑
x∈Ω

π′(y)P (y, x) = π′(y).

Remark 3.8. Condition (3.11) is known as detailed balance. An MC for which it holds
is said to time reversible. Clearly, Lemma 3.7 cannot be applied to non-time-reversible
MCs. This is not a problem in practice, since all the MCs we consider are time reversible.
In fact, it is difficult in general to determine the stationary distribution of large non-time-
reversible MCs, unless there is some special circumstance, for example symmetry, that
can be taken into consideration. Furthermore, all the usual methods for constructing
MCs with specified stationary distributions produce time-reversible MCs.

Example 3.9. Here is a natural (time homogeneous) MC whose state space is the set
M(G) of all matchings (of all sizes) in a specified graph G = (V,E). The transition
matrix of the MC is defined implicitly, by an experimental trial. Suppose the initial
state is X0 = M ∈M(G). The next state X1 is the result of the following trial:

1. With probability 1
2 set X1 ←M and halt.

2. Otherwise, select e ∈ E(G) and set M ′ ←M ⊕ {e}.6

3. If M ′ ∈M(G) then X1 ←M ′ else X1 ←M .

Since the MC is time homogeneous, it is enough to describe the first transition; subse-
quent transitions follow an identical trial. Step 1 may seem a little unnatural, but we
shall often include such a looping transition to avoid a certain technical complication.
Certainly its presence ensures that the MC is aperiodic. The MC is also irreducible,
since it is possible to reach the empty matching from any state by removing edges (and
reach any state from the empty matching by adding edges). Thus the MC is ergodic and
has a unique stationary distribution.

Exercise 3.10. Demonstrate, using Lemma 3.7, that the stationary distribution of the
MC of Example 3.9 is uniform over M(G).

Exercise 3.10 and Proposition 3.4, taken together, immediately suggest an approach
to estimating the number of matchings in a graph. Simulate the MC on M(G) for
T steps, starting at some fixed state X0, say X0 = ∅, and return the final state XT . If
T is sufficiently large, this procedure will satisfy the requirements of an almost uniform
sampler for matchings in G. Then the method of Proposition 3.4 may be used to obtain
a randomised approximation scheme for the number of matchings |M(G)|. Whether

6The symbol ⊕ denotes symmetric difference.

30 Chapter 3: Sampling and counting

this approach is feasible depends crucially on the rate of convergence of the MC to
stationarity. We shall prove in Chapter 5 that a modification7 of the MC described in
Example 3.9 does in fact come “close” to stationarity in a polynomial number of steps
(in the size of the graph G), hence yielding an FPRAS for the number of matchings in
a graph.

7In fact, by comparing the original and modified MCs [22], one can show that the MC as presented
in Example 3.9 also converges in polynomially many steps.

