
Chapter 6

Volume of a convex body

We arrive at one of the most important applications of the Markov chain Monte Carlo
method: the estimation of the volume of a convex body. For a convex body K in low di-
mensional Euclidean space, say two or three dimensions, it is not too difficult to estimate
the volume of K within reasonable relative error using a direct Monte Carlo approach.
Depending on how K is presented, it may even be possible to find the volume exactly
without too much difficulty. In this chapter, therefore, we imagine the dimension n of
the space to be large, and certainly greater than 3.

There are two related problems:

• sample uniformly at random a point from the convex body K;

• estimate the volume volnK of K.

We will first look at the problem of random sampling in K. Since volume is the limit of
a sum, it is not surprising, in the light of examples contained in previous chapters, that
the second problem can be reduced to the first. We shall look first at the problem of
random sampling in K; the reduction of volume estimation to sampling will be covered
at the end of the chapter.

The convex body is given as an oracle which, for a point x ∈ Rn, tells whether or
not x ∈ K (see Figure 6.1). This oracle model subsumes several possible conventions
for describing inputs. For example, in the case of a convex polytope defined by a set
of linear inequalities it is of course easy to implement the oracle. A convex polytope
presented as the convex hull of its vertices it is a little harder, but it can still be done,
by linear programming. In some applications, the assumption of an exact oracle that
accurately decides whether x ∈ K may be unrealistic. In an implementation we would
almost certainly be using arithmetic with bounded precision, and we could not always
know for sure whether were in or out. In fact, it is possible to relax the definition
of oracle to incorporate some fuzziness at the boundary of K without loosing much
algorithmically. One of the many simplifications we shall make in this chapter is to
assume exact arithmetic and an exact oracle. For a much fuller picture, refer to Kannan,
Lovász and Simonovits [50].

The first thing to be noticed in this endeavour is that some intuitively appealing
approaches do not work very well. Let us consider a conventional application of the
Monte Carlo method to the problem. Say we shrink a box C around K as tightly as
possible (see Figure 6.2), sample a point x uniformly at random from C, and return x
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Figure 6.1: Oracle for K.
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Figure 6.2: Sampling by “direct” Monte Carlo.

if x ∈ K; otherwise repeat the sampling if x /∈ K. This simple idea works well in low
dimension, but not in high dimension, where the volume ratio volnK/ volnC can be
exponentially small. This phenomenon may be illustrated by a very simple example.
Let K = Bn(0, 1) be the unit ball, and C = [−1, 1]n the smallest enclosing cube. In
this instance the ratio in question may be calculated exactly, and is volnK/ volnC =
2πn/2/(2nnΓ(n/2)), which decays rapidly with n.1 In the light of this observation, it
seems that a random walk through K may provide a better alternative.

Dyer, Frieze and Kannan [28] were the first to propose a suitable random walk for
sampling random points in a convex body K and prove that its mixing time scales as a
polynomial in the dimension n. As a consequence, they obtained the first FPRAS for the
volume of a convex body. Needless to say, this result was a major breakthrough in the
field of randomised algorithms. Their approach was to divide K into a n-dimensional
grid of small cubes, with transitions available between cubes sharing a facet (i.e., an
(n − 1)-dimensional face). This proposal imposes a preferred coordinate system on K
leading to some technical complications. Here, instead, we use the coordinate-free “ball
walk” of Lovász and Simonovits [55].

Given a point Xt ∈ K, which is the position of the random walk at time t, we choose
Xt+1 uniformly at random from B(Xt, δ)∩K, where B(x, r) denotes the ball or radius r
centred at x, and δ is a small appropriately chosen constant.2 (Refer to Figure 6.3.) We
will show that this Markov chain has a stationary distribution that is nearly uniform
over K, and that its mixing time is polynomial in the dimension n, provided step size δ
is chosen judiciously, and that K satisfies certain reasonable conditions. The stochastic
process (Xt) is Markovian — the distribution of Xt+1 depends only on Xt and not on
the prior history (X0, . . . , Xt−1) — but unlike the Markov chains so far encountered has

1The Gamma function extends the factorial function to non-integer values. When n is even, Γ(n/2) =
(n/2− 1)!, so it is easy to see that the ratio voln K/ voln C tends to 0 exponentially fast.

2What is described here is a “heat-bath” version of the ball wall, which has been termed the “speedy
walk” in the literature. There is also a slower “Metropolis” version that we shall encounter presently.
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Figure 6.3: One step of the Ball Walk

infinite, even uncountable state space. We therefore pause to look briefly into the basic
theory of Markov chains on Rn.

6.1 A few remarks on Markov chains
with continuous state space

Our object of study in this chapter is an MC whose state space, namely K, is a subset
of Rn. We cannot usefully speak directly of the probability of making a transition from
x ∈ K to y ∈ K, since this probability is generally 0. The solution is to speak instead of
the probability P (x,A) := Pr[X1 ∈ A | X0 = x] of being in a (measurable) set A ⊆ K
at time 1 conditioned on being at x at time 0. The t step transition probabilities can
then be defined inductively by P 1 := P and

(6.1) P t(x,A) :=

∫
K
P t−1(x, dy)P (y,A)

for t > 1. In the case of the ball walk,

P (x,A) =
voln(B(x, δ) ∩A)

voln(B(x, δ) ∩K)
,

for any (measurable) A ⊆ K, and

(6.2) P (x, dy) =
dy

voln(B(x, δ) ∩K)
,

provided y ∈ B(x, δ) ∩K.
A MC with continuous state space may have one or more invariant measures µ, which

by analogy with the finite case means that µ satisfies

µ(A) =

∫
K
P (x,A)µ(dx),

for all measurable sets A ⊆ K. As in the finite case, the MC may converge to a unique
invariant measure µ in the sense that P t(x,A) → µ(A) as t → ∞ for all x ∈ K and all
measurable A ⊆ K.

For compactness, we shall sometimes drop explicit reference to the variable of in-
tegration in situations where no ambiguity arises, and write, e.g.,

∫
K f dµ in place of∫

K f(x)µ(dx).
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6.2 Invariant measure of the ball walk

If we were to choose δ, the step-size of the ball walk, to be greater than the diameter
D := sup{‖x − y‖ : x, y ∈ K} of K, then the the ball walk would converge in one
step to the uniform measure on K. (For convenience, we’ll drop the subscript in the
Euclidean norm ‖ · ‖2.) There must be a catch! A moment’s reflection reveals that the
problem is one of implementability: to perform one step of the ball walk when δ ≥ D
we must sample a point uniformly at random from K, which is exactly the problem we
set ourselves at the outset. However, provided we choose δ small enough, specifically so
the ratio voln

(
B(Xt, δ) ∩K

)
/ volnB(Xt, δ) is not too small, we may obtain a random

sample from B(Xt, δ)∩K by repeatedly sampling from B(Xt, δ) until we obtain a point
in B(Xt, δ) ∩ K. This is the so-called “rejection sampling” method, which is efficient
provided that the probability of a successful trial is not too small.

This foregoing observation leads us to introduce a “Metropolis” version of the ball
walk (which should be compared with the heat-bath version specified earlier): select a
point y u.a.r. from B(Xt, δ); if y ∈ K then set Xt+1 ← y, else set Xt+1 ← Xt. The
Metropolis version of the ball walk has the advantage of implementability over the heat-
bath version. However, it has the disadvantage that it can get stuck in sharp corners.
Consider what would happen, for example, if the Metropolis walk ended up very close
(in relation to the step size δ) to the corner of an n-dimensional cube. To make progress,
the point y would have to move in the correct direction in each of the coordinate axes,
an event that occurs with probability close to 2−n. So the Metropolis walk cannot be
rapidly mixing in the usual sense. We could try to loosen the definition of mixing time by
somehow excluding sharp corners as possible initial states, and excluding them also from
the metric employed to measure distance from stationarity. But it is cleaner to argue
about the mixing time of the heat-bath version of the ball walk, and then separately
argue about the relationship of the heat-bath and Metropolis walks.

The primary aim of this chapter is to convey the key ideas underlying the analysis of
the ball walk, and not to obtain the most general theorems. We therefore simplify our
analysis by imposing a “curvature condition” on K that rules out sharp corners. This
condition radically simplifies certain technical aspects of the proof, while leaving intact
all the main insights. One immediate effect of this simplification is that the Metropolis
walk becomes only a constant factor slower than the heat-bath walk, so we have an easy
job relating the two. Towards the end of the section, we shall review the proof and
see what extra work needs to be done to eliminate the curvature condition. Provided
we are prepared to accept a bound on mixing time that is wrong by a factor of n, the
curvature condition may be dropped with little effort. Obtaining the correct mixing time
in the absence of the curvature condition requires an analysis of substantial additional
technical complexity, but requiring no further significant insights. This improvement
will therefore be sketched only.

In the light of the preceeding discussion, we cannot expect the mixing time of the
Metropolis version of the ball walk to be short if K is very long and thin. The small
“width” of K would dictate a small δ, but then very many steps would be required to
get from one end of K to the other. In the full strength version of the bound on mixing
time of the ball walk, this issue is resolved by expressing the mixing time in terms of
some measure of the “aspect ratio” of K. More precisely, it is supposed that K contains
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the unit ball B(0, 1) centred at the origin, and then the mixing time is expressed as a
function of the diameter of K.3 In fact, as already indicated, we simplify our presentation
by making a stronger assumption, namely that the curvature of K should not be too
large. We embody this simplifying assumption in the curvature condition:

For all points x ∈ K there is some point y ∈ K
such that x ∈ B(y, 1) and B(y, 1) ⊆ K.

(6.3)

By definition, all balls will be closed. Note that the curvature assumption is much
stronger that the “official” one, which merely asserts that B(0, 1) ⊆ K and, in particular,
rules out the interesting case of K a polytope. For the main body of this chapter, and
until further notice, “ball walk” will implicitly mean the heat-bath version, and the
curvature condition will be assumed.

Remark 6.1. What if we are presented with a body that is “thin”? It turns out that it
is always possible to apply a linear transformation to K to yield a new convex body which
contains a unit ball and whose diameter is quite reasonable. But this is another long
story, and we do not embark on it here. Refer to Kannan, Lovász and Simonovits [50].

The stationary measure of the ball walk — we shall see presently that the ball walk
is ergodic — is not uniform over K, but is close to uniform provided the step size δ is
not too large. To describe the stationary measure, we introduce a function ` : K → R
(called local conductance by Lovász and Simonovits) defined as

(6.4) `(x) :=
voln(B(x, δ) ∩K)

volnB(x, δ)
,

which may be interpreted as the probability of staying in K when choosing a random
point in a δ-ball around x. Note that `(x)−1 is the expected number of repetitions of
this trial in order produce a point lying in B(x, δ) ∩ K using rejection sampling. We
want to normalise `(x) in order to get a density which will turn out to be the density of
the stationary measure of the ball walk:

(6.5) µ(A) :=

∫
A `(x) dx

L
where L =

∫
K
`(x) dx.

Our first task is to verify that µ is an invariant measure for the ball walk. That it is
unique follows as a weak consequence of our rapid mixing proof.

Lemma 6.2. If X0 has distribution µ, then X1 does also.

3Note, as a by-product, we know that K contains the origin, so we have a suitable starting point for
the random walk.
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Figure 6.4: Bounding the volume of intersection

Proof. Let µ1 denote the distribution of X1. Then

µ1(A) =

∫
A
µ1(dy) =

∫
A

∫
K
P (x, dy)µ(dx)

=

∫
A
dy

∫
B(y,δ)∩K

µ(dx)

voln(B(x, δ) ∩K)
by (6.2)

=
1

L

∫
A
dy

∫
B(y,δ)∩K

`(x) dx

voln(B(x, δ) ∩K)
by (6.5)

=
1

L

∫
A
dy

∫
B(y,δ)∩K

dx

volnB(x, δ)
by (6.4)

=
1

L

∫
A
`(y) dy = µ(A) by (6.4, 6.5).

Hence µ is an invariant measure for the ball walk.

Exercise 6.3. Show that the uniform distribution on K is an invariant measure for the
Metropolis version of the ball walk.

It is clear that the distribution µ is not uniform over K, but for a suitable choice of
δ it is close to it.

Lemma 6.4. Assume the curvature condition (6.3), and suppose that δ ≤ c1/
√
n (where

c1 is a dimension-independent constant). Then 0.4 ≤ `(x) ≤ 1 for all x ∈ K.

Proof. The upper bound on `(x) is trivial from the definition of `. For the lower bound
we need an argument.

Recall that we assume that every x ∈ K lies in a 1-ball B(y, 1) ⊆ K. The inequality
above will follow from

voln(B(x, δ) ∩B(y, 1))

volnB(x, δ)
≥ 0.4.

It is enough to show the relation for a point x on the boundary of B(y, 1). Consider the
tangent plane H1 to B(y, 1) through x and its parallel plane H2 through the intersection
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of the boundaries of the two balls. (Refer to Figure 6.4.) Orient them such that their
positive side H+

i (i = 1, 2) contains the point y. Notice that

B(x, δ) ∩H+
2 ⊂ B(y, 1)

(δ is assumed to be smaller than 1). Therefore it is enough to show that the set B(x, δ)∩
H+

2 has volume at least 0.4 volnB(x, δ). We will do this by showing that B(x, δ)∩H−2 ∩
H+

1 has very small volume, i.e., at most a 0.1 fraction of the volume of B(x, δ). The set in
question is contained in the cylinder with ground face B(x, δ)∩H1 (which is an (n− 1)-
dimensional ball with radius δ) whose height is the distance apart of H1 and H2. A
simple computation reveals that this distance is exactly δ2/2. From the volume formula
of balls of dimensions n − 1 and n, and Stirling’s approximation for the Γ-function, we
obtain the following relation

voln−1(B(x, δ) ∩H1)

volnB(x, δ)
≤ c
√
n

δ
,

for some universal constant c. Hence the volume of the cylinder is at most a 1
2cδ
√
n

fraction of the volume of B(x, δ). Setting c1 = 1/5c gives the desired bound.

What this lemma also says is that we can implement one transition of the ball walk
efficiently: going from a point x ∈ K to a random point in B(x, δ) we have a probability
of at least 0.4 of ending up in K immediately; in other words, the Metropolis version of
the ball walk is only a factor 2.5 slower than the heat-bath version.

6.3 Mixing rate of the ball walk

We will show now that the ball walk mixes rapidly. The next lemma is a powerful
weapon and forms the basis of one of our standard techniques.

Lemma 6.5. Let f be a measurable function over a measurable set S. Partition S into
measurable sets S0, . . . , Sm−1. Then

(6.6)

∫
S
f2 dµ =

m−1∑
i=0

∫
Si

(f − f̄i)2 dµ+
m−1∑
i=0

µ(Si)f̄
2
i ,

where

f̄i :=
1

µ(Si)

∫
Si

f dµ.

Remark 6.6. Suppose that Eµ f :=
∫
K f dµ = 0. Then on the l.h.s. of the equality we

have simply Varµ f . The two terms on the r.h.s. of the equality may be interpreted as
(i) the sum of the variances of f within each of the regions Si, and (ii) the variance of f
between the regions, respectively.
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Proof of Lemma 6.5.∫
Si

(f − f̄i)2 dµ+ µ(Si)f̄
2
i =

∫
Si

f2 dµ+

∫
Si

f̄ 2
i dµ− 2

∫
Si

f̄if dµ+ µ(Si)f̄
2
i

=

∫
Si

f2 dµ+ µ(Si)f̄
2
i − 2µ(Si)f̄

2
i + µ(Si)f̄

2
i

=

∫
Si

f2 dµ.

As in the analysis of the matchings MC, our approach to bounding the mixing time
involves taking a (measurable) test function f : K → R (with E f = 0 for convenience)
and examining how the variance of f decays as a result of the averaging effect of the
ball-wall. To this end, introduce a function h : K → R given by

h(x) :=
1

2

∫
K
P (x, dy) (f(x)− f(y))2

=
1

2 voln(B(x, δ) ∩K)

∫
B(x,δ)∩K

(f(x)− f(y))2 dy,(6.7)

and define

Varµ f :=

∫
K
f2 dµ and EP (f, f) :=

∫
K
h dµ;

these are the now-familiar variance (global variation of f over K) and Dirichlet form
(local variation of f at the scale of the step size δ of the ball walk). As with the matching
MC, the key to the analysis of the ball walk lies in obtaining a sharp Poincaré inequality
linking Varµ f and EP (f, f). Our eventual goal is to show:

Theorem 6.7 (Poincaré inequality). Let K ⊂ Rn be a convex body of diameter D
satisfying the curvature condition (6.3), and suppose that δ is as in Lemma 6.4. For any
(measurable) function f : K → R,

EP (f, f) ≥ λVarµ f(6.8)

where

λ :=
c2δ

2

D2n

for some universal constant c2.

We apply the technique by Mihail (as we did with matchings in §5.2) and obtain from
λ a bound on mixing time. As before, we deal with periodicity by considering either a
continuised or lazy walk.

Corollary 6.8. For any ε > 0 let τ(ε) denote the time at which the ball walk (in either
its continuised or lazy variants) reaches within total variation distance ε of the stationary
distribution µ. Then, under the curvature condition (6.3),

τ(ε) ≤ O
(
λ−1

(
log ε−1 + i(µ0)

))
,

where λ is as in Theorem 6.7 and i(µ0) expresses the dependence on the initial distribu-
tion µ0.
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Remark 6.9. The expression i(µ0) is closely related to the term lnπ(x0)
−1 familiar

from the discrete case. But if we now start from a fixed point (in other words our
initial distribution µ0 is a single point mass at x0 ∈ K) no meaning can be attached to
lnπ(x0)

−1. To escape from this, imagine that we start at time −1 from a point x0 such
that B(x0, δ) ⊆ K, and consider the situation at time 0. Thus the initial distribution µ0
is uniform over some ball of radius δ. In this case, we may take i(µ0) = n ln(D/2δ).

Exercise 6.10. Verify Corollary 6.8. Doing this essentially involves translating Theo-
rem 5.6 to the setting of continuous state space. In case you skip this exercise, a full
derivation may be found in §6.8.

At an intuitive level, Theorem 6.7 seems to be close to the truth. With a step
size of δ, the distance travelled parallel to any axis fixed in advance (in particular, one
parallel to a diameter of K) is of order δ/

√
n. The time taken for the walk to “diffuse”

along a diameter is the square of the ratio of D to the typical distance moved along the
diameter in one step, namely (D

√
n/δ)2, which is of order λ−1. To minimise mixing time

we clearly wish to take δ as small as possible consistent with implementability, which
by Lemma 6.4 is of order n−1/2. With that step size, the Poincaré constant scales as
(nD)−2.

The next section is devoted to the proof of what is essentially the main result of this
chapter.

6.4 Proof of the Poincaré inequality (Theorem 6.7)

Assume the converse to (6.8), namely that there exists a function f : K → R with

(6.9) EP (f, f) < λVarµ f ;

informally, f sustains high global variation simultaneously with low local variation.

We will define smaller and smaller violating sets S such that the ratio

(6.10)

∫
S
h dµ

/∫
S

(f − f̄ )2 dµ

is small, where f̄ =
∫
S f dµ. Our starting point is of course S = K, where we know that

this ratio is less than λ. Eventually, S will be small even with respect to δ. Then the
function f will have to be almost constant in S since the local variation (as measured by
the numerator) is small; however the global variation (as measured by the denominator)
is large. Here we reach a contradiction. This in outline is our proof.

First we will shrink the violating set to a set K1 which is very small in all but one
dimension, a so-called “needle-like” body. It transpires that we can do this while keeping
ratio (6.10) bounded throughout by λ. It is only when we attempt to shrink along the
final dimension that we have to give something away. Before embarking on the process
of shrinking K to a needle-like body, we need a pair of geometrical lemmas, whose proofs
we defer to §6.5.

Lemma 6.11. Let R be a convex set in R2. There is a point x ∈ R such that every line
through x partitions R into pieces of area at least 1

3 of the area of R.
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Figure 6.5: The expectation of f is zero on both Kj ∩H+ and Kj ∩H−.

Remark 6.12. The bound 1
3 can in fact be replaced by 4

9 , which is tight as can been seen
by considering an equilateral triangle; see Egglestone [31, §6.4]. However, any strictly
positive bound is adequate for our purposes.

The width of a convex set R in R2 is the minimum, over all pairs of parallel supporting
lines sandwiching R, of the distance between those lines.4

Lemma 6.13. Let R be a convex set in R2 of area A. Then the width of R is at most√
2A.

Remark 6.14. Again, the bound is not the best possible, but is adequate for our
purposes. The extremal set (i.e., the one of given area that maximises width) is again
an equilateral triangle.

To resume: With the aim of establishing a contradiction we are assuming the exis-
tence of a function f : K → R satisfying (6.9). We may further assume (by adding an
appropriate constant function to f) that Eµ f = 0. This additional assumption will be
convenient on the first leg of our journey towards the contradiction.

Claim 6.15. Assume f : K → R satisfies inequality (6.9), and Eµ f = 0. Then, for
every ε > 0, there is a convex subset K1 ⊆ K satisfying∫

K1

h dµ < λ

∫
K1

f2 dµ as well as

∫
K1

f dµ = 0,

and such that K1 lies in the box [0, D]× [0, ε]n−1 in some Cartesian coordinate system.

Proof. Suppose, for some j ≥ 2, that Kj is a violating set which lies in [0, D]j× [0, ε]n−j ,
and that

∫
Kj
f dµ = 0; i.e., we have already shrunk our violating set down on n − j

coordinates. (The base case Kn = K is of course covered by (6.9).) To shrink along a
further coordinate we use a beautiful divide-and-conquer argument due to Payne and
Weinberger: see Bandle [4, Thm 3.24].

Let R be the projection of Kj onto the first two (i.e., “fat”) axes. Let x be a
point satisfying the conditions of Lemma 6.11. Consider all (n− 1)-dimensional planes
through x whose normals lie in the 2-dimensional plane spanned by the first two axes.

4In some sense, width it is the opposite of diameter, which may be defined as the maximum such
distance. This was not how we defined diameter in §6.2, but the two definitions are equivalent.
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These planes project to lines through x in the plane of R. Among these planes there is
at least one, say H, such that∫

Kj∩H+

f dµ =

∫
Kj∩H−

f dµ = 0.

To see this, choose any (n− 1)-dimensional plane G through x whose normal lies within
the plane of R. If G does not already have the desired property, then, since

∫
Kj∩G+ f dµ+∫

Kj∩G− f dµ = 0, one integral or the other has to be positive. By rotating G about x

by an angle of π, the signs exchange. So by continuity and the mean value theorem we
have to have hit the sought-for H at some point.

It is easy to convince oneself that Kj intersected with one side of H (i.e., either
Kj ∩H+ or Kj ∩H−) is also a violating set, in the sense that the ratio (6.10) is bounded
by λ when S = Kj ∩H+ (or S = Kj ∩H−, as appropriate). Now iterate this procedure.
By Lemma 6.11, the area of the projection R of the convex body drops by a constant
factor at each iteration, and must eventually drop below 1

2ε
2. At this point the width

of R, by Lemma 6.13, is at most ε. Then, rotating the fat axes as appropriate, the
projection of the convex body onto (say) the first of these axes is a line segment of
length at most ε. The convex set now has exactly the properties we require of the set
Kj−1, i.e., the same properties as Kj , but with j − 1 replacing j. Hence by induction
we can find our set K1.

The above line of argument requires at least two fat dimensions in order to provide
enough freedom in selecting the plane H. We need a new approach in order to shrink
the needle-line set along the remaining fat dimension.

Claim 6.16. Let K1 and f be as in the conclusion of Claim 6.15, δ be as in Lemma 6.4,
and let η := c3δ/

√
n where c3 > 0 is any constant. Then, under the curvature condi-

tion (6.3), there is a convex subset K0 ⊆ K1 satisfying

(6.11)

∫
K0

h dµ <
1

10

∫
K0

(f − f̄ )2 dµ

where

(6.12) f̄ =
1

µ(K0)

∫
K0

f dµ,

and such that K0 lies in the box [−η, η]× [0, ε]n−1 in some Cartesian coordinate system.

Remark 6.17. We will choose the constant c3 later; in order to obtain an eventual
contradiction, it will need to be small enough. The choice of c3 will then determine the
universal constant c2 of Theorem 6.7: the smaller c3, the smaller c2.

Our strategy for proving Claim 6.16 is to chop K1 into short sections and show that
at least one of these sections (or perhaps the union of two adjacent ones) satisfies the
inequality (6.11). (Refer to Figure 6.6.) Before embarking on the proof proper, we need
another geometric lemma, which is a consequence of the Brunn-Minkowski Theorem;
the proof is again deferred to §6.5.
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Figure 6.6: Partitioning of K1

Lemma 6.18. Let convex body K1 be partitioned into m pieces S0 . . . Sm−1 of equal
width by planes orthogonal to a fixed axis. Then the sequence

1

voln S0
,

1

voln S1
, . . . ,

1

voln Sm−1

is convex.

We are ready to resume the chopping argument.

Proof of Claim 6.16. Let convex body K1 be partitioned into m pieces by planes or-
thogonal to the fat axis, as specified in Lemma 6.18, so that each piece Si has width
η = c3δ/

√
n. Additionally, define Ui := Si ∪ Si+1 for i = 0, 1, . . . ,m − 2. Note that

m = O(D
√
n/δ). Using Lemma 6.5, we find

(6.13)

∫
K1

f2 dµ =
m−1∑
i=0

∫
Si

(f − f̄i)2 dµ︸ ︷︷ ︸
A

+
m−1∑
i=0

µ(Si)f̄
2
i︸ ︷︷ ︸

B

,

where for convenience we define

f̄i :=
1

µ(Si)

∫
Si

f dµ.

In the case that sum A is greater or equal to sum B, we readily find a piece Si that
serves as a violating set. We start with

m−1∑
i=0

∫
Si

h dµ =

∫
K1

h dµ(6.14)

< λ

∫
K1

f2 dµ by assumption

≤ 2λ
m−1∑
i=0

∫
Si

(f − f̄i)2 dµ by (6.13) and A ≥ B.(6.15)

Comparing sums (6.14) and (6.15) we see there must be an Si such that∫
Si

h dµ ≤ 2λ

∫
Si

(f − f̄i)2 dµ.
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Setting K0 = Si satisfies the conclusion of the claim with plenty to spare. (Note in this
context that λ = O(n−2).)

The case B > A is a little more difficult. Using the alternative expression for variance
which we have seen before, and recalling that the expectation of f with respect to µ onK1

is 0, we have

µ(K1)

∫
K1

f2 dµ < 2µ(K1)

m−1∑
i=0

µ(Si)f̄
2
i since B > A

= 2
∑

0≤i<j<m
µ(Si)µ(Sj)(f̄i − f̄j)2 using (5.5).(6.16)

Our aim is to replace the r.h.s. of (6.16) by a sum with similar terms, but restricted to
adjacent pairs i, j. This will enable us to finish with an argument similar to the A ≥ B
case.

For convenience, we introduce the abbreviation wi = µ(Si), and set

(6.17) ai,j := wiwj

j−1∑
k=i

wk + wk+1

wkwk+1
≤ 2wiwj

j∑
k=i

1

wk
.

Inequality (6.16) may be massaged as follows:

µ(K1)

∫
K1

f2 dµ < 2
∑
i<j

wiwj(f̄i − f̄j)2

= 2
∑
i<j

wiwj

[
j−1∑
k=i

(f̄k − f̄k+1)

]2

= 2
∑
i<j

wiwj

[
j−1∑
k=i

√
wk + wk+1

wkwk+1
·
√

wkwk+1

wk + wk+1
(f̄k − f̄k+1)

]2

≤ 2
∑
i<j

ai,j

j−1∑
k=i

wkwk+1

wk + wk+1
(f̄k − f̄k+1)

2,(6.18)

where the final inequality is Cauchy-Schwarz combined with (6.17). Define f̂k to be the
expectation of f over Uk = Sk ∪ Sk+1:

f̂k :=
1

µ(Uk)

∫
Uk

f dµ =
wkf̄k + wk+1f̄k+1

wk + wk+1
.

Then, by Lemma 6.5,

wkwk+1

wk + wk+1
(f̄k − f̄k+1)

2 = wk(f̄k − f̂k)2 + wk+1(f̄k+1 − f̂k)2

≤
∫
Uk

(f − f̂k)2 dµ(6.19)

(The first line may be viewed as the special case |Ω| = 2 of (5.5), or may be verified
by elementary algebraic manipulation. Inequality (6.19) comes from Lemma 6.5, noting
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that the first sum on the r.h.s. of (6.6) is clearly positive.) Applying bound (6.19) to the
terms in (6.18) yields

(6.20) µ(K1)

∫
K1

f2 dµ < 2
∑
i<j

ai,j

j−1∑
k=i

∫
Uk

(f − f̂k)2 dµ.

Taking stock momentarily: inequality (6.20) appears to be telling us that if the variance
of f is large on K1 then it must be large on some Uk; but there is still some work to be
done on the way to quantifying this effect.

Recall that

wi = µ(Si) = L−1
∫
Si

`(x) dx,

where L =
∫
K `(x) dx. Thus, by Lemma 6.4,

(6.21) 0.4L−1 voln Si ≤ wi ≤ L−1 voln Si,

leading to the following upper bound on ai,j :

ai,j ≤ 2wiwj

j∑
k=i

L

0.4 voln Sk
by (6.17) and (6.21)

≤ 2.5wiwjL (j − i+ 1)
( 1

voln Si
+

1

voln Sj

)
by Lemma 6.18

≤ 2.5(j − i+ 1)(wi + wj) by (6.21).(6.22)

Since j − i + 1 never exceeds m, we have the following crude bound on the sum of the
ai,j : ∑

i<j

ai,j ≤ 2.5
∑
i<j

(j − i+ 1)(wi + wj)

≤ 2.5m
∑
i<j

(wi + wj)

≤ 2.5m2
∑
i

wi(6.23)

= 2.5m2µ(K1).(6.24)

To see (6.23), fix attention on a particular index k and note that wk occurs exactly m−1
times in the double sum.

Returning now to (6.20),

µ(K1)

∫
K1

f2 dµ < 2
∑
i<j

ai,j

j−1∑
k=i

∫
Uk

(f − f̂k)2 dµ

≤ 2
∑
i<j

ai,j

m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ

≤ 5m2µ(K1)

m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ by (6.24),
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z2z1

2η

δ

K0

Figure 6.7: “Needle like” body K0

from which

(6.25)

∫
K1

f2 dµ ≤ 5m2
m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ.

Inequality (6.25) is the one we sought, expressing the fact that if the variance of f is
large on the whole of K1 then it must be fairly large on some piece Uk. Proceeding now
by analogy with the A ≤ B case, using (6.25) and the conclusion of Claim 6.15,

m−2∑
k=0

∫
Uk

h dµ ≤ 2

∫
K1

h dµ < 2λ

∫
K1

f2 dµ ≤ 10m2λ
m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ.

Therefore there must exist a k such that

(6.26)

∫
Uk

h dµ < 10m2λ

∫
Uk

(f − f̂k)2 dµ.

By setting c2 sufficiently small, specifically c2 < c23/100, we obtain

10m2λ = 10

(
D
√
n

c3δ

)2 c2δ2
D2n

<
1

10
.

Setting K0 := Uk, we recognise (6.26) as the inequality promised in the statement of the
claim. This concludes the case B > A and hence the proof.

We pick up the proof of Theorem 6.7. At the outset we assumed, with a view to
obtaining a contradiction, the converse of (6.8). Now, from Claims 6.15 and 6.16, we
deduce the existence of a convex set K0 ⊂ K satisfying inequality (6.11) such that K0

is contained in a prism of height 2η whose cross section is an (n− 1)-dimensional cube
of side ε. We are close to obtaining the desired contradiction.

Let C be the centre axis of the prism, and let z1 and z2 be the points at which C
intersects the end facets of the prism. (Refer to Figure 6.7.) Let δ′ := δ − ε

√
n, and

choose ε sufficiently small that

(6.27) volnB(0, δ′) ≥ 0.9 volnB(0, δ).
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z1 z2

δ
′

Boundary of K
K0

Figure 6.8: Construction of the set I (shown shaded)

(Recall that we are free to choose ε as small as we like.) Set I := B(z1, δ
′)∩B(z2, δ

′)∩K.
(Refer to Figure 6.8.) We shall argue that by choosing c3 (and hence η) sufficiently small
we can ensure

(6.28) voln
(
B(z1, δ

′) ∩B(z2, δ
′)
)
≥ 0.8 volnB(0, δ),

and hence

(6.29) voln I = voln
(
B(z1, δ

′) ∩B(z2, δ
′) ∩K

)
≥ 0.2 volnB(0, δ).

The calculation supporting (6.28) proceeds exactly as in the proof of Lemma 6.4.
Divide B(z1, δ

′) ∩ B(z2, δ
′) into two congruent pieces by the plane bisecting the line

(z1, z2) and orthogonal to it. Each piece can be viewed as a half-ball less a segment
that can be contained in a cylinder of height η (= c3δ/

√
n ) and radius δ′ ≤ δ. By

setting c3 small enough — refer to the calculation in the proof of Lemma 6.4 — we may
ensure that the volume of this cylinder is less than 0.05 volnB(0, δ). Now, by (6.27), the
combined volume of the two half balls is at least 0.9 volnB(0, δ), so after removing the
two segments we are still left with a set of volume 0.8 volnB(0, δ), as claimed in (6.28).
Inequality (6.29) is now immediate: just observe that the piece of B(z1, δ

′) ∩ B(z2, δ
′)

that we loose when we intersect with K is contained in B(z1, δ)\K, which by Lemma 6.4
has volume at most 0.6 volnB(0, δ).

Inequality (6.29) expresses one key property of I, namely that its volume is not too
small. The other key property is that every point in I may be reached from any point
in K0 in one step of the ball walk. For by construction,

sup
{
‖x− y‖ : x ∈ C and y ∈ I

}
≤ δ′,

from which, by the triangle inequality,

sup
{
‖x− y‖ : x ∈ K0 and y ∈ I

}
≤ δ′ + ε

√
n = δ.

Since I ⊆ K, we may conveniently reformulate this fact as

(6.30) I ⊆ B(x, δ) ∩K, for all x ∈ K0.
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Region R
Cθ1

Cθ2

Cθ3

Figure 6.9: A paradoxical subset of R.

So, ∫
K0

h dµ ≥ 1

2

∫
K0

µ(dx)

voln(B(x, δ) ∩K)

∫
I

(
f(x)− f(y)

)2
dy by (6.7, 6.30)

≥ 1

2 volnB(0, δ)

∫
K0

µ(dx)

∫
I

(
f(x)− f(y)

)2
dy

≥ 1

2 volnB(0, δ)

∫
I
dy

∫
K0

(
f(x)− f(y)

)2
µ(dx) (Fubini)

≥ 1

2 volnB(0, δ)

∫
I
dy

∫
K0

(
f − f̄ )2 dµ(6.31)

≥ 1

10

∫
K0

(f − f̄ )2 dµ by (6.29),

where f̄ , as in (6.12), is the µ-expectation of f over K0. Inequality (6.31) uses a simple
fact about variance, namely that

∫
K0

(f − c)2 dµ is minimised by setting c = f̄ . But the
combined inequality contradicts (6.11). This completes the proof of Theorem 6.7.

6.5 Proofs of the geometric lemmas

In this section we tie up the loose ends by providing proofs for the three geometric
lemmas used in the proof of Theorem 6.7.

Proof of Lemma 6.11. The following proof is due to Alan Riddell; I thank him and also
Toby Bailey for communicating it to me.

Consider all possible partitions of R into three regions of equal area by a pair of
parallel lines. (There is one partition corresponding to each orientation for the lines.)
Let {Cθ : 0 ≤ θ < π} be an indexing of the central bands in these partitions, considered
as closed sets. Suppose there exist bands Cθ1 , Cθ2 and Cθ3 with no point in common.
The set R2\(Cθ1∪Cθ2∪Cθ3) consists of six unbounded regions and one triangle. Consider
the partition of R into seven pieces obtained by extending the edges of the triangle to
the boundary of R, and in particular the four pieces shown shaded in Figure 6.9. Each
of the shaded pieces other than the central triangle has area at least 1

3 vol2R, since it
is the intersection of two regions of R of area 2

3 vol2R. The central triangle itself has
positive area. Thus the total shaded area exceeds vol2R, a contradiction.
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η

K1

S

x+ S

x

Figure 6.10: Slab S sweeping over K1

Hence every triple from {Cθ} has a common point and, by Helly’s theorem (see
Egglestone [31, Thm 17]), the intersection

⋂
θ Cθ of all central bands is non-empty. Any

point in this intersection will do as our choice for x.

Proof of Lemma 6.13. Suppose R is a convex region in R2 of area A. Let `1 and `′1 be
parallel supporting lines of R, touching R at the points α and α′. We may arrange for
lines `1 and `′1 to be perpendicular to the line segment [α, α′], e.g., by choosing [α, α′]
to be a diameter of R. Now let `2 and `′2 be supporting lines of R perpendicular to `1
and `′1, touching R at the points β and β′. The rectangle formed by these supporting
lines has area at least w2, where w is the width of R. It is easy to see that the convex
hull of {α, α′, β, β′} has area 1

2w
2. (The fact that [α, α′] is parallel with an edge of the

rectangle is crucial here.) But the convex hull of {α, α′, β, β′} is contained within R. It
follows that A ≥ 1

2w
2.

Proof of Lemma 6.18. For what follows, we abbreviate voln Si by vi. In order to prove
the lemma, the notation of Minkowski sums is useful: Let A and B be sets of points and
λ a real number. A point p is represented by the vector pointing from 0 to p. Then we
define the set A+ B as the set of points a+ b with a ∈ A and b ∈ B. Furthermore, for
a scalar λ, λA is the set of points λa with a ∈ A.

We prove the lemma by showing properties of the function voln
(
(xe1 + S)∩K1

)
for

x ∈ [0, D], where S is a “slab” of width η, and e1 is a unit vector parallel to the fat axis.
(The slab is defined as the intersection of two halfspaces orthogonal to the fat axis and
distant η apart; assume that the origin is placed at the leftmost point of K1.) Thus we
move the slab S from left to right and observe how the volume of the intersection K1∩S
behaves. Note that vi := voln Si = voln

(
(iηe1 + S) ∩K1

)
. (Refer to Figure 6.10.)

The proof of the lemma relies on a theorem of Brunn and Minkowski (see Eggle-
stone [31, Thm 46]).

Theorem 6.19 (Brunn-Minkowski). Let K ′ and K ′′ be two convex bodies in Rn. Then

voln(K ′ +K ′′)1/n ≥ voln(K ′)1/n + voln(K ′′)1/n.

To continue with the proof of Lemma 6.18, observe that

(6.32) (λx+ (1− λ)y + S) ∩K1 ⊇ λ((x+ S) ∩K1) + (1− λ)((y + S) ∩K1).
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To verify this, assume z is in the set on the right hand side. This means that we can
write z = z′ + z′′ with z′ ∈ λ((x+ S) ∩K1) and z′′ ∈ (1− λ)((y + S) ∩K1). Therefore,
z′ ∈ λK1 and z′′ ∈ (1− λ)K1. Thus z ∈ K1. On the other hand, we have z′ ∈ λ(x+ S)
and z′′ ∈ (1− λ)(y + S) which leads to z ∈ λx+ (1− λ)y + S.

Using the Brunn-Minkowski Theorem in conjunction with (6.32), we find

voln
[
(λx+ (1− λ)y + S) ∩K1

]1/n
≥ voln

[
λ((x+ S) ∩K1) + (1− λ)((y +K1) ∩K1)

]1/n
≥ voln[λ((x+ S) ∩K1)]

1/n + voln[(1− λ)((y + S) ∩K1)]
1/n

= λ voln[(x+ S) ∩K1]
1/n + (1− λ) voln[(y + S) ∩K1]

1/n.

In the last step, we used voln(λK) = λn volnK. As a special case of this inequality, we

find that the sequence (v
1/n
i ) is concave:

(6.33) 2v
1/n
i ≥ v1/ni−1 + v

1/n
i+1

Now it is easily checked that if (ai) is any concave sequence, and g any monotone
non-increasing convex function, then the sequence (g(ai)) is convex. The lemma then

follows from (6.33) by setting ai = v
1/n
i and g(x) = x−n.

6.6 Relaxing the curvature condition

What happens if we do not have the curvature condition (6.3)? As we shall see, the
question is of some importance, not least because the standard reduction from volume
estimation to sampling introduces sharp corners, even if these are absent in the given
convex body K. The most obvious consequence of dropping (6.3) is that the expected
number of Metropolis steps to simulate a single heat-bath step is no longer bounded by a
constant. Worse, as we have argued, the expected number steps may be exponential in n
for a worst-case choice for the current point Xt = x. The most we can hope for is that,
in a typical evolution of the ball walk, we are very unlikely to visit this bad region of K.
This turns out indeed to be the case, provided δ = O(1/

√
n ), the body K contains the

unit ball B(0, 1), and we make a reasonable choice of initial state. See Kannan, Lovász
and Simonovits [50].

Remark 6.20. To get a feel for what is going on, imagine the Metropolis ball walk in
some n-dimensional polytope K. In order to mix, the walk needs potentially to “see all
the boundary” of K, otherwise it cannot gain information about the body. In the case
of a polytope this means that we would have to treat the case of coming close to facets
(i.e., (n − 1)-dimensional faces) of the polytope. There the random walk can “learn” a
lot about the shape of K. But it does not necessarily have to come close to smaller-
dimensional faces, where the walk might get stuck for long periods. Not surprisingly,
the main technical difficulties then arise from showing that close encounters with low-
dimensional faces are rare.

A problem arises, however, before we ever reach the comparison of the heat-bath and
Metropolis versions of the ball walks. Specifically, our derivation of the key Poincaré
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inequality contained in Theorem 6.7 made use of the curvature condition at two points:
at inequalities (6.21) and (6.29), both of which rely on Lemma 6.4, and both of which
fail in the absence of (6.3).

We may avoid the first of these inequalities entirely, thus removing the curvature
condition (6.3) from the statement of Claim 6.16. First we make some observations
concerning the local conductance `.

Lemma 6.21. The local conductance ` defined in (6.4) satisfies:

(i) `(x)1/n is concave over K;

(ii) ln ` is Lipschitz; specifically
∣∣ln `(x)− ln `(y)

∣∣ ≤ n

δ
‖x− y‖, for all x, y ∈ K.

Proof (sketch). We are in a similar situation to that already encountered in the proof
of Lemma 6.18: a convex body — there a slab defined by parallel (n − 1)-dimensional
planes, here a ball of radius δ — is translated in a straight line and its intersection
with K studied with the aid of the Brunn-Minkowski Theorem (Theorem 6.19). The
proof of part (i) here is analogous.

For part (ii), observe that the definition of the function `, presented in (6.4), makes
sense outside its official domain, namely K. Observe also that part (i) continues to hold
over the larger region K + B(0, δ), the Minkowski sum of K and the ball of radius δ.
Given x, y ∈ K, let z be the point colinear with x and y, at distance δ from y, and on
the opposite side of y to x. Note that z ∈ K +B(0, δ). Thus, by part (i),

δ `(x)1/n + ‖x− y‖ `(z)1/n ≤ (δ + ‖x− y‖) `(y)1/n,

and hence
`(x)

`(y)
≤
(
δ + ‖x− y‖

δ

)n
.

Taking the logarithm of both sides,

ln `(x)− ln `(y) ≤ n ln

(
δ + ‖x− y‖

δ

)
≤ n ‖x− y‖

δ
.

Since the argument is symmetric in x and y, part (ii) of the lemma follows.

We may now avoid inequality (6.21) by taking a more direct route, which is opened
up by replacing Lemma 6.18 by:

Lemma 6.22. With S0, S1, . . . , Sm−1 as in Lemma 6.18, the sequence

µ(S0)
1/2n, µ(S1)

1/2n, . . . , µ(Sm−1)
1/2n

is concave. Consequently, the sequence

1

µ(S0)
,

1

µ(S1)
, . . . ,

1

µ(Sm−1)

is convex.
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This lemma follows from a functional version of the Brunn-Minkowski Theorem due
to Dinghas [24, Satz 1]. We state this theorem in a slightly less general form than it
appears in [24].

Theorem 6.23 (Dinghas). Suppose A1 and A2 are non-empty, bounded, measurable
sets in Rn, and let A0 = A1 +A2 be the Minkowski sum of A1 and A2. Suppose further
that f1 and f2 are measurable functions defined on A1 and A2, respectively, and form
the function g0 defined by

g0(x) = sup
{(

(f1(x
′)1/r + f2(x

′′)1/r
)r

: x′ ∈ A1, x
′′ ∈ A2 and x′ + x′′ = x

}
,

for all x ∈ A0. If f0 is any measurable function on A0 satisfying f0(x) ≥ g0(x) for all
x ∈ A0, then[∫

A0

f0(x) dx

]1/(r+n)
≥
[∫

A1

f1(x) dx

]1/(r+n)
+

[∫
A2

f2(x) dx

]1/(r+n)
.

Proof of Lemma 6.22. In Theorem 6.23 make the following identifications: r = n, A1 =
Si−1, A2 = Si+1, f1 = f2 = ` and f0(x) = 2r`(x/2). By part (i) of Lemma 6.21, we then
have f0 ≥ g0, as required; also observe that 2Si ⊇ Si−1 + Si+1 = A0. The first claim in
Lemma 6.22 may then be read off from the concluding inequality of Theorem 6.23. The
second claim uses the same reasoning as in the final step of the proof of Lemma 6.18.
See also [55, Lemma 2.1].

Armed with Lemma 6.22, the upper bound on ai,j derived in the sequence of inequal-
ities ending at (6.22) — with improved constant 1 in place of 2.5 — follows directly from
the definition (6.17) of ai,j . This establishes Claim 6.16 in the absence of the curvature
condition (6.3).

The other place at which the curvature condition is used, namely in establish-
ing (6.29), is trickier to handle. (Note that we used it in going from (6.28) to (6.29).)
Our use of curvature is more substantial here, and we need to modify the partitioning
of the needle-like body K1 used in the proof of Claim 6.16 (see Figure 6.6) to recover
the proof. If we are prepared to settle for a Poincaré constant λ smaller by a factor n
(i.e., λ = c2δ

2/D2n2) then it is not too difficult to establish Theorem 6.7 in the absence
of (6.3), and we shall see presently how this is done. Getting the correct (up to a con-
stant factor) λ in the absence of (6.3) requires a more complicated analysis, which we
only sketch here.

What is it we were trying to achieve with inequality (6.29)? Well, the final contra-
diction required us to find a set I ⊆ K with the properties that: (i) every point of K0

is within distance δ of every point of I; and (ii) the ratio voln I/ voln(B(x, δ) ∩ K) is
bounded below by a universal constant for every x ∈ K0. Without (6.3) there is cur-
rently no guarantee that such a set I exists. However, if we chop K1 more finely, into
slabs of width η = c3δ/n (instead of η = c3δ/

√
n ), then we are assured to find the

required set I. This finer partition increases the number of slabs m by a factor
√
n, and

hence reduces the Poincaré constant by a factor n. We borrow the following lemma from
Kannan, Lovász and Simonovits [50, Lemma 3.5].
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Lemma 6.24. Suppose δ′ > 0, and x, y ∈ K with ‖x− y‖ ≤ δ′/
√
n. Then

voln(B(x, δ′) ∩B(y, δ′) ∩K)

≥ 1

1 + e
min

{
voln(B(x, δ′) ∩K), voln(B(y, δ′) ∩K)

}
.

Recall that voln(B(x, δ′) ∩ K) is proportional to `(x). (This is by definition (6.4)
of local conductance `.) Now, with η smaller than before, part (ii) of Lemma 6.21 (the
Lipschitz inequality for `) ensures that voln(B(x, δ′) ∩K) varies by at most a constant
factor as x ranges over K0. So, choosing δ′ a little less than δ, as before, we see that
the set I := B(z1, δ

′) ∩B(z2, δ
′) ∩K has the properties we desire: property (i) is by the

triangle inequality, and property (ii) is by Lemma 6.24. This establishes Theorem 6.7
without assumption (6.3) but with λ smaller by a factor n.

Exercise 6.25. Flesh out the details of the above proof sketch.

Finally, some inadequate pointers on how to drop assumption (6.3) without losing
the factor n in λ. Let’s step back and consider what we need to have in order to be
able to construct the contradictory set I, using Lemma 6.24. Certainly we need the
slabs in the decomposition to have width O(δ/

√
n ); but we also require that the local

conductance ` varies by at most a constant factor over each slab. As we have seen, these
two requirements can be met by using slabs of width O(δ/n), but then the number of
slabs increases, and our estimate of the Poincaré constant worsens.

So it seems that we need to partition K1 into slabs of unequal thickness, using thinner
slabs where ` is rapidly varying. We might as well use the coarsest possible partition
that will allow us to draw the final contradiction. Starting at the leftmost point of K1,
partition K1 into slabs S0, S1, . . . , Sm−1 as in Figure 6.6, finishing with slab Sm−1 at the
rightmost point of K1. Having created S0, S1 . . . , Si−1, choose the plane defining Si to
be the rightmost plane subject to the conditions:

(i) the distance from the previous plane (i.e., the thickness of slab Si) is at most
c3δ/
√
n; and

(ii) the local conductance `(x) varies by at most a factor 2 as x ranges over Si.

Thus the partition of K1 into slabs Si is the coarsest possible, subject to conditions (i)
and (ii).

Note that conditions (i) and (ii) together allow us to construct, using Lemma 6.24,
the set I that leads to the final contradiction. We need of course to fix up the proof
of Claim 6.16, which was conducted under the assumption that K1 is partitioned into
slabs of constant width O(δ/

√
n ). Specifically, we need work harder to prove the key

inequality (6.24).

Exercise 6.26. Complete the Proof of Theorem 6.7 (the Poincaré inequality) in the
absence of the curvature condition (6.3), using the programme outlined above. The main
technical challenge lies in reproving Claim 6.16 in the absence of (6.3), specifically in
re-establishing (6.24), taking due account of the amended partition of K1 into slabs. You
will find that the partition of Figure 6.6 (using the amended construction just presented)
can be divided into three sections: S0, . . . , S`−1, then S`, . . . , Sr−1 and Sr . . . , Sm−1,
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where the slabs in the middle section are all of full width η, and the others are all
of strictly smaller width. (Either or both of the outer sections may be empty.) The
existence of such a division relies on log-concavity of the local conductance `, which is a
consequence of Lemma 6.21(i). The middle section is dealt with exactly as before, since
the number of slabs contained within it is r− ` ≤ D/η = O(D

√
n/δ). In the left (right)

sections it can be shown that wi = µ(Si) is increasing (decreasing) geometrically; thus
the sum (6.17) is determined, up to a constant factor, by its first (last) term. (This step
uses log-concavity of ` and Brunn-Minkowski.) Thus it doesn’t matter so much that the
number of terms in the sum (i.e., slabs in the partition) may grow faster than O(D

√
n/δ).

Note that this is a challenging, verging on speculative, exercise. To keep the technical
complexities within bounds, you may want to assume δ = O(D/

√
n ). This is not a

restriction in the volume application, where δ = Θ(1/
√
n ) and D = Ω(1). However, the

assumption is a definite blemish, in that Theorem 6.7 should hold even when δ is of the
same order as D.

Remark 6.27. Kannan, Lovász and Simonovits [50] restrict the function f to be an
indicator function f : K → {0, 1}. The parameter Φ corresponding to λ in the inequality

EP (f, f) ≥ ΦVarµ f, for all (measurable) f : K → {0, 1}

is called the conductance of the ball walk. Since the class of functions f is restricted, the
conductance Φ is potentially larger than λ. However it is known — a version of Cheeger’s
inequality — that λ ≥ 1

2Φ
2. (See Sinclair [71] or Aldous and Fill [2] for relationships

between various MC parameters, including these two.) The approach to the ball walk
in [50] is to show that the conductance Φ is of order δ/D

√
n, which leads by Cheeger to

the required bound on λ. However, the restriction of f to the class of indicator functions
unfortunately does not seem to lead to any significant technical simplification in the
proof.

6.7 Using samples to estimate volume

In order to estimate the volume of a convex body using our sampling procedure, we follow
the basic “product of ratios” approach used in earlier examples. Briefly, the procedure
is as follows.

Given our convex body K, we define a series of concentric balls B0 ⊂ B1 ⊂ · · · ⊂ Bk
such that B0 ⊆ K and K ⊆ Bk. (Refer to Figure 6.11.) Additionally, we require that
the volume of these balls does not grow too quickly, say volnBi+1 ≤ 2 volnBi. We can
estimate the ratios

%i =
voln(Bi ∩K)

voln(Bi+1 ∩K)

by repeatedly sampling points from Bi+1 ∩ K and determining the fraction of these
points which lie also in Bi ∩ K. Let Zi be an estimate for %i obtained by taking the
sample mean. We then get the desired estimate of volnK from

volnK ≈ volnB0 ·
k−1∏
i=0

1

Zi
.

Of course, we may calculate volnB0 from an explicit formula.
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B0

B1

B2

B3

K

Figure 6.11: A convex body K and concentric balls

We have glossed over important issues here, not least the obvious fact that k must
not be too large if we are to control the variance of our product estimator for volnK. If
K is “well rounded” then, indeed, k need not be very large. But if K is very elongated
it will be necessary to apply a linear transformation to K to render it well rounded. For
details of this step, and many further refinements, refer to [50].

6.8 Appendix: a proof of Corollary 6.8

We work with the lazy version of the ball walk, which stays put with probability 1
2 . For

the first leg, we follow closely the proof of Theorem 5.6, but replacing sums by integrals.
Because of the close similarity of the arguments we record only the main steps here:

[Pzzf ](x) =
1

2

∫
K
P (x, dy)

(
f(x) + f(y)

)
,

Varµ(Pzzf) ≤ 1

4

∫
K
µ(dx)

∫
K
P (x, dy)

(
f(x) + f(y)

)2
,

and

Varµ f =
1

2

∫
K
µ(dx)

∫
K
P (x, dy)

(
f(x)2 + f(y)2

)
.

It follows that

Varµ f −Varµ(Pzzf) ≥ 1

4

∫
K
µ(dx)

∫
K
P (x, dy)

(
f(x)− f(y)

)2
=

1

2
EP (f, f)

≥ 1

2
λVarµ f,
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and hence

Varµ(Pzzf) ≤
(

1− λ

2

)
Varµ f.

Iterating the above, we obtain

(6.34) Varµ(P tzzf) ≤
(

1− λ

2

)t
Varµ f ≤ exp(−1

2λt).

Now suppose A is measurable subset of K, and let f : K → R be the function that
is 1 on A and 0 outside A. Assume that we start our walk from a point X0 selected
uniformly at random from the ball B = B(x, δ) ⊆ K. (This is, of course, equivalent to
starting the walk at point x at time −1.) For ε > 0 we want to find a time t such that the
variation distance of the t-step distribution from stationarity is at most ε; equivalently,
we require

(6.35) |Pr(Xt ∈ A)− µ(A)| =
∣∣∣∣ 1

volnB

∫
B

{
[P tzzf ](y)− µ(A)

}
dy

∣∣∣∣ ≤ ε,
uniformly over the choice of A. (In this context, recall the definition of total variation
distance (3.2), and the fact that [P tzzf ](y) may be interpreted as Pr(Xt ∈ A | X0 = y).)

Noting Eµ(P tzzf) = µ(A), we find

Varµ(P tzzf) ≥
∫
B

{
[P tzzf ](y)− µ(A)

}2
µ(dy)

≥ 0.4

volnK

∫
B

{
[P tzzf ](y)− µ(A)

}2
dy(6.36)

≥ 0.4 volnB

volnK

[
1

volnB

∫
B

{
[P tzzf ](y)− µ(A)

}
dy

]2
,(6.37)

where inequality (6.36) follows from the definition (6.5) of µ and Lemma 6.4; and (6.37)
from the fact that the expectation of the square of a r.v. is at least as large as the square
of its expectation. Thus, to achieve the desired bound (6.35) on variation distance, we
require

Varµ(P tzzf) ≤ 0.4 ε2 volnB

volnK
.

Now, the volume of K is maximised, for specified diameter D, when K is a ball of
radius D/2. Thus it is enough that we achieve

Varµ(P tzzf) ≤ 0.4 ε2
(

2δ

D

)n
.

According to (6.34), this inequality will hold, provided

t ≥
⌈

2

λ

(
ln

{
5

2ε2

}
+ n ln

{
D

2δ

})⌉
.

This is the mixing time claimed in Corollary 6.8, with i(µ0) specialised to an initial
distribution that is uniform and supported on a ball of radius δ.


