
Chapter 8

Inductive bounds, cubes, trees
and matroids

The spectral gap of a MC can sometimes be bounded by a direct inductive argument.
Given its conceptual simplicity, this inductive approach seems surprising powerful. To
start with, however, we’ll develop the tools in the context of the random walk on the
n-dimensional cube. The simplicity of this example will bring the key ideas into sharp
relief.

8.1 The cube

Suppose n is a positive integer (dimension) and 0 < p < 1/n. We consider the random
walk on Ω = {0, 1}n with transition probabilities given by

P (x, y) =

{
p if |x− y| = 1;

0 otherwise,

where |x − y| denotes Hamming distance between x and y. The MC (Ω,P ) is ergodic
with uniform stationary distribution. We already know two ways to upper bound the
mixing time of this MC: coupling and canonical paths. A third is to give the state space
a geometric interpretation and use isoperimetry. (Jerrum and Sinclair [45, §12.3] use the
random walk on the cube as an illustration of the second and third of these approaches.
Coupling is the subject of Exercise 8.4.) In this section we study a fourth. Why do
we need another method? The advantage of this one is that it is robust, in the sense
that applies to other MCs with inductively defined state spaces. This section and §8.3
is based on Jerrum and Son [47], and Jerrum, Son, Tetali and Vigoda [48].

A function g : K → R defined on a convex set K ⊂ Rk is convex if g(αx+(1−α)y) ≤
αg(x) + (1 − α)g(y) for every x, y ∈ K and 0 < α < 1. By expectation of a r.v. taking
values in K we mean the obvious thing, namely, take expectations of the individual
coordinates.

Lemma 8.1 (Jensen’s inequality). Let K ⊂ Rk be a compact convex set, X a r.v. taking
values in K, and g : K → R a convex real-valued function. Then g(EX) ≤ E g(X).
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Exercise 8.2. Prove Jensen’s inequality. Hint: Consider the graph G(g) =
{

(x, y) : x ∈
K and y ≥ g(x)

}
⊂ Rk+1 of g together with a supporting plane to G(g) at the point

(EX, g(EX)).

Suppose Ω = Ω0 ∪Ω1 is a partition of the state space. (For the cube it is natural to
take Ωb = {x = x0x1 . . . xn−1 ∈ Ω : x0 = b}.) For π a probability distribution on Ω, we
denote by πb : Ωb → [0, 1] the induced distribution π/π(Ωb) on Ωb. Let ϕ : Ω → R be any
real-valued “test function” on Ω. (In previous chapters we used f for this purpose. The
change to ϕ is just to avoid a notational clash later in this chapter.) Then (decomposition
of variance)

Varπ ϕ = π(Ω0) Varπ0 ϕ+ π(Ω1) Varπ1 ϕ+ Varπ ϕ̄(8.1)

where

Varπb ϕ =
∑
x∈Ωb

πb(x)(ϕ(x)− Eπb ϕ)2,

Eπb ϕ =
∑
x∈Ωb

πb(x)ϕ(x)

and

Varπ ϕ̄ = π(Ω0)π(Ω1)(Eπ0 ϕ− Eπ1 ϕ)2.

The rationale for the notation Varπ ϕ̄ is that this “cross term” may be interpreted as the
variance of the function ϕ̄ that is constant Eπb ϕ on Ωb, for b = 0, 1. Also (decomposition
of the Dirichlet form)

EP (ϕ,ϕ) = π(Ω0)EP0(ϕ,ϕ) + π(Ω1)EP1(ϕ,ϕ) + C,(8.2)

where

EPb
(ϕ,ϕ) =

1

2

∑
x,y∈Ωb

πb(x)P (x, y)(ϕ(x)− ϕ(y))2

and

C =
∑

x∈Ω0,y∈Ω1

π(x)P (x, y)(ϕ(x)− ϕ(y))2.

In the definition of C we have assumed time reversibility of (Ω,P ): the restriction of the
sum to unordered pairs exactly accounts for the factor 1

2 in the definition of the Dirichlet
form.

Exercise 8.3. Verify (8.1) and (8.2). (One of these identities is actually trivial.)

All the above was for an arbitrary time-reversible MC with finite state space par-
titioned into two pieces. We now specialise to the uniform random walk on the n-
dimensional Boolean cube. In this instance, π is the uniform distribution on Ω and πb
is the uniform distribution on Ωb. Suppose, inductively, we had established Poincaré
inequalities

(8.3) EPb
(ϕ,ϕ) ≥ λn−1,p Varπb ϕ

for the subcubes. These will allow us to compare two of the three corresponding pairs of
terms in (8.1) and (8.2). Thus we may obtain a Poincaré inequality for the n-dimensional
cube provided we can relate the final pair of terms.
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Consider the r.v. (F0, F1) ∈ R2 defined by the following trial: select z ∈ {0, 1}n−1

u.a.r.; then let (F0, F1) = (ϕ(0z), ϕ(1z)) ∈ R2. (Here bz denotes the element of Ωb
obtained by prefixing z by the bit b.) Then

Varπ ϕ̄ = π(Ω0)π(Ω1)(Eπ0 ϕ− Eπ1 ϕ)2 = π(Ω0)π(Ω1)(Ez F0 − Ez F1)2

and

C =
p

2
Ez
[
(F0 − F1)2

]
.

(Here we use Ez to denote expectations with respect to a uniformly selected z ∈
{0, 1}n−1.) But the function R2 → R defined by (ξ, η) 7→ (ξ − η)2 is convex; so, by
Lemma 8.1 (Jensen’s Inequality),

Ez
[
(F0 − F1)2] ≥ (Ez F0 − Ez F1)2

and hence

(8.4) C ≥ p

2π(Ω0)π(Ω1)
Varπ ϕ̄.

Substituting (8.3) and (8.4) into (8.2), and comparing with (8.1), we obtain

λn,p ≥ min{λn−1,p, 2p},

where we have used the fact that π(Ω0) = π(Ω1) = 1
2 . For the base case, n = 1, it is easy

to check by direct calculation that λ1,p = 2p. Thus, by a trivial induction, λn,p ≥ 2p.
This bound is tight, as can be seen by taking the function ϕ that is constant −1 on Ω0

and constant 1 on Ω1.
It follows from arguments in Chapter 5 — see Corollary 5.9, recalling % = λ−1 —

that the mixing time of the random walk on the n-dimensional cube with transition
probabilities p = 1/n is O

(
n(n + log(1/ε))

)
. (The first n is from the reciprocal of the

Poincaré constant and the second from log(1/π(x0)).) Here we assume that periodicity
is dealt with either by using the lazy version of the walk, or working in continuous time.
The correct answer is O

(
n log(n/ε)

)
, so no cigar. . . yet.

Exercise 8.4. Demonstrate that O(n log n) is the correct order of magnitude for the
mixing time of the random walk on the cube. The upper bound can be obtained by
coupling, the lower bound by a coupon collector argument. Warning: the lower bound
may not be quite as simple as you expect!

It was suggested at the outset that the technique just applied in the context of the
cube has a degree of robustness. “Twisted cubes” provide somewhat artificial confirma-
tion of this claim. A twisted cube of dimension 1 is a complete graph on two vertices (i.e.,
two vertices joined by an edge); a twisted cube of dimension n > 1 is the union of two
distinct twisted cubes (possibly different) of dimension n− 1, connected by an arbitrary
perfect matching (of size 2n−1). Observe that the inductive computation of λn,p given
in this section applies just as well to twisted cubes.

Exercise 8.5. For a twisted cube, what is the best upper bound on mixing time you
can achieve by coupling?
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8.2 Balanced Matroids

Twisted cubes in themselves aren’t interesting, but there are more substantial examples
where the ideas from §8.1 apply with no essential change. What do we need for the
argument of §8.1? First, we need to be able to decompose the MC into two (or maybe
more) smaller pieces “of the same kind”. Second, we need the transitions that cross
between the pieces to be such as to support a coupling of the r.v’s F0 and F1, used in
the derivation of (8.4).

A general class of random walks falling into this setting are random walks on the
“bases-exchange graph” of a balanced matroid. The various technical terms appearing
in that sentence will be explained presently. For the time being, let us merely note that
this class includes, as a special case, a natural walk on spanning trees of a graph.

Let E be a finite ground set and B ⊆ 2E a collection of subsets of E. We say that
B forms the collection of bases of a matroid M = (E,B) if the following two conditions
hold:

1. All bases (sets in B) have the same size, namely the rank of M .

2. For every pair of bases X,Y ∈ B and every element e ∈ X, there exists an element
f ∈ Y such that X ∪ {f} \ {e} ∈ B.

The above axioms for a matroid capture the notion of linear independence. Thus if
S = {u0, . . . , um−1} is a set of n-vectors over a field K, then the maximal linearly
independent subsets of S form the bases of a matroid with ground set S. The bases in
this instance have size equal to the dimension of the vector space spanned by S, and
they clearly satisfy the second or “exchange” axiom. A matroid that arises in this way
is vectorial, and is said to be representable over K.

Several other equivalent axiomatisations of matroid are possible, each shedding dif-
ferent light on the notion of linear independence; the above choice turns out to be the
most appropriate for our needs. For other possible axiomatisations, and more on matroid
theory generally, consult Oxley [66] or Welsh [81].

The advantage of the abstract viewpoint provided by matroid theory is that it allows
us to perceive and exploit formal linear independence in a variety of combinatorial sit-
uations. Most importantly, the spanning trees in an undirected graph G = (V,E) form
the bases of a matroid, the cycle matroid of G, with ground set E. A matroid that arises
as the cycle matroid of some graph is called graphic.

Two absolutely central operations on matroids are contraction and deletion. An
element e ∈ E is said to be a coloop if it occurs in every basis. If e ∈ E(M) is an element
of the ground set of M then, provided e is not a coloop, the matroid M \ e obtained
by deleting e has ground set E(M \ e) = E(M) \ {e} and bases B(M \ e) = {X ⊆
E(M \ e) : X ∈ B(M)}; and the matroid M/e obtained by contracting e has ground set
E(M/e) = E(M) \ {e} and bases B(M/e) = {X ⊆ E(M/e) : X ∪ {e} ∈ B(M)}. Any
matroid obtained from M by a series of contractions and deletions is a minor of M .

The matroid axioms given above suggest a very natural walk on the set of bases of a
matroid M . The bases-exchange graph G(M) of a matroid M has vertex set B(M) and
edge set {

{X,Y } : X,Y ∈ B and |X ⊕ Y | = 2
}
,
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where ⊕ denotes symmetric difference. Note that the edges of the bases-exchange
graph G(M) correspond to the transformations guaranteed by the exchange axiom. In-
deed, it is straightforward to check, using the exchange axiom, that the graph G(M) is
always connected. By simulating a random walk on G(M) it is possible, in principle,
to sample a basis (almost) u.a.r. from B(M). Although it has been conjectured that
the random walk on G(M) is rapidly mixing for all matroids M , the conjecture has
never been proved and the circumstantial evidence in its favour seems slight. Neverthe-
less, there is an interesting class of matroids, the “balanced” matroids, for which rapid
mixing has been established. The definition of balanced matroid is due to Feder and
Mihail [32], as is the proof of rapid mixing. We follow their treatment quite closely, up
to and including Lemma 8.8. We then deviate from their analysis, and instead use the
methods of §8.1 in order to achieve a tighter bound on spectral gap.

For the rest of this section we usually drop explicit reference to the matroid M , and
simply write B and E in place of B(M) and E(M). Suppose a basis X ∈ B is chosen
u.a.r. If e ∈ E, we let e stand (with a slight abuse of notation) for the event e ∈ X, and
ē for the event e /∈ X. Furthermore, we denote conjunction of events by juxtaposition:
thus ef̄ denotes the event e ∈ X ∧ f /∈ X, etc. The matroid M is said to possess the
negative correlation property if the inequality Pr(ef) ≤ Pr(e) Pr(f) holds for all pairs of
distinct elements e, f ∈ E. Another way of expressing negative correlation is by writing
Pr(e | f) ≤ Pr(e); in other words the knowledge that f is present in X makes the
presence of e less likely.1 Further, the matroid M is said to be balanced if all minors
of M (including M itself) possess the negative correlation property. We shall see in
§8.4 that graphic matroids, amongst others, are balanced. So the class is not without
interest, even if it does not include all matroids.

If E′ ⊆ E, then a increasing property over E′ is a property of subsets of E′ that is
closed under the superset relation; equivalently, it is a property that may be expressed
as a monotone Boolean formula in the indicator variables of the elements in E′. A
decreasing property is defined analogously.

Lemma 8.6. Suppose M is a balanced matroid. For every e ∈ E(M) and every in-
creasing property µ over E(M)\{e}, the inequality Pr(µe) ≤ Pr(µ) Pr(e) holds; in other
words, µ is negatively correlated with e.

Remark 8.7. The inequality Pr(ef) ≤ Pr(e) Pr(f) is a special case of Lemma 8.6.

Proof of Lemma 8.6. The proof is by induction on the size of the ground set. We may
assume that Pr(µe) > 0, otherwise the result is immediate. Conditional probabilities
with respect to e and µe are thus well defined, and we may re-express our goal as
Pr(µ | e) ≤ Pr(µ). Further, we may assume that the rank r of M is at least 2, otherwise
the result follows from the fact that µ is increasing.

From the identity ∑
f 6=e

Pr(f | µe) = r − 1 =
∑
f 6=e

Pr(f | e),

and the assumption that r ≥ 2, we deduce the existence of an element f satisfying
Pr(f | µe) ≥ Pr(f | e) > 0, and hence

(8.5) Pr(µ | ef) ≥ Pr(µ | e);
1We assume here that Pr(f) > 0; an element f such that Pr(f) = 0 is said to be a loop.
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note that the conditional probability on the left is well defined. Two further inequalities
that hold between conditional probabilities are

Pr(f | e) ≤ Pr(f)(8.6)

and

Pr(µ | ef) ≤ Pr(µ | f);(8.7)

the former comes simply from the negative correlation property, and the latter from
applying the inductive hypothesis to the matroid M/f and the property derived from µ
by forcing f to 1.

At this point we dispense with the degenerate case Pr(f̄ | e) = 0. It follows from (8.6)
that Pr(f) = 1, and then from (8.7) that Pr(µ | e) ≤ Pr(µ), as desired. So we may now
assume Pr(f̄ | e) > 0 and hence that probabilities conditional on the event ef̄ are well
defined. In particular,

(8.8) Pr(µ | ef̄) ≤ Pr(µ | f̄),

as can be seen by applying the inductive hypothesis to the matroid M \ f and the
property derived from µ by forcing f to 0. Further, inequality (8.5) may be re-expressed
as

(8.9) Pr(µ | ef) ≥ Pr(µ | ef̄).

The inductive step is now achieved through a chain of inequalities based on (8.6)–
(8.9):

Pr(µ | e) = Pr(µ | ef) Pr(f | e) + Pr(µ | ef̄) Pr(f̄ | e)
= Pr(µ | ef) Pr(f | e) + Pr(µ | ef̄)(1− Pr(f | e))
=
[

Pr(µ | ef)− Pr(µ | ef̄)
]

Pr(f | e) + Pr(µ | ef̄)

≤
[

Pr(µ | ef)− Pr(µ | ef̄)
]

Pr(f) + Pr(µ | ef̄) by (8.6), (8.9)

= Pr(µ | ef) Pr(f) + Pr(µ | ef̄) Pr(f̄)

≤ Pr(µ | f) Pr(f) + Pr(µ | f̄) Pr(f̄) by (8.7), (8.8)

= Pr(µ).

Given e ∈ E, the set of bases B may be partitioned as B = Be ∪ Bē, where Be =
{X ∈ B : e ∈ X} and Bē = {X ∈ B : e /∈ X}; observe that Be and Bē are isomorphic to
B(M/e) and B(M\e), respectively (assuming e is not a coloop). ForA ⊆ Be (respectively,
A ⊆ Bē), let Γe(A) denote the set of all vertices in Bē (respectively, Be) that are adjacent
to some vertex in A. The bipartite subgraph of the bases-exchange graph induced by
the bipartition B = Be ∪ Bē satisfies a natural expansion property.

Lemma 8.8. Suppose M is a balanced matroid, e ∈ E(M), and that the partition
B = Be ∪ Bē is non-trivial. Then

|Γe(A)|
|Bē|

≥ |A|
|Be|

, for all A ⊆ Be, and

|Γe(A)|
|Be|

≥ |A|
|Bē|

, for all A ⊆ Bē.
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Proof. For any A ⊆ Be let µA denote the increasing property µA =
∨
X∈A

∧
f∈X\{e} f .

The collection of all bases in Be satisfying µA is precisely A, while the collection of
all bases in Bē satisfying µA is precisely Γe(A). Hence the first part of the lemma is
equivalent to the inequality Pr(µA | ē) ≥ Pr(µA | e), which follows from Lemma 8.6.
Similarly, for any A ⊆ Bē let µ̄A denote the decreasing property µ̄A =

∨
X∈A

∧
f /∈X∪{e} f̄ .

The set of all bases in Bē satisfying µ̄A is precisely A, while the set of all bases in Be
satisfying µ̄A is precisely Γe(A). Hence the second part of the lemma is equivalent to
the inequality Pr(µ̄A | e) ≥ Pr(µ̄A | ē), which again follows from Lemma 8.6.

8.3 Bases-exchange walk

Suppose M is a balanced matroid, and p satisfies 0 < p ≤ 1/rm, where m is the size of
the ground set of M and r its rank. Consider the MC (Ω,P ) whose state space Ω = B
is the set of all bases in M , and whose transition probabilities P are given by

P (x, y) =

{
p if (x, y) is an edge of the bases-exchange graph G(M);

0 otherwise,

for all x, y ∈ Ω with x 6= y; loop probabilities are implicitly defined by complementation.
Since the maximum degree of the bases-exchange graph of M is strictly less than rm, the
transition probabilities are well defined. By the exchange property of matroids, (Ω,P ) is
irreducible, and since loop probabilities are non-zero it is also aperiodic. The transition
probabilities are symmetric, so the stationary distribution is uniform. This MC is the
bases-exchange walk associated with M .

We’ll see that the expansion property formalised in Lemma 8.8 allows us to reuse
the analysis of §8.1 almost exactly.

Remark 8.9. We can implement this random walk on G(M) naturally as follows. The
current state (basis) is X0.

1. Choose e u.a.r. from E, and f u.a.r. from X0.

2. If Y = X0 ∪ {e} \ {f} ∈ B then X1 = Y ; otherwise X1 = X0.

The new state is X1.

Theorem 8.10. Suppose M is a balanced matroid. The spectral gap of the bases-
exchange walk associated with M is at least λ ≥ 2p, where p is the uniform transition
probability. For the above implementation, p = 1/rm.

Corollary 8.11. The mixing time of the bases-exchange walk on any balanced matroid
of rank r on a ground set of size m is O

(
rm(r lnm+ ln ε−1

)
.

Theorem 8.10 will follow fairly directly from Lemma 8.12 below. In order to make a
connection with the argument of §8.1, we’ll identify Ω0 with Bē and Ω1 with Be. Recall
that πb = π/π(Ωb), for b = 0, 1, is the induced distribution on Ωb, in this case uniform.

Lemma 8.12. The transitions from Ω0 to Ω1 support a fractional matching. Specifically,
there is a function w : Ω0×Ω1 → R+ such that (i)

∑
y∈Ω1

w(x, y) = π0(x), for all x ∈ Ω0;
(ii)

∑
x∈Ω0

w(x, y) = π1(y), for all y ∈ Ω1; and (iii) w(x, y) > 0 entails P (x, y) > 0, for
all (x, y) ∈ Ω0 ×Ω1.
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Proof (sketch). Follows from Lemma 8.8, using the the Max-flow, min-cut Theorem [79,
Thm 7.1].

Exercise 8.13. Prove Lemma 8.12. Start with the bipartite subgraph of the bases-
exchange graph G(M) induced by the vertex partition (Ω0, Ω1). Construct from it a
flow network by adding a distinguished source s and sink t, arcs of capacity π0(x) from s
to every node x ∈ Ω0, and arcs of capacity π1(y) from every node y ∈ Ω1 to t. All other
arcs, corresponding to possible transitions from Ω0 to Ω1, have unbounded capacity. Use
Lemma 8.8 to show that the network has a flow of value 1.

Remark 8.14. Note that ∑
(x,y)∈Ω0×Ω1

w(x, y) =
∑
x∈Ω0

π0(x) = 1,

so (Ω0 ×Ω1, w) is a probability space.

We are now ready to bound the spectral gap of the bases-exchange walk.

Proof of Theorem 8.10. Let (F0, F1) ∈ R2 be the r.v. defined on (Ω0×Ω1, w) as follows:
select (x, y) ∈ Ω0 ×Ω1 according to distribution w and return (F0, F1) = (f(x), f(y)).

To carry out the programme of §8.1, need to compare the cross term of the variance

Varπ ϕ̄ = π(Ω0)π(Ω1)(Eπ0 ϕ− Eπ1 ϕ)2 = π(Ω0)π(Ω1)(Ew F0 − Ew F1)2,

to the cross term C in the Dirichlet form. Without loss of generality, assume π(Ω0) ≥
π(Ω1). Now, w(x, y) ≤ π0(x) = π(x)/π(Ω0), for all (x, y) ∈ Ω0 × Ω1, which implies
π(x)P (x, y) ≥ p π(Ω0)w(x, y). (Note that we are using the fact that w(x, y) = 0 when-
ever P (x, y) = 0.) Thus

C =
∑

(x,y)∈Ω0×Ω1

π(x)P (x, y)
(
ϕ(x)− ϕ(y)

)2
≥ p π(Ω0)

∑
(x,y)∈Ω0×Ω1

w(x, y)
(
ϕ(x)− ϕ(y)

)2
= p π(Ω0)Ew

[
(F0 − F1)2

]
≥ p π(Ω0)(Ew F0 − Ew F1)2 by Lemma 8.1

=
p

π(Ω1)
π(Ω0)π(Ω1)(Ew F0 − Ew F1)2

≥ 2pVarπ ϕ̄.

We are now exactly in the situation of §8.1, when we were analysing the gap of the cube
walk. In particular, denoting by λm,p a lower bound on the spectral gap of the basis-
exchange walk when the ground set of M has size m and the transition probabilities are
all p, we have λm,p ≥ min{λm−1,p, 2p}, and hence λm,p ≥ 2p.
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8.4 Examples of balanced matroids

A natural question now presents itself: how big is the class of balanced matroids?

A matroid that is representable over every field is called regular. The class of regular
matroids is well studied is certainly wide enough to contain interesting examples; indeed,
all graphic matroids are regular. The main result of this section is that all regular ma-
troids are balanced. More precisely, we prove the equivalent result that all “orientable”
matroids are balanced. The class of orientable matroids is known to be the same as the
class of regular matroids [66, Corollary 13.4.6].2

In order to define the property of being orientable, we need some further matroid
terminology. A cycle C ⊂ E in a matroid M = (E,B) is a minimal (under set inclusion)
subset of elements that cannot be extended to a basis. A cut is a minimal set of elements
whose complement does not contain a basis. Note that in the case of the cycle matroid
of a graph, in which the bases are spanning trees, these terms are consistent with the
usual graph-theoretic ones. Let C ⊆ 2E denote the set of all cycles in M and D ⊆ 2E

the set of all cuts. We say that M is orientable if functions γ : C ×E → {−1, 0,+1} and
δ : D×E → {−1, 0,+1} exist which satisfy the following three conditions, for all C ∈ C
and D ∈ D:

γ(C, g) 6= 0 iff g ∈ C,
δ(D, g) 6= 0 iff g ∈ D, and∑

g∈E
γ(C, g)δ(D, g) = 0.(8.10)

We work in this section towards the following result. In doing so, we’ll follow Feder
and Mihail [32] fairly closely.

Theorem 8.15. Orientable (and hence regular) matroids are balanced.

In preparation for the proof of Theorem 8.15, we introduce some further notation
and make some observations. A near basis of M is a set N ⊆ E that can be augmented
to a basis by the addition of a single element from the ground set. A unicycle of M
is a set U ⊆ E that can be reduced to a basis by the removal of a single element. A
near basis N defines a unique cut DN consisting of all elements of the ground set whose
addition to N results in a basis. A unicycle U defines a unique cycle CU consisting of all
elements which whose removal from U results in a basis. Let e, f be distinct elements of
the ground set E. We claim that

(8.11) γ(CU , e)γ(CU , f) + δ(DN , e)δ(DN , f) = 0,

for all near-bases N and unicycles U that are related by U = N ∪ {e, f}. To see this,
note that the equation (8.10) simplifies in this situation to

(8.12) γ(CU , e)δ(DN , e) + γ(CU , f)δ(DN , f) = 0,

2When consulting this corollary, it is important to realise that Oxley applies the term “signable” to
the class of matroids Feder and Mihail call “orientable,” preferring to apply the latter term to a different
and larger class. We follow Feder and Mihail’s terminology.
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since all terms in the sum are zero except from those obtained by setting g = e and g = f .
Now it may be that all four quantities in (8.12) are zero, in which case we are done.
Otherwise, some quantity, say δ(DN , e), is non-zero, in which case DN ∪{e} = CU \ {f}
is a basis and γ(CU , f) is non-zero also. Multiplying (8.12) through by γ(CU , f)δ(DN , e)
yields

γ(CU , e)γ(CU , f)δ(DN , e)
2 + γ(CU , f)2δ(DN , e)δ(DN , f) = 0,

which simplifies to equation (8.11) as required, since the square factors are both one.

For distinct elements e, f ∈ E, define

∆ef =
∑
N

δ(DN , e)δ(DN , f) = −
∑
U

γ(CU , e)γ(CU , f),

where the sums are over all near bases N and unicycles U . The equality of the two
expressions above is a consequence of (8.11), and the bijection between non-zero terms
in the two sums that is given by N 7→ N ∪ {e, f} = U . Select a distinguished element
e ∈ E and force γ(C, e) = −1 and δ(D, e) = 1 for all cycles C 3 e and cuts D 3 e.
This can be done by flipping signs around cycles and cuts, without compromising the
condition (8.10) for orientability, nor changing the value of ∆ef . With this convention
we have ∑

g 6=e
γ(C, g)δ(D, g) = 1, provided C 3 e and D 3 e;(8.13)

γ(CU , f) = δ(DN , f), provided U = N ∪ {e, f};(8.14)

and

∆ef =
∑

U :e∈CU

γ(CU , f) =
∑

N :e∈DN

δ(DN , f),(8.15)

where C, D, U and N denote, respectively, arbitrary cycles, cuts, unicycles and near
bases satisfying the stated conditions. An intuitive reading of ∆ef is as a measure of
whether cycles containing e, f arising from unicycles tend to traverse e and f in the
same or opposite directions; similarly for cuts arising from near bases.

We extend earlier notation in an obvious way, so that Bef is the set of bases of M
containing both e and f , and Bēf is the set of bases excluding e but including f , etc.

Theorem 8.16. The bases B = B(M) of an orientable matroid M satisfy |B| · |Bef | =
|Be| · |Bf | −∆2

ef .

Proof. We consider a pair of bases (X,Y ) ∈ Bē×Bef to be adjacent to a pair (X ′, Y ′) ∈
Be × Bēf if (X ′, Y ′) can be obtained by an exchange involving e and a second element
g 6= e:

X ′ = X ∪ {e} \ {g}(8.16)

Y ′ = Y ∪ {g} \ {e}.(8.17)

With each adjacent pair we associate a weight

(8.18) γ(CX∪{e}, g)δ(DY \{e}, g).
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Given a pair (X,Y ) ∈ Bē × Bef , the condition that an exchange involving g leads to a
valid pair of bases (X ′, Y ′) via (8.16) and (8.17) is precisely that the weight (8.18) is
non-zero. Note that whenever this occurs, (X ′, Y ′) ∈ Be × Bēf . Thus

|Bē| · |Bef | =
∑

(X,Y )∈Bē×Bef

[∑
g 6=e

γ(CX∪{e}, g)δ(DY \{e}, g)

]
= W,(8.19)

where W is the total weight of adjacent pairs. Here we have used equation (8.13).
Now we perform a similar calculation, but in the other direction, starting at pairs

(X ′, Y ′) ∈ Be × Bēf . We apply a weight

(8.20) δ(DX′\{e}, g)γ(CY ′∪{e}, g)

to each adjacent pair, which is consistent, by (8.14), with the weight (8.18) applied
earlier. Again, starting at (X ′, Y ′), the condition for (X,Y ), obtained by inverting the
exchange given in (8.16) and (8.17), to be a valid pair of bases is that the weight (8.20)
in non-zero. But now, even if (8.20) is non-zero, there remains the possibility that the
new pair of bases (X,Y ) is not a member of Bē × Bef ; this event will occur precisely
when g = f . Thus

|Be| · |Bēf | =
∑

(X′,Y ′)∈Be×Bēf

[∑
g 6=e

δ(DX′\{e}, g)γ(CY ′∪{e}, g)

]
(8.21)

=
∑

(X′,Y ′)∈Be×Bēf

[ ∑
g 6=e,f

δ(DX′\{e}, g)γ(CY ′∪{e}, g)

]
+

∑
(X′,Y ′)∈Be×Bēf

δ(DX′\{e}, f)γ(CY ′∪{e}, f)

= W +
∑

(X′,Y ′)∈Be×Bē

δ(DX′\{e}, f)γ(CY ′∪{e}, f)(8.22)

= W +
∑
X′∈Be

δ(DX′\{e}, f)
∑
Y ′∈Bē

γ(CY ′∪{e}, f)

= W +∆2
ef .(8.23)

Here, step (8.21) is by (8.13); step (8.22) uses the observation that terms are non-zero
only when f ∈ Y ′; and (8.23) is from the definition (8.15) of ∆ef .

Comparing (8.19) and (8.23) we obtain

|Be| · |Bēf | = |Bē| · |Bef |+∆2
ef ,

and the result now follows by adding |Be| · |Bef | to both sides.

The main result of the section now follows easily.

Proof of Theorem 8.15. According to Theorem 8.16, all orientable matroids satisfy the
negative correlation property. Moreover, it is easily checked that the class of orientable
matroids is closed under contraction and deletion.
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Exercise 8.17. Proving that class of orientable matroids is the same as the class of
regular matroids requires familiarity with matroid theory. However, the weaker claim
that the cycle matroid of any graph is orientable is an exercise in straight combinatorics.
Prove the claim.

Exercise 8.18. Another way to demonstrate that all graphic matroids are balanced is
via the theory of electrical networks. Regard a graph G = (V,E) as an electrical network,
with vertices as terminals and edegs as unit resistors. The key facts are: (1) For any
edge e = {u, v}, the effective between vertices u and v is equal to τ(G/e)/τ(G), where
τ(G) is the number of spanning trees in G, and τ(G/e) is the number of spanning trees
in G that include the edge e. This result is essentially due to Kirchhoff; see Van Lint
and Wilson [79, Thm. 34.3]. (2) If the resistance of some edge of a network is decreased,
the effective resistance between any two terminals does not increase. This is “Rayleigh’s
Monotonicity Principle”; see Doyle and Snell [25].

Example 8.19. From the matroid-theoretic fact that graphic matroids are regular, or
from Exercise 8.17, or indeed from Exercise 8.18, we know that graphic matroids are
balanced. Let G = (V,E) be a connected, undirected graph, and consider the following
random walk on the spanning trees of G: Suppose the current state (tree) is T ⊆ E.
Choose an edge e u.a.r. from E, and an edge f u.a.r. from T . If T ′ = T ∪ {e} \ {f} is
a spanning tree then move to T ′, otherwise remain at T . The random walk just defined
is the bases-exchange walk on a balanced matroid and, by Theorem 8.10, the spectral
gap of this walk is Ω(1/mn), where n = |V | and m = |E|. Thus, the mixing time of this
natural random walk on spanning trees of a graph is just O(mn2 logm). This is not a
bad result, but we’ll improve it further in the next chapter.

Remark 8.20. Regular matroids are always balanced, but not all balanced matroids
are regular. The uniform matroid Ur,m of rank r on a ground set E of size m has as
its bases all subsets of E of size r. It is easy to check that all uniform matroids satisfy
the negative correlation property and that the class of uniform matroids is closed under
contraction and deletion; on the other hand, U2,m is not regular when m ≥ 4. (Refer to
Oxley [66, Theorem 13.1.1].)

Remark 8.21. Graphic matroids are always regular, but not all regular matroids are
graphic. Let G = (V,E) be an undirected graph. The co-cycle matroid of G again
has ground set E but the bases are now complements (in E) of spanning trees. The
relationship of the cycle and co-cycle matroids of G is a special case of a general one of
duality. The co-graphic matroid of a non-planar graph is regular but not graphic.

Remark 8.22. The number of bases of a regular matroid may be computed exactly
in polynomial time (in m) by an extension of Kirchhoff’s Matrix-tree Theorem. It can
be shown that the bases of a regular matroid are in 1-1 correspondence with the non-
singular r× r submatrices of an r×m unimodular matrix, and that the number of these
can be computed using the Binet-Cauchy formula. Refer to Dyer and Frieze [26, §3.1]
for a discussion of this topic. This approach gives alternative polynomial-time sampling
procedure for bases of a regular matroid, not relying on Markov chain simulation. How-
ever, as we have seen, the class of balanced matroids is strictly larger than the class of
regular matroids.
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Remark 8.23. Following on from the previous remark, there exists a subclass of bal-
anced matroids, the “sparse paving matroids”, whose bases are hard to count exactly.
A little less informally, the problem of counting bases of a sparse paving matroids is
#P-hard. For a precise statement of this claim and a proof, refer to Jerrum [42].

Example 8.24. There exist non-balanced matroids. Let M be a matroid of rank r on
ground set E. For any 0 < r′ < r,

B′ = {X ′ : |X ′| = r′ ∧ ∃X ∈ B(M). X ′ ⊂ X}

is the collection of bases of a matroid M ′ on ground set E, the truncation of M to
rank r′. The truncation of a graphic matroid may fail to be balanced. Consider the
graph G with vertex set

{u, v, y, z, 0, 1, 2, 3, 4}

and edge set {
{u, v}, {y, z}

}
∪
{
{u, i} : 0 ≤ i ≤ 4

}
∪
{
{v, i} : 0 ≤ i ≤ 4

}
.

Let e denote the edge {u, v} and f the edge {y, z}. Let F6 denote the set of forests
in G with six edges, F6

ef the number of such forests including edges e and f , etc. Then

F6
ef = 80, F6

ef̄
= 32, F6

ēf = 192 and F6
ēf̄

= 80. Thus

Pr(e | f) = 5/17 > 7/24 = Pr(e),

contradicting negative correlation.


