Chapter 4

Coupling and colourings

The outline of our programme is now clear: in order to count (approximately) it is
enough to be able to sample (almost) uniformly; in order to sample we may simulate
an appropriately defined MC. For this approach to be feasible, however, it is important
that the MC in question is “rapidly mixing,” i.e., that it converges to near-equilibrium
in time polynomial (hopefully of small degree) in the size of the problem instance. Since
the state space is usually of exponential size as a function of the problem size — think
of the number of matchings in a graph as a function of the size of the graph — this is a
distinctly non-trivial requirement. We shall presently formalise the rate of convergence
to equilibrium in terms of the “mixing time” of the MC. The classical theory of MCs
has little to say concerning non-asymptotic bounds on mixing time, and most of the
techniques we use have been specially developed for the task in hand. However, there is
one classical device, namely coupling, that can be applied in certain situations. As it is
the most elementary approach to bounding mixing times, we study it first.

4.1 Colourings of a low-degree graph

Anil Kumar and Ramesh [3] present persuasive evidence that the coupling argument
is not applicable to the MC on matchings that was defined at the end of the previous
chapter. We therefore use a somewhat simpler example, namely colourings of a low-
degree graph. Let G = (V, E) be an undirected graph, and @ a set of ¢ colours. A
(proper) g-colouring of G is a an assignment o : V' — @ of colours to the vertices of G
such that o(u) # o(v) for all edges {u,v} € E. In general, even deciding existence of
a g-colouring in G is computationally intractable, so we need to impose some condition
on G and gq.

Denote by A the maximum degree! of any vertex in G. Brooks’ theorem asserts that
a g-colouring exists when ¢ > A, provided A > 3 and G does not contain Ka,1 as a
connected component [8, 10].2 The proof of Brooks’ theorem is effective, and yields a
polynomial-time algorithm for constructing a g-colouring. It is also best possible in the
(slightly restricted) sense that there are pairs, for example ¢ = 3, A = 4, which just fail
the condition of the theorem, and for which the problem of deciding g-colourability is
NP-complete, even when restricted to graphs of maximum degree A. So if we are aiming

!The degree of a vertex is the number of edges incident at that vertex.
2K, denotes the complete graph on r vertices.
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32 Chapter 4: Coupling and colourings

1. Select a vertex v € V, u.a.r.
2. Select a colour ¢ € Q@ \ Xo(I'(v)), w.a.r.

3. Xi(v) < cand X;(u) + Xo(u) for all u # v.

Figure 4.1: Trial defining an MC on ¢-colourings.

at an efficient sampling procedure for g-colourings we should certainly assume g > A.
Moreover, to approximate the number of g-colourings using the reduction of Exercise 3.5
we need to assume further that ¢ > A. Before we complete the work of this section, we
shall need to strengthen this condition still further.

So let G = (V, E) be a graph of maximum degree A and let {2 denote the set of all
g-colourings of G, for some ¢ > A. Denote by I'(v) = {u : {u,v} € E(G)} the set of
vertices in G that are adjacent to v. Consider the (time-homogeneous) MC (X;) on {2
whose transitions are defined by the experimental trial presented in Figure 4.1. Here we
are considering a colouring as a function V' — @, so Xo(u) denotes the colour of vertex u
in the initial state, and Xo(I'(v)) = {Xo(u) : v € I'(v)} denotes the set of all colours
applied to neighbours of v. Note that the assumption ¢ > A makes it easy to construct
a valid initial state Xj.

Exercises 4.1. 1. Prove that the above MC is irreducible (and hence ergodic) under
the (stronger) assumption g > A + 2. Further prove, using Lemma 3.7, that its
(unique) stationary distribution is uniform over (2.

2. [Alan Sokal.] Exhibit a sequence of connected graphs of increasing size, with A = 4,
such that the above MC fails to be irreducible when ¢ = 5. (Hint: as a starting
point, construct a “frozen” 5-colouring of the infinite square lattice, i.e., the graph
with vertex set Z x Z and edge set { (i, ), (¢', ) : [i—i'|+|j—j'| = 1}. The adjective
“frozen” applied to a state is intended to indicate that the only transition available
from the state is a loop (with probability 1) to the same state.)

3. Design an MC on g-colourings of an arbitrary graph G of maximum degree A that
is ergodic, provided only that ¢ > A+ 1. The MC should be easily implementable,
otherwise there is no challenge! (Hint: use transitions based on edge updates rather
than vertex updates.)

We shall show that (X;) is rapidly mixing, provided ¢ > 2A + 1, which we assume
from now on. (The reader may be assured that this is the very last time we shall
strengthen the lower bound on the number of colours!) This result will provide us with
a simple and efficient sampling procedure for g-colourings in low-degree graphs.

Suppose (X;) is any ergodic MC on countable state space {2, with transition matrix P
and initial state Xo = xz € £2. For ¢t € N, the distribution of X; (the ¢ step distribution)
is naturally denoted P'(x, -). Let 7 denote the the stationary distribution of the MC,
i.e., the limit of P'(x, -) as t — oo. Recall the definition of total variation distance
from (3.2). We measure the rate of convergence to stationarity of (X;) by its mizing
time (from initial state z):

(4.1) T2(€) :==min {t : [|[P(z, -) — 7||rv < €}
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Lemma 4.2. The total variation distance |P'(x, -) — ||y of the t-step distribution
from stationarity is a non-increasing function of t.

Exercise 4.3. Prove Lemma 4.2. (A proof is given at the end of the chapter.)

In the light of Lemma 4.2, the following definition of mixing time is equivalent
to (4.1):
T2(e) ==min {¢ : [|[P*(z, -) — 7|jrv <e, for all s > ¢}.

In other words, once the total variation distance becomes smaller than ¢ it stays smaller
than e.

Often we would like to make a statement about mixing time that is independent of
the initial state, in which case we take a worst-case view and write

T(e) = I;lea(}l( Tz (€);

we shall refer to 7(¢) simply as the mizing time.

Remark 4.4. Sometimes the further simplification of setting € to some constant, say
€ = %, is made. The justification for this runs as follows. If 7 is the first time ¢
at which ||P!(z, ) — 7|ty < 1, then it can be shown [2, Chap. 2, Lemma 20] that

| P*7(z, ) — 7||rv < 27F for every k € N.

Our aim in the next section is to show that the mixing time 7(¢) of the MC on

colourings is bounded by a polynomial in n and loge~!.

Proposition 4.5. Suppose G is a graph on n vertices of maximum degree A. Assuming
q > 2A + 1, the mizing time 7(¢) of the MC of Figure 4.1 is bounded above by

Taking the instance size n into account is a prominent feature of applications of MCs
in computer science, especially as compared with classical Markov chain theory. Observe
that Proposition 4.5, combined with Proposition 3.4, implies the existence of an FPRAS
for g-colourings in graphs of low enough degree.

Corollary 4.6. Suppose G is a connected graph of maximum degree A, and ¢ > 2A+1.
Then there is an FPRAS for counting q-colourings in G. Denote by n the number of
vertices in G and by m the number of edges. Then the running time of this FPRAS as
a function of n, m and the error tolerance ¢ (regarding A and q as fixed) is bounded by

enm?e~2 max{In(m/e), 1} for some constant c.

4.2 Bounding mixing time using coupling

Coupling as a proof technique was discovered by Doeblin in the 1930s. However, its more
recent popularity as a tool for bounding mixing time owes much to Aldous. Actually,
we shall be using only a restricted form of coupling, namely Markovian coupling.
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We start with a ground (time homogeneous) MC (Z;) with state space {2 and tran-
sition matrix P. A (Markovian) coupling for (Z;) is an MC (X3, Y;) on £2 x £2, with
transition probabilities defined by:

Pr[X; =2' | Xo =2,Yy = y] = P(z,2),

(4.2)
PrlYy1 =y | Xo =2,Yo =y| = P(y,v).

Equivalently, with P02 denoting the transition matrix of the coupling,

> P((x,y), (@y) = P(x,2),
y' e
> P((x,y), (@ y) = Py, y).

z'ef

Thus, the sequence of r.v.’s (X¢) viewed in isolation forms an MC with transition ma-
trix P, as does the sequence (Y}).

The easy way to achieve (4.2) would be to assume independence of (X;) and (Y%),
i.e., that

P((z,y), («,y/)) = P(x,2")P(y,y/).

But this is not necessary, and for our application not desirable. Instead, we are after
some correlation that will tend to bring (X;) and (Y;) together (whatever their initial
states) so that X; = Y; for some quite small ¢. Note that once X; = Y}, we can arrange
quite easily for X to be equal to Y, for all s > ¢, while continuing to satisfy (4.2): just
choose a transition from X, and let Y; copy it.

The following simple lemma, which is the basis of the coupling method, was perhaps
first made explicit by Aldous [1, Lemma 3.6]; see also Diaconis [21, Chap. 4, Lemma 5].

Lemma 4.7 (Coupling Lemma). Let (X, Y;) be any coupling, satisfying (4.2), based on
a ground MC (Z;) on 2. Suppose t : [0,1] — N is a function satisfying the condition:
for all x,y € 2, and all € > 0

Pr[Xy) # Yie) | Xo=2,Yo =y] <e.
Then the mizing time 7(¢) of (Z;) is bounded above by t(e).

Proof. Denote by P the transition matrix of (Z;). Let A C {2 be arbitrary. Let Xy =
x € £2 be fixed, and Yj be chosen according to the stationary distribution = of (Z;). For
any € € (0,1) and corresponding ¢t = t(e),
P'(z,A) = Pr[X; € 4]

>PrX, =Y, A Y, € A]

—1-Pr[X, £Y, VY, ¢ A

> 1 - (Pr[X; # Yi] + PalY; ¢ 4])

>Pr(Y; e A) —¢

=m(A) —e.

Hence, by the second part of definition (3.2), ||P!(z, - ) — 7|lrv < e. O
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1. Select a vertex v € V u.a.r.

2. Select a pair of colours (¢, ¢y) from some joint distribution on (Q \ Xo(I'(v))) x
(Q\ Yo(I'(v))) that has the “correct” marginal distributions; specifically, the dis-
tribution of ¢, (respectively ¢,) should be uniform over Q \ Xo(I'(v)) (respectively
Q\ Yo(I'(v)). This joint distribution will be chosen so as to maximise Prc, = ¢,].

3. Set X;(v) < ¢, and Y3 (v) « ¢y.

Figure 4.2: A coupling for the MC on colourings

Remark 4.8. Actually we established the stronger conclusion
|P'(z, <) = P'(y, -)llrv < e, for all pairs z,y € £.

This slightly different notion of /1-convergence corresponds to a slightly different notion of
mixing time. This new mixing time has certain advantages, notably submultiplicativity:
see Aldous and Fill [2] for more detail.

Let’s now see how these ideas may be applied to the g-colouring MC of Figure 4.1.
We need to define a coupling on §2? such that the projections onto the first and second
coordinates are faithful copies of the original MC in the sense of (4.2). Moreover, we
wish the coupling to coalesce, i.e., reach a state where X; = Y}, as soon as possible.
Figure 4.2 presents what seems at first sight to be a reasonable proposal. Note that if
you hide the random variable Y; then the companion random variable X is distributed
exactly as if we had used the trial presented in Figure 4.1. (By symmetry, a similar
statement could be made about Y;.) Thus the coupling condition (4.2) is satisfied.

We have argued that the coupling in Figure 4.2 is correct, but how efficient is it?
Intuitively, provided we can arrange for Pr[c, = ¢,] in step 2 to be large, we ought to
reach a state with X; = Y; (i.e., coalescence) in not too many steps. The Coupling
Lemma will then provide a good upper bound on mixing time. In order to understand
what is involved in maximising Prc, = ¢,], the following exercise may be useful.

Exercise 4.9. Suppose that @ = {0,1,...,6}, Xo(I'(v)) = {3,6} and Yy(I'(v)) =
{4,5,6}. Thus the sets of legal colours for v in X; and Y; are ¢, € {0,1,2,4,5} and
¢y € {0,1,2,3}, respectively. Construct a joint distribution for (cs,c,) such that ¢, is
uniform on {0,1,2,4,5}, ¢, is uniform on {0,1,2,3}, and Prlc, = ¢,] = % Show that
your construction is optimal.

The best that can be done in general is as follows.

Lemma 4.10. Let U be a finite set, A, B be subsets of U, and Z,, Zy, be random variables,
taking values in U. Then there is a joint distribution for Z, and Zp such that Z,
(respectively Zy,) is uniform and supported on A (respectively B) and, furthermore,

|AN B

P — R el B
20 = 2] = 1AL BTy

Exercise 4.11. Prove Lemma 4.10 and show that the result is best possible. (Assuming
your construction in Exercise 4.9 is reasonably systematic, it should be possible to adapt
it to the general situation.)
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Figure 4.3: Two ways to count the edges spanning the cut (A, Dy).

Remark 4.12. The term “coupling” does not have a precise agreed meaning, but its
general sense is the following. A pair or perhaps a larger collection of r.v’s is given. A
coupling is a joint distribution of the several variables that has the correct marginals —
i.e., each r.v., when observed independently of the others, has the correct probability
distribution — but, taken together, the variables are seen to be correlated. Usually
the correlation aims to “bring the r.v’s closer together” in some sense. Lemma 4.10 is a
special example of an optimal coupling of two r.v’s that Lindvall calls the v-coupling [53,
§1.5]. The coupling of MCs, as captured in condition (4.2), is another example of the
concept.

We are now well prepared for the main result of the chapter.

Proof of Proposition 4.5. We analyse the coupling of Figure 4.2 using the joint distribu-
tion for the colour-pair (c,, c,) that is implicit in Lemma 4.10. Thus, letting

§:=1Q\ Xo(I'(v))| (= # legal colours for v in X7),

n:=[Q\ Yo(I'(v))] (= # legal colours for v in Y7),
and

¢:=](Q\ Xo(I'(v))) N (Q\ Yo(I'(v)))| (= # common legal colours),

the probability that the same colour is chosen for both X; and Y7 in step 2 is just

¢

(4.3) Pric, = ¢] = (e

Consider the situation that obtains after the coupling has been run for ¢ steps. Let
A; CV be the set of vertices on which the colourings X; and Y; agree, and D, = V' \ A,
be the set on which they disagree. Let d'(v) denote the number of edges incident at
vertex v that have one endpoint in A; and one in D;. Clearly,

d o dw)y =) d(u)=m

vEA; ueDy

where m/ is the number of edges of G that span A; and D;. (The situation is visualised
in Figure 4.3.) We want to prove that the disagreement set D; tends to get smaller and
smaller.

In one transition, the size of the disagreement set D; changes by at most one. We
therefore need to consider just three cases: increasing/decreasing by one or remaining
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constant. In fact, we just need to compute the probability of the first two, since the
third can be got by complementation.

Consider first the probability that |Dy+1| = |D¢| + 1. For this event to occur, the
vertex v selected in step 1 must lie in A;, and the new colours ¢, and ¢, selected in step 2
must be different. Observing that the quantities £, 7 and ( satisfy the linear inequalities

é._ C S d/('l)),
(4.4) n—(¢<d(v), and
5777 Z q— A?

we deduce, from (4.3), that

max{§,n} — d'(v)
max{¢,n}

conditional on v being selected in step (1). Thus

Pr[|Dyp1| = |De| 4+ 1] = % Z Pr [c, # ¢y | v selected]

vEAL
/

1 dv) — m
(4.5) < ”gf;q—A = A

Now consider the probability that |Dy11| = |D¢| — 1. For this event to occur, the
vertex v selected in step 1 must lie in Dy, and the new colours ¢, and ¢, selected in
step 2 must be the same. The analogues of inequalities (4.4) in this case are

g_CSA_d/(U)v
n-C<A-d(v), and
§&n=>q— A

Proceeding as in the previous case,

max{¢,n} — A+ d'(v)

Pric, = ¢,] >

max{&, 7}
1 A—d(v)
- max{¢n}
S q—2A+d'(v)
- q—A 9

conditional on v being selected in step (1). Hence

1 q—2A+d'(v)
Pr||D =Dyl —1| > — —_
1 [|Dr1] = Dyl }_nz A

vEDy

qg—2A m/

(4.6) 1Dy +

SNy (a— A
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Define oA ,
q— ’ m

a=-——— and b=b(m')=—+

(q—A)n (q— A)n
so that Pr [|Dyy1| = |Dy| + 1] < b and Pr[[Dyy1| = |Di| — 1] > a|Dy| + b. Provided
a>0,ie., qg>2A, the size of the set D; tends to decrease with ¢, and hence, intuitively
at least, the event D; = () should occur with high probability for some ¢t < T with T
not too large. Since Dy = () is precisely the event that coalescence has occurred, it only
remains to confirm this intuition, and quantify the rate at which D; converges to the

empty set. From equations (4.5) and (4.6),

E [|Deya] | Di] < 0(1Dt| + 1) + (a| De| +0)(|1 Ds| — 1)
+ (1 — a|D¢| — 2b)| Dy
= (1 —a)[Dy|.

Thus E|D;] < (1 — a)t{Dg| < (1 — a)'n, and, because |D;| is a non-negative integer
random variable, Pr[|D¢| # 0] < n(1 — a)! < ne~%. Note that Pr[D; # 0] < ¢, provided
t > a~'ln(ne™!), establishing the result. O

Remark 4.13. With a little care, the argument can be pushed to ¢ = 24, though the
bound on mixing time worsens by a factor of about n2. (The r.v. D; behaves in the
boundary case rather like an unbiased random walk, and therefore its expected time to
reach the origin D; = 0 is longer; refer, e.g., to Dyer and Greenhill [29], in particular
their Theorem 2.1.)

The (direct) coupling technique described here has been used in a number of other
applications, such as approximately counting independent sets in a low-degree graph
(Luby and Vigoda [57])? and estimating the volume of a convex body (Bubley, Dyer and
Jerrum [16]).% In practice, the versatility of the approach is limited by our ability to
design couplings that work well in situations of algorithmic interest. The next section
reports on a new technique that promises to extend the effective range of the coupling
argument by providing us with a powerful design tool.

4.3 Path coupling

The coupling technique described and illustrated in the previous section is conceptually
very simple and appealing. However, in applying the method to concrete situations we
face a technical difficulty, which began to surface even in §4.2: how do we encourage (X;)
and (Y;) to coalesce, while satisfying the demanding constraints (4.2)? Path coupling is
an engineering solution to this problem, invented by Bubley and Dyer [12, 13]. Their
idea is to define the coupling only on pairs of “adjacent” states, for which the task of
satisfying (4.2) is relatively easy, and then to extend the coupling to arbitrary pairs of
states by composition of adjacent couplings along a path. The approach is not entirely
distinct from classical coupling, and the Coupling Lemma still plays a vital role.

3Though the subsequent journal article [58] uses the more sophisticated path coupling method, which
will be described presently.

4The latter application draws inspiration from Lindvall and Rodgers’s [54] idea of coupling diffusions
by reflection.
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1. Select p € [n — 1] according to the distribution f, and r € {0,1} u.a.r.

2. If r=1and Xgo(p,p+1) € 2, then X7 := Xyo0 (p,p+ 1); otherwise, X; := Xj.
Figure 4.4: Trial defining an MC on linear extensions of a partial order <.

We illustrate path coupling in the context of a MC on linear extensions of a partial
order. We are given a partially ordered set (V, <), where V' = [n] = {0,1,...,n — 1}.
Denote by Sym V' the symmetric group on V. We are interested in sampling, u.a.r., a
member of the set

Q:{gGSymV:g(i)-<g(j):>i§j, foralli,jEV}

of linear extensions of <. In forming a mental picture of the the set (2, the following
characterisation may be helpful: g € {2 iff the linear order

(4.7) 9(0)Cg(l)C---Cg(n—1)

extends, or is consistent with, the partial order <.

As usual, we propose to sample from (2 by constructing an ergodic MC on state
space {2, whose stationary distribution is uniform. The transitions from one linear
extension to another are obtained by pre-composing the current linear extension with a
random transition (p,p+ 1). Instead of selecting p € [n — 1] uniformly, we select p from
a probability distribution f on [n — 1] that gives greater weight to values near the centre
of the range. It is possible that this refinement actually reduces the mixing time; in
any case, it leads to a simplification of the proof. Formally, the transition probabilities
of the MC are defined by the experimental trial presented in Figure 4.4. Note that
composition “o” is to be read right to left, so that (assuming r = 1): X;(p) = Xo(p+1),
Xi(p+1) = Xo(p) and X1(i) = Xo(7), for all i ¢ {p,p+ 1}.

Provided the probability distribution f is supported on the whole interval [n—1], this
MC is irreducible and aperiodic. It is easy to verify, for example using Lemma 3.7, that
the stationary distribution of the MC is uniform. As in §3.3, the explicit loop probability
of % is introduced mainly for convenience in the proof. However, some such mechanism
for destroying periodicity is necessary in any case if we wish to treat the empty partial
order consistently.

Our analysis of the mixing time of the MC using path coupling will closely follow
that of Bubley and Dyer [14]. To apply path coupling, we need first to decide on an
adjacency structure for the state space 2. In this instance we decree that two states g
and ¢’ (linear extensions of <) are adjacent iff ¢’ = go (7, j) for some transposition (4, j)
with 0 < i < j < n — 1; in this case, the distance d(g, g’) from g to ¢’ is defined to be
j —i. Note that the notions of adjacency and distance are symmetric with respect to
interchanging g and ¢’, so we can regard this imposed adjacency structure as a weighted,
undirected graph on vertex set (2; let us refer to this structure as the adjacency graph.
It is easily verified that the shortest path in the adjacency graph between two adjacent
states is the direct one using a single edge. Thus d may be extended to a metric on 2
by defining d(g, h), for arbitrary states g and h, to be the length of a shortest path from
g to h in the adjacency graph.
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1. Select p € [n — 1] according to the distribution f, and r, € {0,1} vaa.r. Iif j—i =1
and p = i, set v, := 1 — ry; otherwise, set ry, := 7.

2. If rp;, =1 and Xgo (p,p+1) € 2 then set X; := Xg o (p,p+ 1); otherwise, set
X1 = Xo.

3. If r, =1 and Ypo (p,p+ 1) € §2 then set Y1 := Yy o (p,p + 1); otherwise, set
Yl = Yb

Figure 4.5: A possible coupling for the MC on linear extensions.

X, =20 AD 7(2) zZW0 =y,
o o i
couple ST
- » | couple
_ 0 e €
To =2 (2) 29 =y
,(1) o

Figure 4.6: Extending a coupling along a shortest path

Next we define the coupling. We need to do this just for adjacent states, as the
extension of the coupling via shortest paths to arbitrary pairs of states will be automatic.
Suppose that (Xg,Yy) € 22 is a pair of states related by Yy = Xg o (4,5) for some
transposition (7,j) with 0 < i < j < n — 1. then the transition to (Xi,Y7) in the
coupling is defined by the experimental trial presented in Figure 4.5. We need to show:

Lemma 4.14. For adjacent states Xg and Yy,
(4.8) E [d(X1,Y1) | Xo, Yo < 0d(X0,Y0),

where o < 1 is a constant depending on f. For a suitable choice for f, one has o = 1—«,
where a = 6/(n3 —n).

Informally, Lemma 4.14 says that distance between pairs of states in the coupled
process tends to decrease: exactly the situation we encountered earlier in the context of
the MC on g-colourings. Before proceeding with the proof of Lemma 4.14, let us pause
to consider why it is sufficient to establish (4.8) just for adjacent states.

Lemma 4.15. Suppose a coupling (Xy,Y:) has been defined, as above, on adjacent pairs
of states, and suppose that the coupling satisfies the contraction condition (4.8) on ad-
jacent pairs. Then the coupling can be extended to all pairs of states in such a way
that (4.8) holds unconditionally.

Proof. Suppose Xg = xg € 2 and Yy = yp € {2 are now arbitrary. Denote by P(-,-) the
transition probabilities of the MC on linear extensions. Let zo = 2@, (1) .. 20 = 20
be a shortest path from z( to yp in the adjacency graph. (Assume a deterministic choice
rule for resolving ties.) First select Z ©) e 2 according to the probability distribution
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P(z(o), ). Now select Z (1) according to the probability distribution induced by the
transition (2(0),2'(1)) — (Z 0, 7z (1)) in the coupled process, conditioned on the choice
of Z(): then select Z?) according to the probability distribution induced by the transi-
tion (21, 2(2)) = (ZW, Z(?)), conditioned on the choice of Z(1; and so on, ending with
Z®. (The procedure is visualised in Figure 4.6.)

Let X1 = Z® and ;7 = Z®. It is routine to verify, by induction on path length ¢,
that Y7 has been selected according to the (correct) distribution P(yg, - ). Moreover, by
linearity of expectation and (4.8),

/-1
E [d(X1,Y1) | Xo =0, Yo =10] <> _Ed(z2W,z0FY)
=0

-1
<o) d=Y, M)
i=0

= o0d(x0,%0)-
]

So we see that it is enough to establish the contraction property (4.8) for adjacent
pairs of states.

Proof of Lemma 4.14. If p ¢ {i —1,4,j — 1,5} then the tests made in steps (2) and (3)
either both succeed or both fail. Thus Y7 = Xj0(7,j) and d(X1,Y1) = j—i = d(Xo, Yo).
Summarising:

Next suppose p =t — 1 or p = j. These cases are symmetrical, so we consider only
the former. With probability at least 3, the tests made in steps (2) and (3) both fail,
since Pr[r, = r, = 0] = 1. If this happens, clearly, d(X1,Y1) = j — i = d(Xo, Yp).
Otherwise, with probability at most 3, one or other test succeeds. If they both succeed,
then

Vi =Yyo (i — 1,4)
= Xpo(i,j)o(i—1,1)
:Xlo(l_17Z)O(Z7])O(Z_17l)
:Xlo(i—l,j),
and d(X1,Y7) =7 — i+ 1 =d(Xo,Yy) + 1; if only one (say the one in step 2) succeeds,

then Y1 = Yy = Xgpo(i,j) = Xy0(i—1,4)0(4,7), and d(X1,Y1) < j—i+1 = d(Xo, Yp)+1.
Summarising;:

. , 1
(4.10) E [d(X1,Y1) | Xo,Yo,p=1i—1Vp=j] <d(Xo,Yo) + 3

Finally suppose p =14 or p = j — 1. Again, by symmetry, we need only consider the
former. There are two subcases, depending on the value of j — i. The easier subcase is
j—i=1 1If r, =1 then ry, = 0 and

X1 =Xoo(iyi+1)=Yyo(i,i+1)o(i,i+1) =Yy =Y,
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with a similar conclusion when r, = 0. Thus d(X1,Y1) = 0 = d(Xp,Yp) — 1. The
slightly harder subcase is the complementary j — ¢ > 2. The crucial observation is that
Xoo(i,i+1),Ypo (i,i + 1) € £2 and hence the tests in steps (2) and (3) either both
succeed or both fail, depending only on the value of r, = r,. To see this, observe that

Xo(@) # Xo(i +1) = Yo(i +1) # Yo(j) = Xo (),
from which we may read off the fact that X¢(i) and Xo(i + 1) are incomparable in <.
The same argument applies equally to Yy(7) and Yp(i 4+ 1). If r; = O there is no change
in state; otherwise, if r, = 1,
X1 = XOO (i,i-i- 1)

=Yyo(i,j)o(i,i+1)

=Yi0(i,i+1)o(i,5) 0 (i,i+1)

=Yio(i+1,5),

)

and d(X1,Y1) =j—i—1=d(Xo, Yy) — 1. Summarising both the j—i=1and j—i > 2
subcases:

(4.11) E [d(X1,Y1) | Xo,Yo,p=iVp=j—1] <e(Xo,Y),

where

d(Xo,Yp) — 3, otherwise.

e(Xo, Yo) = {
Note that, in the case j — i = 1, inequality (4.11) covers just one value of p, namely
p =14 = j — 1, instead of two; however, this effect is exactly counterbalanced by an

expected reduction in distance of 1 instead of just 3. Combining (4.9)(4.11) we obtain

—fE-D+f6O)+f0G-1)—-F0)

5 .
Specialising the probability distribution f(-) to be f(i) := a(i +1)(n —i — 1) — where
a := 6/(n®—n) is the appropriate normalising constant — we have, by direct calculation,
—fE—-D+f@)+f(G—-1)— f(j) =2a(j — ). Since d(Xo, Yy) = j — i, we obtain (4.8)
with o =1 — a. O

E [d(X17Y1> ‘ X07)/bj| S d(X()a}/O) -

From Lemmas 4.14 and 4.15 it is now a short step to:

Proposition 4.16 (Bubley and Dyer). The mizing time of the MC on linear extensions
(refer to Figure 4.4) is bounded by

7(e) < (n® —n)(2Inn +1Ine1)/6.

Proof. By iteration, E [d(Xt,Y}) ‘ XO,YO] < 0'd(Xo, Yp). For any pair of linear exten-
sions g and h, there is a path in the adjacency graph using only adjacent transposi-
tions (i.e., length one edges) that swaps each incomparable pair at most once. Thus
d(Xo,Y0) < (5) <n?, and

Pr[X; # V] <Ed(X:,Y;) < (1 —a)tn?

The latter quantity is less than e, provided ¢t > (n® — n)(2Inn + Ine~!)/6. The result
follows directly from Lemma 4.7. O
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David Wilson has recently derived a similar O(n?logn) bound on mixing time when
f is uniform, i.e, when the transposition (p,p + 1) is selected u.a.r.

Exercises 4.17. 1. Use Proposition 4.16 to construct an FPRAS for linear exten-
sions of a partial order.

2. Reprove Proposition 4.5 using path coupling. Note the significant simplification
over the direct coupling proof.

New applications of path coupling are regularly being discovered. Bubley, Dyer and
Greenhill [15] have presented an FPRAS for g-colourings of a low degree graph that
extends the range of applicability of the one described earlier. They were able, for
example, to approximate in polynomial time the number of 5-colourings of a graph of
maximum degree 3, thus “beating the 2A bound” that appeared to exist following the
result described in §4.1. Vigoda [80], in a path-coupling tour de force, was able to beat
the 2A bound uniformly over all sufficiently large A; specifically, he proved rapid mixing
whenever g > %A. It is fair to say that neither of these improvements would have been
possible without the aid of path coupling.

Dyer and Greenhill have also considered independent sets in a low degree graph [30],
and obtained a result similar to, but apparently incomparable with, that of Luby and
Vigoda [58]. Bubley and Dyer (again) applied path coupling to establish rapid mixing of
a natural Markov chain on sink-free orientations of an arbitrary graph [11]. McShine [62]
presents a particularly elegant application of path coupling to sampling tournaments.
One further example must suffice: Cooper and Frieze [19] have applied path coupling to
analyse the “Swendsen-Wang process,” which is commonly used to sample configurations
of the “random cluster” or ferromagnetic Potts model in statistical physics.

Finally, for those who skipped Exercise 4.3, here is the missing proof.

Proof of Lemma 4.2. The claim is established by the following sequence of (in)equalities:

2 HPt—H(x7 ) - 7T||TV = Z|Pt+1(xay) - W(y)‘

yes?
=> D Plx,2) P(z,y) = Y 7(2) P(z, y)‘
yen zeN zef
(4.12) <D D _Pw2) —7(2)| Pz y)
yeS z€(2
= Z‘Pt(x,z) —7(z)] Z P(z,y)
z€Q2 yen

=2||P(z, ) = wlrv,

where (4.12) is the triangle inequality. O



