


Chapter 7

Inapproximability

Not all counting problems are efficiently approximable. We open with a simple example.

Fact 7.1. Unless RP = NP there can be no FPRAS for the number of Hamilton cycles
in a graph G.

Informally: assuming, as seems likely, that there exist predicates in NP that admit no
polynomial-time randomised algorithm, then no FPRAS for Hamilton cycles can exist.
Still informally: the reason is that an FPRAS for Hamilton cycles would, in particular,
need to distinguish the zero from non-zero case with reasonable probability.

To apply a rigorous interpretation to Fact 1.1, we need to divert briefly into ran-
domised complexity classes, in particular RP and BPP. A predicate ϕ : Σ∗ → {0, 1} is
in the class RP if there is a polynomial-time witness-checking predicate1 χ : Σ∗×Σ∗ →
{0, 1} and a polynomial p such that:

(i) if ¬ϕ(x) then ¬χ(x,w) for all putative witnesses w ∈ Σp(|x|);

(ii) if ϕ(x) then Pr[χ(x,w)] ≥ 1
2 , where w is assumed to be chosen u.a.r. from the set

Σp(|x|).

The predicate ϕ is in the class BPP if there exist χ and p, as above, satisfying:

(i′) if ¬ϕ(x) then Pr[χ(x,w)] ≤ 1
4 ;

(ii′) if ϕ(x) then Pr[χ(x,w)] ≥ 3
4 ,

where, again, w is assumed to be chosen u.a.r. from the setΣp(|x|). Thus RP (respectively,
BPP) is the set of predicates that can be decided in randomised polynomial time with
one-sided (respectively, two-sided) error.

Remarks 7.2. (a) There is no significance in the exact thresholds 1
2 , 1

4 and 3
4 appear-

ing in the above definitions. By designing appropriate simulations, one can show
that 1

2 can be replaced by any constant strictly between 0 and 1, and 1
4 and 3

4 by
any constants c1, c2 with 0 < c1 < c2 < 1.

(b) It is immediate from the definition of RP that RP ⊆ NP. No similar inclusion is
known for BPP.

1Refer to Chapter 2 for the general setting.
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86 Chapter 1: Inapproximability

Now, comparing the definition of BPP with that of FPRAS, we see that the existence
of an FPRAS for the number of Hamilton cycles in a graph G would immediately imply
that the decision problem — is G Hamiltonian? — is in BPP. Since the decision problem
is NP-complete, it would follow that NP ⊆ BPP. The apparently stronger conclusion
RP = NP follows from the complexity-theoretic fact:

Fact 7.3. If NP ⊆ BPP then NP ⊆ RP (and hence RP = NP).

See, e.g., Papadimitriou’s textbook [67, Problem 11.5.18].

Remark 7.4. The converse to Fact 1.1 is also true: if RP = NP then there is an FPRAS
for the number of Hamilton cycles in a graph. Whereas Fact 1.1 is trivial, its converse
is not, relying as it does on the bisection method of Valiant and Vazirani [77]. See
Chapter 10 of Goldreich’s lecture notes [38].

Of course, Hamiltonicity is not a distinguished NP-complete problem. More generally
we have:

Fact 7.5. (Informal statement.) If the decision version of a counting problem is NP-
complete, then the counting problem itself does not admit an FPRAS unless RP = NP.

Exercise 7.6. Provide a formal statement of Fact 1.5 using the notion of witness-
checking predicates.

Fact 1.5 instantly yields a large number of counting problems that, for a rather trivial
reason, do not admit an FPRAS (under a reasonable complexity-theoretic assumption).
We now turn to an example that does not admit an FPRAS for some non-trivial (though
only slightly non-trivial) reason.

Let us consider the independent sets counting problem:

Name. #IS.

Instance. A graph G.

Output. The number of independent sets2 of all sizes in G.

The decision version of #IS is trivial, since every graph has the empty set of vertices as
an independent set. Nevertheless, we shall see that #IS is hard to approximate under
some reasonable complexity-theoretic assumption. We shall make use of the optimisation
version of #IS:

Name. MaxIS.

Instance. A graph G.

Output. The size of a maximum independent set in G.

MaxIS is a classical NP-complete3 problem: see, e.g., Garey and Johnson [36, GT20].

Proposition 7.7. There is no FPRAS for #IS unless RP = NP.

2An independent set in graph G is a subset U ⊆ V (G) of the vertex set of G such that no edge of G
has both endpoints in U .

3To make formal sense of this claim, one would need to make MaxIS into a decision problem. This
could be done, in the usual way, by specifying a bound k ∈ N as part of the problem instance and asking
whether G has an independent set of size at least k.
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Figure 7.1: The construction.

Proof. We use a reduction from MaxIS. Let G = (V,E) be an instance of MaxIS. We
want to construct a graph G′ = (V ′, E′), being an instance of #IS, in such a way that
typical independent sets in G′ reveal maximum independent sets in G.

The construction replaces vertices by blocks of r vertices and edges by complete
bipartite graphs between blocks; formally,

V ′ = V × {0, . . . , r − 1},
and

E′ =
{
{(u, i), (v, j)} : {u, v} ∈ E and i, j ∈ {0 . . . r − 1}

}
.

(See Figure 1.1.)

Each independent set I ′ in G′ projects to an independent set

I =
{
v ∈ V : there exists i ∈ {0 . . . r − 1} such that (v, i) ∈ I ′

}
in G. (Since each edge of G corresponds to a complete bipartite subgraph in G′, the
set I is indeed independent in G.) Suppose |I| = k; then there are (2r−1)k independent
sets I ′ in G′ that project to the specific independent set I in G. We consider the two
complementary situations:

(a) An independent set of size k exists in G. Then there are at least (2r − 1)k inde-
pendent sets in G′.

(b) The maximum independent set in G has size less than k. Then there are at most
2n(2r − 1)k−1 independent sets in G′, where n = |V |.

Setting r = n+ 2, we have

(2r − 1)k = (2n+2 − 1)(2r − 1)k−1 ≥ 2× 2n(2r − 1)k−1;

in other words, the minimum possible number of independent sets in case (a) exceeds the
maximum possible number in case (b) by a factor 2. An FPRAS for #IS would be able to
distinguish cases (a) and (b) with high probability, providing us with a polynomial-time
randomised algorithm (with two-sided error) for MaxIS. As we have seen, this would
imply RP = NP.
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Remark 7.8. Note that the reduction proves something much stronger than the non-
existence of an FPRAS for #IS. It shows (under the assumption RP 6= NP) that there in
no polynomial time randomised algorithm that approximates the number of independent
sets even to within any fixed exponential factor. To see this, simply set r = cn with c > 1.
The statement can be strengthened even further: see Dyer, Frieze and Jerrum [27].

7.1 Independent sets in a low degree graph

Proposition 1.7 is evidence that the number of independent sets in a graph is hard to
approximate in general, so we need to restrict the class of problem instances to make
progress. One interesting way to do this is to place a bound ∆ on the maximum degree
of the instance G. Then we can investigate how the computational difficulty of of #IS
varies as ∆ does. On the positive side we have the following result.

Theorem 7.9 (Luby and Vigoda). There is an FPRAS for #IS when ∆ = 4.

Proof (sketch). As usual, it is enough to be able to sample independent sets almost
uniformly at random in polynomial time.

Independent sets are sampled using an MC based on edge updates. View an inde-
pendent set I in graph G = (V,E) as a function I : V → {0, 1}, where I(v) = 1 has the
interpretation that v is in the independent set. The state space of the MC is the set of
all independent sets in G. Transition probabilities are specified by the following trial,
where X0 : V → {0, 1} is the initial independent set.

1. Choose an edge {u,w} ∈ E, u.a.r.

2. Begin to construct a new independent set I as follows: with equal probability (13
in each case) set (a) I(u) := 0 and I(w) := 0; (b) I(u) := 0 and I(w) := 1; or
(c) I(u) := 1 and I(w) := 0. (Note that these three cases correspond to the three
possible restrictions of an independent set in G to the edge {u,w}.)

3. For all v ∈ V \ {u,w} set I(v) := X0(v).

4. If I is an independent set then X1 := I, otherwise X1 := X0.

Informally, we are using edge-updates with Metropolis acceptance probabilities.
This MC can be shown to be rapidly mixing using the path-coupling method. Two

independent sets are considered to be adjacent if they differ at exactly one vertex. If
adjacent independent sets are considered to be at distance 1, the derived path-metric is
just Hamming distance. Suppose X0 and Y0 are adjacent; on the basis of a case analysis
of moderate complexity it is possible to conclude that the expected Hamming distance
between X1 and Y1 is at most 1. (For a regular graph with no small cycles there are four
“good edges” {u,w} whose selection may cause the distance to decrease, and twelve “bad
edges” which may cause the distance to increase. In the worst case, these two effects
are exactly in balance.) It follows that the mixing time of the MC scales quadratically
with n.

Exercise 7.10. Complete the proof of Theorem 1.9. To keep technical complexity to a
minimum, assume the graph G is triangle-free, i.e., contains no cycles of length 3. In case
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you need to refer to it, a complete analysis (in a more general setting where vertices in
the independent set are given weight or “fugacity” λ) is given by Luby and Vigoda [58].
Theorem 1.9 corresponds to the case λ = 1 of their result. Dyer and Greenhill [30] also
obtain a generalisation of Theorem 1.9, using a slightly different MC. Their proof has
the advantage of dispensing with triangle-freeness.

According to Theorem 1.9, approximately counting independent sets in a graph G
is tractable provided the maximum degree ∆ is small enough. We know that ∆ = 4 is
small enough, so what about ∆ = 5, 6, . . .? The reduction described in Proposition 1.7
constructs graphs of arbitrarily large degree, so it apparently leaves open the possibility
that there is an FPRAS for #IS for any fixed degree bound ∆. However, if we look
afresh at the construction of Theorem 1.9 in the light of inapproximability results for
the optimisation problem MaxIS, we discover that there is a definite upper bound on ∆.
This idea is due to Luby and Vigoda [58].

Proposition 7.11. There is no FPRAS for #IS when ∆ = 1188, unless RP = NP.

Proof. We know that MaxIS is NP-hard when restricted to graphs of maximum degree 4.
A result of Berman and Karpinski [6, Thm 1(iv)] tells us more: for any ε > 0, it is NP-
hard to determine the size of a maximum independent set in a graph G to within ratio
of 73

74 + ε, even when G is restricted to have maximum degree 4. (By “determining the

size. . . within ratio %” we mean computing a number k̂ such that %k ≤ k̂ ≤ k, where k
is the size of a maximum independent set in G.) In other words, the problem MaxIS is
polynomial-time (Turing) reducible to the approximate version of MaxIS, in which we
ask for a result within ratio 73

74 +ε. This result, like many other inapproximability results
for optimisation problems, rests on the powerful theory of probabilistically checkable
proofs (PCP).

So let G be a graph of maximum degree 4. Using our construction from the proof of
Theorem 1.7 with r = 297, we obtain a graph G′ of maximum degree 1188. We shall see
that even a rough approximation to the number of independent sets in G′ will provide
a close (within ratio 73

74 + ε) approximation to the size of the largest independent set
in G. Thus the existence of an FPRAS for #IS in graphs of maximum degree 1188 would
imply the existence of a polynomial-time randomised algorithm (with two-sided error)
for MaxIS. As before, this would in turn imply RP = NP.

We define J ′ to be the collection of all independent sets in G′. Let k be the size of a
maximum independent set in G. We have

(2r − 1)k ≤ |J ′| ≤ 2n(2r − 1)k,

or, taking the natural logarithm,

k ln(2r − 1) ≤ ln |J ′| ≤ n ln 2 + k ln(2r − 1).

Consider the following estimate for k:

k̂ =
ln |J ′| − n ln 2

ln(2r − 1)
;

it is clear that

k − n ln 2

ln(2r − 1)
≤ k̂ ≤ k.
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Recall that Brooks’s theorem [8, 10] asserts that any graph of maximum degree ∆ ≥ 3
that does not contain K∆+1 as a connected component is ∆-colourable. Assuming, as
we may, that G is connected, it follows that G is 4-colourable. Since any (and hence in
particular the largest) of the four colour classes is an independent set, k ≥ n/4. Thus

k

(
1− 4 ln 2

ln(2r − 1)

)
≤ k̂ ≤ k.

Note that, when r = 297,
4 ln 2

ln(2r − 1)
<

1

74
.

If we had an FPRAS for #IS restricted to graphs of maximum degree 1188 then we would
be able to approximate |J ′| (with high probability) within arbitrarily small constant
relative error, and ln |J ′| (and hence k̂) within arbitrarily small constant additive error.
But this in turn would provide an approximation to the size of the largest independent
set in G (with high probability) within ratio 73

74 + ε.

One might suspect that the degree bound ∆ = 1188 in Proposition 1.11 is quite a
bit larger than necessary, and this is indeed the case. Indeed, simply by tightening the
analysis of the construction used in the proof of Proposition 1.11, one can reduce the
degree ∆ in its statement by 10–20%.

Exercise 7.12. Using the same reduction, but improved estimates, show that Proposi-
tion 1.11 holds for some ∆ less than 1100. (I think ∆ = 964 is achievable.)

Using a technically more involved reduction, Dyer, Frieze and Jerrum have shown
that ∆ = 1188 may be replaced by ∆ = 25. That still leaves a large gap between
what is known to be tractable (∆ = 4) and intractable (∆ = 25); no doubt the upper
bound could be reduced slightly at the expense of additional technical complexity, but
a substantial gap would still remain.

To explore further the boundary between tractable and intractable requires us, at
present, to accept more circumstantial evidence. Consider any MC on independent sets
of a graph on n vertices. Let b(n) ≤ n be any function of n and suppose the Hamming
distance between successive states Xt and Xt−1 of the MC is uniformly bounded by b(n).
We will say that the MC is b(n)-cautious. (Recall that we are viewing independent sets
as functions V → {0, 1}.) Thus a b(n)-cautious MC is not permitted to change the
status of more than b(n) vertices in G at any step. Ideally, for ease of implementation,
we would wish to have b(n) a constant (as in the proposals of Luby and Vigoda [58],
and Dyer and Greenhill [30]). However, we are able show that no b(n)-cautious chain
on independent sets can mix rapidly unless b(n) = Ω(n), even when ∆ = 6. Thus any
chain that does mix rapidly on graphs of maximum degree 6 must change the status of
a sizeable proportion of the vertices at each step.

Theorem 7.13 (Dyer, Frieze and Jerrum). There exists an infinite family of regular
bipartite graphs of degree 6, together with constants δ, γ > 0, such that the following is
true: any δn-cautious MC on independent sets of these graphs has exponential mixing
time, in the sense that τ

(
1
4

)
= Ω(exp(γn)).
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Dyer, Frieze and Jerrum’s proof of Theorem 1.13 provides an explicit value for δ,
namely δ = 0.35. We present a simplified version of the proof here that does not
attempt to estimate δ. The idea underlying the proof is very simple: if the state space
of an MC has a tight “constriction” then its mixing time will be long. This intuition
may be formalised as follows.

Claim 7.14. Consider an MC with state space Ω, transition matrix P , and stationary
distribution π. Let A ⊂ Ω be a set of states such that π(A) ≤ 1

2 , and M ⊂ Ω be a set
of states that forms a “barrier” in the sense that P (i, j) = 0 whenever i ∈ A \M and
j ∈ A \M . Then the mixing time τ of the MC satisfies τ

(
1
4

)
≥ π(A)/4π(M).

We defer the proof of the claim to the end of the chapter.

Proof of Theorem 1.13. Our counterexample to rapid mixing (or, more precisely, family
of counterexamples indexed by n) is a random regular bipartite graph G of degree ∆ = 6,
with n vertices on the left and n on the right. Denote the left and right vertex sets by
V1 and V2 respectively. The random graph model is simple. A pairing is one of the n!
possible bijections between left and right vertices viewed as a regular bipartite graph of
degree 1. Select ∆ pairings, independently and u.a.r., and form the union: the result is
a bipartite graph G of maximum degree ∆. Since the pairings may not be disjoint, the
graph G may not be regular; we return to this point later.

Let J(α, β) be the collection of all independent sets in G having αn vertices on the
left and βn on the right. For a given set of αn vertices U1 ⊆ V1 and βn vertices U2 ⊆ V2,
what is the probability that a random pairing will avoid joining some element in U1 to
some element in U2? Well, the “image” of U1 under the pairing is a random αn-subset
of V2, so the answer is the same as the probability that a random αn-subset of V2 is
disjoint from U2; but the latter probability is just(

(1− β)n

αn

)/(
n

αn

)
.

Thus the expected size of J(α, β) for a random G chosen according to our model is just

E |J(α, β)| =
(
n

αn

)(
n

βn

)[(
(1− β)n

αn

)/(
n

αn

)]∆
.

(By linearity of expectation, the required quantity is simply the number of possible can-
didates (U1, U2), times the probability that all ∆ pairings avoid connecting U1 and U2.)
By Stirling’s approximation we have

E |J(α, β)| = exp
(
ϕ(α, β)n(1 + o(1))

)
where

ϕ(α, β) = −α lnα− β lnβ −∆(1− α− β) ln(1− α− β)

+ (∆− 1)
(
(1− α) ln(1− α) + (1− β) ln(1− β)

)
.(7.1)

We treat ϕ as a function of real arguments α and β, even though a combinatorial
interpretation is possible only when αn and βn are integers. Then ϕ is defined on the
triangle

T =
{

(α, β) : α, β ≥ 0 and α+ β ≤ 1
}
,
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and is clearly symmetrical in α, β. (The function ϕ is defined by equation (1.1) on the
interior of T , and can be extended to the boundary by taking limits.)

Now set ∆ = 6. By calculus, ϕ(α, α) has a unique maximum in the range [0, 12);
numerically ϕ(α, α) is uniformly less than 0.704 in this range. Consider the region
D = {(α, β) ∈ T : |α − β| ≤ δ}, where δ is a small positive constant. (This is the δ in
the statement of the theorem.) For sufficiently small δ > 0,

ϕ(α, β) ≤ 0.705, for all (α, β) ∈ D.

For, if not, there would be an infinite sequence (αi, βi) of points in T , all satisfying
ϕ(α, β) > 0.705, which approach the diagonal α = β arbitrarily closely. By compactness,
there would be a subsequence of (αi, βi) converging to some point on the diagonal,
contradicting continuity of ϕ. So, by Markov’s inequality, with very high probability,4

(7.2)

∣∣∣∣∣ ⋃
(α,β)∈D

J(α, β)

∣∣∣∣∣ ≤ e0.706n,
where the union is over α, β which are multiples of 1/n.

Denote by L and R the two connected regions of T \ D. We need a lower bound on
the number of independent sets in these regions which exceeds the upper bound (1.2).
With this in mind, define

θ(α) = −α lnα− (1− α) ln(1− α) + (ln 2)(1−∆α).

for α < ∆−1. Then, for any graph G in the space of random graphs, the total number
of independent sets I with |I ∩ V1| = αn is (crudely) at least

|J(α, ∗)| ≥
(
n

αn

)
2(1−∆α)n = exp

(
θ(α)n(1− o(1))

)
.

(Choose αn vertices from V1; then choose any subset of vertices from the at least (1 −
∆α)n unblocked vertices in V2.) Set ∆ = 6 as before and α∗ = 0.015. Then, by numerical
computation, θ(α∗) is greater than 0.708. In other words,

(7.3)

∣∣∣∣∣ ⋃
(α,β)∈L

J(α, β)

∣∣∣∣∣ ≥ e0.708n,
for all sufficiently large n, with a similar bound for R. Comparing (1.2) and (1.3), we
see that, with very high probability, the number of approximately balanced independent
sets is smaller, by an exponential factor, than the number with a sizeable imbalance in
either direction. Specifically, the former is smaller than the latter by a factor eγn, where
γ = 0.002.

The (n+ n)-vertex graph whose existence is guaranteed by Theorem 1.13 (ignoring
for a moment the regularity requirement) is any graph from the space of random graphs
under consideration that exhibits the exponential gap just described. (A randomly

4“With very high probability” may be taken to mean “with probability differing from 1 by an amount
decaying exponentially fast with n.”
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chosen graph will do with high probability.) The remainder of our argument concerns
such a graph.

Now consider a δn-cautious MC. Let A =
⋃
α≥β J(α, β) denote the set of leftward

leaning independent sets, and assume, without loss of generality, that A is no larger than
its complement A = Ω \A. Denote by M the set of approximately balanced independent
sets M =

⋃
(α,β)∈D J(α, β).

Since the MC is δn-cautious, it cannot make a transition from A to A directly, but
only by using intermediate states in M . Now, we know from inequalities (1.2) and (1.3)
that

(7.4) |A| ≥ eγn |M |.

If we are prepared to weaken the theorem slightly by dropping the condition that the
graphs be regular, we can immediately complete the proof by appealing to Claim 1.14.

We may address the regularity issue by reference to a standard result about the
union-of-pairings model for random bipartite graphs. Provided ∆ is taken as constant,
Bender [5] has shown that ∆-regular graphs occur in our random graph model with
probability bounded away from 0. Since we prove that random graphs of maximum
degree 6, with very high probability, have the property we seek, it follows that random
∆-regular graphs (in the induced probability space), with very high probability, have
the property too.

It only remains to present the missing proof.

Proof of Claim 1.14. Denote by πt the t-step distribution of the MC. First note that

‖πt+1 − πt‖TV = ‖πtP − πt−1P‖TV =
1

2
max
‖z‖∞≤1

(πt − πt−1)Pz

≤ 1

2
max
‖w‖∞≤1

(πt − πt−1)w

= ‖πt − πt−1‖TV,

since ‖Pz‖∞ ≤ ‖z‖∞. Hence, by induction, ‖πt+1 − πt‖TV ≤ ‖π1 − π0‖TV and, further,
using the triangle inequality, ‖πt − π0‖TV ≤ t ‖π1 − π0‖TV. Now, for ∅ ⊂ S ⊂ Ω, define

Φ(S) =
1

π(S)

∑
i∈S

∑
j∈S

π(i)P (i, j).

The quantity Φ = min{Φ(S) : S ⊂ Ω and 0 < π(S) ≤ 1
2} is sometimes called the

“conductance” of the MC. (Conductance is normally considered in the context of time-
reversible Markov chains. However, both the definition and the line of argument em-
ployed here apply to non-time-reversible chains.) Now∑

i∈A

∑
j∈A

π(i)P (i, j) ≤
∑
i∈A

∑
j∈A∩M

π(i)P (i, j) +
∑

i∈A∩M

∑
j∈A

π(i)P (i, j)

≤ π(A ∩M) + π(A ∩M)

= π(M).
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In short, Φ(A)π(A) ≤ π(M). So setting

π0(i) =

{
π(i)/π(A), if i ∈ A;

0, otherwise,

we have

‖π1 − π0‖TV =
1

2

∑
j∈Ω

∣∣∣∣∣∑
i∈Ω

π0(i)P (i, j)− π0(j)

∣∣∣∣∣(7.5)

=
∑
j∈A

∑
i∈A

π0(i)P (i, j)(7.6)

= Φ(A).

(To see equality (1.6), observe that the terms in (1.5) with j ∈ A make a contribution
to the sum that is equal to that made by the terms with j ∈ A. Now simply restrict the
sum to terms with j ∈ A.) But ‖π0 − π‖TV ≥ 1

2 , since π(A) ≤ 1
2 , and hence

‖πt − π‖TV ≥ ‖π0 − π‖TV − ‖πt − π0‖TV ≥
1

2
− t Φ(A).

Thus we cannot achieve ‖πt − π‖TV ≤ 1
4 until

t ≥ 1

4Φ(A)
≥ π(A)

4π(M)
.

By an averaging argument there must exist some initial state x0 ∈ A for which τx0
(
1
4

)
≥

π(A)/4π(M).


