


Chapter 5

Canonical paths and matchings

Coupling, at least Markovian coupling, is not a universally applicable method for proving
rapid mixing. In this chapter, we define a natural MC on matchings in a graph G and
show that its mixing time is bounded by a polynomial in the size of G. Anil Kumar
and Ramesh [3] studied a very similar MC to this one, and demonstrated that every
Markovian coupling for it takes expected exponential time (in the size of G) to coalesce.
In the light of their result, it seems we must take an alternative approach, sometimes
called the “canonical paths” method.

5.1 Matchings in a graph

Consider an undirected graph G = (V,E) with vertex set V of size n, and edge set E
of size m. Recall that the set of edges M ⊆ E is a matching if the edges of M are
pairwise vertex disjoint. The vertices that occur as endpoints of edges of M are said to
be covered by M ; the remaining vertices are uncovered. For a given graph G = (V,E), we
are interested in sampling from the set of matchings of G according to the distribution

(5.1) π(M) =
λ|M |

Z

where Z :=
∑

M λ|M |, and the sum is over matchings M of all sizes. In statistical
physics, the edges in a matching are referred to as “dimers” and the uncovered vertices
as “monomers.” The probability distribution defined in (5.1) characterises the monomer-
dimer system specified by G and λ. The normalising factor Z is the partition function
of the system. The parameter λ ∈ R+ can be chosen to either favour smaller (λ < 1) or
larger (λ > 1) matchings, or to generate them from the uniform distribution (λ = 1).

Note that computing Z exactly is a hard problem. For if it could be done efficiently,
one could compute Z = Z(λ) at a sequence of distinct values of λ, and then extract
the coefficients of Z(λ) by interpolating the computed values. (Observe that Z(λ) is
a polynomial in λ.) But the highest-order coefficient is just the number of perfect
matchings in G. It follows from Theorem 2.2 that evaluating Z(λ) at (say) integer
points λ ∈ N is #P-hard. Indeed, with a little more work, one can show that evaluating
Z(λ) at the particular point λ = 1 (i.e., counting the number of matchings in G) is
#P-complete. Although it is unlikely that Z can be computed efficiently, nothing stops
us from having an efficient approximation scheme, in the FPRAS sense of §3.1.
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46 Chapter 5: Canonical paths and matchings

1. Select e = {u, v} ∈ E u.a.r.

2. There are three mutually exclusive (but not exhaustive) possibilities.

(↑) If u and v are not covered by X0, then M ← X0 ∪ {e}.
(↓) If e ∈ X0, then M ← X0 \ {e}.

(↔) If u is uncovered and v is covered by some edge e′ ∈ X0 (or vice versa, with
the roles of u and v reversed), then M ′ ←M ∪ {e} \ {e′}.

If none of the above situations obtain, then M ← X0.

3. With probability min
{

1, π(M)/π(X0)
}

set X1 ← M ; otherwise, set X1 ← X0.
(This form of acceptance probability is known as the Metropolis filter.)

Figure 5.1: An MC for sampling weighted matchings

We construct an MC for sampling from distribution (5.1) as shown in Figure 5.1. As
usual, denote the state space of the MC by Ω, and its transition matrix by P . Consider
two adjacent matchings M and M ′ with π(M) ≤ π(M ′). By adjacent we just mean
that P (M,M ′) > 0, which is equivalent to P (M ′,M) > 0. The transition probabilities
between M and M ′ may be written

P (M,M ′) =
1

m
, and

P (M ′,M) =
1

m

π(M)

π(M ′)
,

giving rise to the symmetric form

(5.2) π(M)P (M,M ′) = π(M ′)P (M ′M) =
1

m
min

{
π(M), π(M ′)

}
.

The above equality makes clear that the MC is time-reversible, and that its stationary
distribution (appealing Lemma 3.7) is π.

Remarks 5.1. (a) The transition probabilities are easy to compute: since a transition
changes the number of edges in the current matching by at most one, the acceptance
probability in step 3 is either 1 or min{λ, λ−1}, and it is easy to determine which.

(b) Broder [9] was the first to suggest sampling matching by simulating an appropriate
MC. His proposal was to construct an MC whose states are perfect matchings (i.e.,
covering all the vertices of G) and near-perfect matchings (i.e., leaving exactly
two vertices uncovered). The MC on all matchings presented in Figure 5.1 was
introduced by Jerrum and Sinclair [45].

(c) Time reversibility is a property of MCs that is frequently useful to us; in particular,
as we have seen on several occasions, it permits easy verification of the stationary
distribution of the MC. However, we shall not make use of the property in the
remainder of the chapter, and all the results will hold in the absence of time
reversibility.
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5.2 Canonical paths

The key to demonstrating rapid mixing using the “canonical paths” technique lies in
setting up a suitable multicommodity flow problem. For any pair x, y ∈ Ω, we imagine
that we have to route π(x)π(y) units of distinguishable fluid from x to y, using the
transitions of the MC as “pipes.” To obtain a good upper bound on mixing time we
must route the flow evenly, without creating particularly congested pipes. To formalise
this, we need a measure for congestion.

For any pair x, y ∈ Ω, define a canonical path γxy = (x = z0, z1, . . . , z` = y) from x
to y through pairs (zi, zi+1) of states adjacent in the MC, and let

Γ := {γxy | x, y ∈ Ω}

be the set of all canonical paths. The congestion % = %(Γ ) of the chain is defined by

(5.3) %(Γ ) := max
t=(u,v)

{
1

π(u)P (u, v)︸ ︷︷ ︸
(capacity of t)−1

∑
x,y: γxy uses t

π(x)π(y) |γxy|︸ ︷︷ ︸
total flow through t

}
.

where t runs over all transitions, i.e., all pairs of adjacent states of the chain, and |γxy|
denotes the length ` of the path γxy.

We want to show that if % is small then so is the mixing time of the MC. Consider
some arbitrary “test” function f : Ω → R. The variance of f (with respect to π) is

(5.4) Varπ f :=
∑
x∈Ω

π(x)
(
f(x)− Eπ f

)2
=
∑
x∈Ω

π(x)f(x)2 − (Eπ f)2,

where
Eπ f :=

∑
x∈Ω

π(x)f(x).

It is often convenient to work with an alternative, possibly less familiar expression for
variance, namely

(5.5) Varπ f =
1

2

∑
x,y∈Ω

π(x)π(y)
(
f(x)− f(y)

)2
.

Equivalence of (5.4) and (5.5) follows from the following sequence of identities:

1

2

∑
x,y∈Ω

π(x)π(y)
(
f(x)− f(y)

)2
=
∑
x,y∈Ω

[
π(x)π(y)f(x)2 − π(x)π(y)f(x)f(y)

]
=
∑
x∈Ω

π(x)f(x)2
∑
y∈Ω

π(y)−
∑
x∈Ω

π(x)f(x)
∑
y∈Ω

π(y)f(y)

=
∑
x∈Ω

π(x)f(x)2 − (Eπ f)2

= Varπ f.
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The variance Varπ f measures the “global variation” of f over Ω. By contrast, the
Dirichlet form

(5.6) EP (f, f) :=
1

2

∑
x,y∈Ω

π(x)P (x, y)
(
f(x)− f(y)

)2
measures the “local variation” of f with respect to the transitions of the MC. The key
result relating the congestion % to local and global variation is the following.

Theorem 5.2 (Diaconis and Stroock; Sinclair). For any function f : Ω → R,

(5.7) EP (f, f) ≥ 1

%
Varπ f.

where % = %(Γ ) is the congestion, defined in (5.3), with respect to any set of canonical
paths Γ .

Remarks 5.3. (a) An inequality such as (5.7), which bounds the ratio of the local to
the global variation of a function, is often termed a Poincaré inequality.

(b) If the congestion % is small, then high global variation of a function entails high
local variation. This in turn entails, as we shall see presently, short mixing time.

Proof of Theorem 5.2. We follow Sinclair [71, Thm. 5] whose proof in turn is inspired
by Diaconis and Stroock [23].

2 Varπ f =
∑
x,y∈Ω

π(x)π(y)
(
f(x)− f(y)

)2
=
∑
x,y∈Ω

π(x)π(y)

( ∑
(u,v)∈γxy

1 ·
(
f(u)− f(v)

))2

(5.8)

≤
∑
x,y∈Ω

π(x)π(y) |γxy|
∑

(u,v)∈γxy

(
f(u)− f(v)

)2
(5.9)

=
∑
u,v∈Ω

∑
x,y:

(u,v)∈γxy

π(x)π(y) |γxy|
(
f(u)− f(v)

)2
=
∑
u,v∈Ω

(
f(u)− f(v)

)2 ∑
x,y:

(u,v)∈γxy

π(x)π(y) |γxy|

≤
∑
u,v∈Ω

(
f(u)− f(v)

)2
π(u)P (u, v) %(5.10)

= 2% EP (f, f).

Equality (5.8) is a “telescoping sum,” inequality (5.9) is Cauchy-Schwarz, and inequal-
ity (5.10) is from the definition of %.

For the following analysis, we modify the chain by making it “lazy.” In each step,
the lazy MC stays where it is with probability 1

2 , and otherwise makes the transition
specified in Figure 5.1. Formally, the transition matrix of the lazy MC is Pzz := 1

2(I+P ),
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where I is the identity matrix. It is straightforward to show that the lazy MC is ergodic
if the original MC is, in which case the stationary distribution of the two is identical.
(In fact, irreducibility of the original MC is enough to guarantee ergodicity of the lazy
MC.)

Exercise 5.4. Verify these claims about the lazy MC.

Remarks 5.5. (a) This laziness doubles the mixing time, but ensures that the eigen-
values of the transition matrix are all non-negative, and avoids possible parity
conditions that would lead to the MC being periodic or nearly so. In an imple-
mentation, to simulate 2t steps of the lazy MC, one would generate a sample T
from the binomial distribution Bin(2t, 1

2), and then simulate T steps of the original,
non-lazy MC. Thus, in practice, efficiency would not be compromised by laziness.

(b) The introduction of the lazy chain may seem a little unnatural. At the expense
of setting up a little machinery, it can be avoided by using a continuous-time
MC rather than a discrete-time MC as we have done. Some other parts of our
development would also become smoother in the continuous-time setting. We
shall return to this point at the end of the chapter.

Before picking up the argument, some extra notation will be useful. If f is any
function f : Ω → R then Pzzf : Ω → R denotes the function defined by

[Pzzf ](x) :=
∑
y∈Ω

Pzz(x, y)f(y).

The function Pzzf is the “one-step averaging” of f . Similarly, P tzzf , defined in an analo-
gous way, is the “t-step averaging” of f : it specifies the averages of f over t-step evolu-
tions of the MC, starting at each of the possible states. If the MC is ergodic (as here),
then P tzzf tends to the constant function Eπ f as t→∞. (Observe that Eπ(Pzzf) = Eπ f
and hence Eπ(P tzzf) = Eπ f ; in other words, t-step averaging preserves expectations.)
Thus we can investigate the mixing time of the MC by seeing how quickly Varπ(P tzzf)
tends to 0 as t→∞. This is the idea we shall now make rigorous.

Theorem 5.6. For any function f : Ω → R,

(5.11) Varπ(Pzzf) ≤ Varπ f −
1

2
EP (f, f).

Proof. We follow closely Mihail’s [63] derivation. Consider the one-step averaging of f
with respect to the lazy chain:

[Pzzf ](x) =
∑
y∈Ω

Pzz(x, y)f(y)

=
1

2
f(x) +

1

2

∑
y∈Ω

P (x, y)f(y)

=
1

2

∑
y∈Ω

P (x, y)
(
f(x) + f(y)

)
.(5.12)
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For convenience, assume1 Eπ f = 0, and hence Eπ(Pzzf) = 0. Then the left-hand side
of (5.11) is bounded above as follows:

Varπ(Pzzf) =
∑
x∈Ω

π(x)
{

[Pzzf ](x)
}2

=
1

4

∑
x∈Ω

π(x)

(∑
y∈Ω

P (x, y)
(
f(x) + f(y)

))2

(5.13)

≤ 1

4

∑
x,y∈Ω

π(x)P (x, y)
(
f(x) + f(y)

)2
,(5.14)

where step (5.13) uses (5.12), and step (5.14) relies on the fact that the square of the
expectation of a r.v. is no greater than the expectation of its square. To get at the
right-hand side of (5.11) we use yet another expression for the variance of f :

Varπ f =
1

2

∑
x∈Ω

π(x)f(x)2 +
1

2

∑
y∈Ω

π(y)f(y)2

=
1

2

∑
x,y∈Ω

π(x)f(x)2P (x, y) +
1

2

∑
x,y∈Ω

π(x)P (x, y)f(y)2

=
1

2

∑
x,y∈Ω

π(x)P (x, y)
(
f(x)2 + f(y)2).(5.15)

Subtracting (5.14) from (5.15) yields

Varπ f −Varπ(Pzzf) ≥ 1

4

∑
x,y∈Ω

π(x)P (x, y)
(
f(x)− f(y)

)2
=

1

2
EP (f, f),

as required.

Combining Theorem 5.2 and Theorem 5.6 gives:

Corollary 5.7. For any function f : Ω → R,

Varπ(Pzzf) ≤
(

1− 1

2%

)
Varπ f,

where % = %(Γ ) is the congestion, defined in (5.3), with respect to any set of canonical
paths Γ .

Remark 5.8. The algebraic manipulation in the proof of Theorem 5.6 seems mysterious.
The discussion of the continuous-time setting at the end of the chapter will hopefully
clarify matters a little.

1Otherwise add or subtract a constant, an operation that leaves unchanged the quantities of interest,
namely Varπ f , Varπ(Pzzf) and EP (f, f).
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We can now use Corollary 5.7 to bound the mixing time of the chain, by using a
special function f . For a subset A ⊆ Ω of the state space, we consider its indicator
function

f(x) :=

{
1, if x ∈ A;

0, otherwise.

Then we have Varπ f ≤ 1 and therefore

Varπ(P tzzf) ≤
(

1− 1

2%

)t
≤ exp

{
−t
2%

}
,

where P tzzf is the t-step averaging of f . Fix some starting state x ∈ Ω and set

t =
⌈
2%
(
2 ln ε−1 + lnπ(x)−1

)⌉
.

This gives
Varπ(P tzzf) ≤ exp

{
−2 ln ε−1 − lnπ(x)−1

}
= ε2π(x).

On the other hand,

Varπ(P tzzf) ≥ π(x)
(
[P tzzf ](x)− Eπ(P tzzf)

)2
= π(x)

(
[P tzzf ](x)− Eπ f

)2
,

which implies
ε ≥

∣∣[P tzzf ](x)− Eπ f
∣∣ =

∣∣P tzz(x,A)− π(A)
∣∣

for all A. This in turn means that the total variation distance ‖P tzz(x, · ) − π‖TV is
bounded by ε, and we obtain the following corollary:

Corollary 5.9. The mixing time of the lazy MC is bounded by

τx(ε) ≤ 2%
(
2 ln ε−1 + lnπ(x)−1

)
,

where % = %(Γ ) is the congestion, defined in (5.3), with respect to any set of canonical
paths Γ .

Remark 5.10. The factor 2 in front of the bound on mixing time is an artifact of using
the lazy MC.

5.3 Back to matchings

In the previous section, we saw how a general technique (canonical paths) can be used
to bound the Poincaré constant of an MC, and how that constant in turn bounds the
mixing time. Let’s apply this machinery to the matching chain presented in Figure 5.1.
Our ultimate goal is to derive a polynomial upper bound on mixing time:

Proposition 5.11. The mixing time τ of the MC on matchings of a graph G (refer to
Figure 5.1) is bounded by

τ(ε) ≤ nmλ̄2
(
4 ln ε−1 + 2n lnn+ n |lnλ|

)
,

where n and m are the number of vertices and edges of G, respectively, and λ̄ =
max{1, λ}.
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I:

F :

t

M :

M
′:

P1 · · ·

· · ·

· · ·· · ·

· · ·

· · ·· · ·

· · ·

...

...

Pi Pi+1
Pi−1 Pr

Start vertex of (closed) path Pi

Figure 5.2: A step in a canonical path between matchings

Remark 5.12. It is possible, with a little extra work, to improve the upper bound in
Proposition 5.11 by a factor of λ̄: see Exercise 5.17.

The first step is to define the set Γ of canonical paths. Given two matchings I (initial)
and F (final), we need to connect I and F by a canonical path γIF in the adjacency
graph of the matching MC. Along this path, we will have to lose or gain at least the
edges in the symmetric difference I ⊕ F ; these edges define a graph of maximum degree
two, which decomposes into a collection of paths and even-length cycles, each of them
alternating between edges in I and edges in F . If we fix some ordering of the vertices
in V , we obtain a unique ordering of the connected components of (V, I⊕F ), by smallest
vertex. Within each connected component we may identify a unique “start vertex”: in
the case of a cycle this will be the smallest vertex, and the case of a path the smaller of
the two endpoints. We imagine each path to be oriented away from its start vertex, and
each cycle to be oriented so that the edge in I adjacent to the start vertex acquires an
orientation away from the start vertex. In Figure 5.2 — which focuses on a particular
transition t = (M,M ′) on the canonical path from I to F — the r connected components
of I ⊕ F are denoted P1, . . . , Pr.

To get from I to F , we now process the components of (V, I ⊕ F ) in the order
P1, . . . , Pr. In each cycle, we first remove the edge in I incident to the start vertex
using a ↓-transition; with a sequence of ↔-transitions following the cycle’s orientation,
we then replace I- by F -edges; finally, we perform a ↑-transitions to add the edge in F
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P1 · · · · · ·Pi Pi+1Pi−1 Pr

Figure 5.3: The corresponding encoding ηt(X,Y ).

incident to the start vertex. In every path, if the start vertex is incident to an F -edge,
we use ↔-transitions along the path and finish by a ↑-transition in case the path has
odd length. If the start vertex is incident to an I-edge, we start with a ↓-transition, then
use ↔-transitions along the path, and finish with an ↑-transition in case the path has
even length. This concludes the description of the canonical path γIF . Each transition t
on a canonical path γIF can be thought of as contributing to the processing of a certain
connected component of I ⊕F ; we call this the current component (or cycle, or path, if
we want to be more specific).

Denote by
cp(t) :=

{
(I, F ) | t ∈ γIF

}
the set of pairs (I, F ) ∈ Ω whose canonical path γIF uses transition t. To bound the
mixing time of the MC, we need to bound from above the congestion

(5.16) % = max
t=(M,M ′)

{
1

π(M)P (M,M ′)

∑
(I,F )∈cp(t)

π(I)π(F ) |γIF |

}

(c.f. (5.3)), where the maximum is over all transitions t = (M,M ′). It is not immediately
clear how to do this, as the sum is over a set we don’t have a ready handle on. Suppose,
however, that were able to construct, for each transition t = (M,M ′), an injective
function ηt : cp(t)→ Ω such that

(5.17) π(I)π(F ) / π(M)P (M,M ′)π(ηt(I, F )),

for all (I, F ) ∈ cp(t), where the relational symbol “/ ” indicates that the left-hand side
is larger than the right-hand side by at most a polynomial factor in the “instance size,”
i.e., some measure of G and λ. Then it would follow that

% / max
t

{ ∑
(I,F )∈cp(t)

π(ηt(I, F )) |γIF |

}
from (5.16) and (5.17)

/ max
t

{ ∑
(I,F )∈cp(t)

π(ηt(I, F ))

}
since |γIF | ≤ n

≤ 1 since ηt is injective.

In other words, the congestion % (and hence the mixing time of the MC) is polynomial
in the instance size, as we should like.

We now complete the programme by defining an encoding ηt with the appropriate
properties, and making exact the calculation just performed. To this end, fix a transition
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t = (M,M ′). If t is a ↔-transition, (I, F ) ∈ cp(t), and the current component (with
respect to the canonical path γIF ) is a cycle, then we say that t is troublesome (with
respect to the path γIF ). If t is troublesome, then we denote by eIF t ∈ I the (unique)
edge in I that is adjacent to the start vertex of the cycle being processed by t. For all
(I, F ) ∈ cp(t), define

ηt(I, F ) =

{(
I ⊕ F ⊕ (M ∪M ′)

)
\ {eIF t}, if t is troublesome;

I ⊕ F ⊕ (M ∪M ′), otherwise.

Roughly speaking, the encoding C = ηt(I, F ) agrees with I on the components that have
been completely processed, and with F on the components that have not been touched
yet. Moreover, C agrees with I and F on the edges common to both. (See Figure 5.3.)
The crucial properties of ηt are described in the following sequence of claims.

Claim 5.13. For all transitions t and all pairs (I, F ) ∈ cp(t), the encoding C = ηt(I, F )
is a matching; thus ηt is a function with range Ω, as required.

Proof. Consider the set of edges A = I ⊕ F ⊕ (M ∪M ′), and suppose that some vertex,
u say, has degree two in A. (Since A ⊆ I ∪ F , no vertex degree can exceed two.) Then
A contains edges {u, v1}, {u, v2} for distinct vertices v1, v2, and since A ⊆ I ∪ F , one of
these edges must belong to I and the other to F . Hence both edges belong to I ⊕ F ,
which means that neither can belong to M ∪M ′. Following the form of M ∪M ′ along
the canonical path, however, it is clear that there can be at most one such vertex u;
moreover, this happens precisely when t is a troublesome transition and u is the start
vertex of the current cycle. Our definition of ηt removes one of the edges adjacent to u in
this case, so all vertices in C have degree at most one, i.e., C is indeed a matching.

Claim 5.14. For every transition t, the function ηt : cp(t)→ Ω is injective.

Proof. Let t be a transition, and (I, F ) ∈ cp(t). We wish to show that the pair (I, F )
can be uniquely reconstructed from a knowledge only of t and ηt(I, F ). It is immediate
from the definition of ηt that the symmetric difference I ⊕ F can be recovered from
C = ηt(I, F ) using the relation

I ⊕ F =

{(
C ⊕ (M ∪M ′)

)
∪ {eIF t}, if t is troublesome;

C ⊕ (M ∪M ′), otherwise.

Of course, we don’t know, a priori, the identity of the edge eIF t. However, once we
have formed the set C ⊕ (M ∪M ′) we can see that eIF t is the unique edge that forms a
cycle when added to the current path. There is a slightly delicate issue here: how do we
know whether we are in the troublesome case or not? In other words, how to we know
whether the current component is a cycle or a path? The answer lies in the convention
for choosing the start vertex. It can be checked that choosing the lowest vertex as start
vertex leads to a path being oriented in the opposite sense to a cycle in this potentially
ambiguous situation.

Given I ⊕ F , we can at once infer the sequence of paths P1, P2, . . . , Pr that have
to be processed along the canonical path from I to F , and the transition t tells us
which of these, Pi say, is the current one. The partition of I ⊕ F into I and F is
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now straightforward: I agrees with C on paths P1, . . . , Pi−1, and with M on paths
Pi+1, . . . , Pr. On the current path, Pi, the matching I agrees with C on the already
processed part, and with M on the rest. (If t is troublesome, then the edge eIF t also
belongs to I.) Finally, the reconstruction of I and F is completed by noting that
I∩F = M \(I⊕F ), which is immediate from the definition of the paths. Hence I and F
can be uniquely recovered from C = ηt(I, F ), so ηt is injective.

Claim 5.15. For all transitions t = (M,M ′) and all pairs (I, F ) ∈ cp(t),

π(I)π(F ) ≤ mλ̄2π(M)P (M,M ′)π(ηt(I, F )),

where λ̄ := max{1, λ}.

Proof. Let C = ηt(I, F ), and consider the expressions

λ|I|λ|F | and λ|M∪M
′|λ|C|,

which are closely related to the quantities

π(I)π(F ) and π(M)P (M,M ′)π(ηt(I, F ))

of interest. Each edge e ∈ E contributes a factor 1, λ or λ2 to λ|I|λ|F |, according to
whether e is in neither, exactly one, or both of I and F . A similar observation can be
made about λ|M∪M

′|λ|C|. If e /∈ I and e /∈ F then e /∈ M ∪M ′ and e /∈ C, and the
contribution to both expressions is 1. If e ∈ I and e ∈ F then e ∈M ∪M ′ and e ∈ C and
the contribution to both expressions is λ2. If e ∈ I ⊕ F then e ∈ (M ∪M ′)⊕C and the
contribution to both expressions is λ, with one possible exception: if t is troublesome
and e = eIF t then there is a contribution λ to λ|I|λ|F | and 1 to λ|M∪M

′|λ|C|. Thus,

λ|I|λ|F | ≤ λ̄ λ|M∪M ′|λ|C|.

Dividing by Z2, the square of the partition function, it follows that

π(I)π(F ) ≤ λ̄2π(M)π(C) and π(I)π(F ) ≤ λ̄2π(M ′)π(C),

where we have used the fact that |M |, |M ′| ≥ |M ∪M ′| − 1. Then

π(I)π(F ) ≤ λ̄2 min
{
π(M), π(M ′)

}
π(C)

= mλ̄2π(M)P (M,M ′)π(C) by (5.2),

yielding the required inequality.

Now we are ready to evaluate the congestion %.

Proposition 5.16. With a set of canonical paths Γ defined as in this section, the con-
gestion % = %(Γ ) of the MC on matchings of a graph G (refer to Figure 5.1) is bounded
by % ≤ nmλ̄2, where n and m are the number of vertices and edges of G, respectively,
and λ̄ = max{1, λ}.
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· · ·

(k hexagons)
u v

Figure 5.4: A graph with many “near perfect” matchings.

Proof. We just need to make precise the rough calculation following (5.17).

% = max
t=(M,M ′)

{
1

π(M)P (M,M ′)

∑
(I,F )∈cp(t)

π(I)π(F ) |γIF |

}

≤ mλ̄2
∑

(I,F )∈cp(t)

π(ηt(I, F )) |γIF | by Claim 5.15

≤ nmλ̄2
∑

(I,F )∈cp(t)

π(ηt(I, F )) since |γIF | ≤ n

≤ nmλ̄2 by Claim 5.14.

The sought-for bound on mixing time follows immediately.

Proof of Proposition 5.11. Combine Corollary 5.9 and Proposition 5.16, noting the crude
bound lnπ(x)−1 ≤ n lnn+ 1

2n |lnλ|, which holds uniformly over x ∈ Ω.

Exercise 5.17. Show how to tighten the upper bound in Proposition 5.11 by a factor λ̄.
Since Claim 5.15 is essentially tight when t is troublesome, it is necessary to improve
somehow the inequality ∑

(I,F )∈cp(t)

π(ηt(I, F )) ≤ 1,

by studying carefully the range of ηt. See Jerrum and Sinclair [45], specifically the proof
of their Proposition 12.4.

5.4 Extensions and further applications

Let G be a graph with at least one perfect matching (i.e., matching that covers all vertices
of G). In the limit, as λ→∞, the partition function Z(λ) counts the number of perfect
matchings in G. However, the bound on mixing time provided by Proposition 5.11 grows
unboundedly with increasing λ, so it is not clear whether the MC we have studied in
this chapter provides us with a FPAUS for perfect matchings in G. At first we might
hope that it is not necessary to set λ very large; perhaps the distribution (5.1) already
places sufficient probability on the totality of perfect matchings at some quite modest λ.
(According to Proposition 5.11, we need λ to be bounded by a polynomial in n, the
number of vertices in G, to achieve a FPAUS/FPRAS for perfect matchings.)

Unfortunately, there are graphs (see Figure 5.4) for which the perfect matchings
make an insignificant contribution to distribution (5.1) unless λ is exponentially large
in n. This claim follows from the these easily verified properties of the illustrated graph:
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(i) it has a unique perfect matching, and (ii) it has 2k matchings that cover all vertices
apart from u and v. The question of whether there exists an FPRAS (equivalently, by
the observations of Chapter 3, an FPAUS) for perfect matchings in a general graph is
still open at the time of writing. However, progress has been made in some special cases,
that of bipartite graphs being perhaps the most interesting.

The problem of counting perfect matchings in a bipartite graph is of particular sig-
nificance, since is is equivalent to evaluating the permanent of a 0, 1-matrix. (Refer to
problems #BipartitePM and 0,1-Perm of Chapter 2.) Recently, Jerrum, Sinclair and
Vigoda [46] presented an FPRAS for the permanent of a 0, 1-matrix (in fact a general
matrix with non-negative entries) using MC simulation. Noting that the counterexample
of Figure 5.4 is bipartite, it is clear that we need to introduce a more sophisticated MC
to achieve this result. In very rough terms, it is necessary to weight matchings according
not just to the number of uncovered vertices but also their locations. In this way it is
possible to access perfect matchings from near-perfect ones via a “staircase” of relatively
small steps. Full details may be found in [46].

The canonical paths technique has also been applied by Jerrum and Sinclair to the
ferromagnetic Ising model [44] and by Morris and Sinclair to “knapsack solutions” [64].
The latter application is particularly interesting for its use of random canonical paths.

5.5 Continuous time

It is possible to gain a better understanding of Theorem 5.6 and Corollary 5.7 by moving
to continuous time.

Associated with any discrete-time MC (Xt : t ∈ N) is a “continuised” MC (X̃t :
t ∈ R+). (We use tilde to distinguish continuous-time notions from their discrete-time
analogues.) The MC (X̃t) makes jumps at times (t1, t2, t3, . . .) where the time increments
ti+1− ti, for i ∈ N, are independent r.v’s that are exponentially distributed with mean 1.
(Here we use the convention t0 = 0.) Between the jumps, i.e., in the intervals [ti, ti+1),
for i ∈ N, the value of X̃t is constant. The jumps, when they occur, are governed by
the same transition matrix P as the original MC (Xt). Informally, we have replaced
deterministic time-1 holds between jumps by random, exponential, mean-1 holds. See
Norris [65] for a proper treatment of continuous-time MCs.

The continuous-time MC has an “infinitesimal description” Pr(X̃t+dt = y | X̃t =
x) = P (x, y) dt for all x 6= y. As a consequence, the distribution of X̃t has a particularly
pleasant form:

P̃ t(x, y) := Pr(X̃t = y | X̃0 = x) = exp{(P − I)t},
where I is the identity matrix.2 As in the discrete-time case, we aim to bound the rate
of convergence of (X̃t) to stationarity by analysing the decay of the variance

(5.18) Varπ(P̃ tf) :=
∑
x∈Ω

π(x)
{

[P̃ tf ](x)
}2
,

where the function P̃ tf : Ω → R is defined by

(5.19) [P̃ tf ](x) :=
∑
y∈Ω

P̃ t(x, y)f(y),

2The exponential function applied to matrices can be understood as a convergent sum expQ :=
I +Q+Q2/2! +Q3/3! + · · · .
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and f : Ω → R is any test function with Eπ f = 0.
By calculus, starting with (5.18) and (5.19), we may derive (calculation left to the

reader):

d

dt
Varπ(P̃ tf) = 2

∑
x,y∈Ω

π(x)
(
P (x, y)− I(x, y)

)
[P̃ tf ](x) [P̃ tf ](y).

Hence, setting t = 0, we obtain

d

dt
Varπ(P̃ tf)

∣∣∣∣
t=0

= 2
∑
x,y∈Ω

π(x)
(
P (x, y)− I(x, y)

)
f(x)f(y)

= 2
∑
x,y∈Ω

π(x)P (x, y)f(x)f(y)− 2 Varπ f

= −2 EP (f, f),

a continuous-time analogue of Theorem 5.6.
Applying Theorem 5.2, we see that Varπ(P̃ tf) is bounded by the solution of the

differential equation v̇ = −(2/%)v, and hence

(5.20) Varπ(P̃ tf) ≤ exp

{
− 2t

%

}
Varπ f,

a continuous-time analogue of Corollary 5.7.

Exercise 5.18. Follow through in detail the calculations sketched above.

Remarks 5.19. (a) The rate of decay of variance promised by (5.20) is faster than
Corollary 5.7 by a factor 4. A factor 2 is explained by the avoidance of the lazy
MC, but the remaining factor 2 is “real.” This suggests that the calculation in
Theorem 5.6 is not only a little mysterious, but also gives away a constant factor.

(b) Simulating the continuised MC is unproblematic, and can be handled by a device
similar to that employed in the case of the lazy MC (c.f. Remarks 5.5). To obtain
a sample from the distribution of X̃t: (i) generate a sample T from the Poisson
distribution with mean t, and then (ii) simulate the discrete-time MC for T steps.


