


Chapter 9

Logarithmic Sobolev inequalities

We know that the spectral gap of the random walk on the n-dimensional cube is Θ(1/n),
and that this entails an O(n2) bound on mixing time. This quadratic bound is made up
from a linear factor arising from the reciprocal of the spectral gap, and another linear
factor expressing the dependency on the initial distribution. This dependency has the
form log(1/π(x0)), assuming the walk starts at a fixed initial state x0. Whereas the con-
tribution from the inverse spectral gap seems inescapable, one suspects that the factor
log(1/π(x0)) might exaggerate the penalty for starting at a point-mass initial distribu-
tion. The logarithmic Sobolev constant introduced in this chapter is a parameter that
in a sense incorporates more information than spectral gap, allowing one in favourable
circumstances to replace log(1/π(x0)) by log log(1/π(x0)). Sometimes, as in the case of
the random walk on the cube, this improvement leads to a tight bound on mixing time.

The seminal work on logarithmic Sobolev inequalities was done by Gross [40]. The
important role of logarithmic Sobolev inequalities in the analysis of the mixing time of
MCs was revealed in an expository paper of Diaconis and Saloff-Coste [20]. An early
algorithmic application was presented by Frieze and Kannan [35]. Much of this chapter,
up to the end of §9.3, is plundered from Guionnet and Zegarlinski’s lecture notes [41].

The key idea is to replace variance, which played a leading role in Chapter 8, with
the entropy-like quantity

Lπ(f) := Eπ
[
f2
(

ln f2 − ln(Eπ f2)
)]
.

A logarithmic Sobolev inequality (c.f. (5.7)) has the form

(9.1) EP (f, f) ≥ αLπ(f), for all f : Ω → R,

where α > 0 is the logarithmic Sobolev constant (“log-Sobolev” constant).

For a function f : Ω → R+, we use ‖f‖π,q to denote

‖f‖π,q =

[∑
x∈Ω

π(x)f(x)q

]1/q
,

so that Eπ f q = ‖f‖qπ,q. Observe that the substitution f → |f | leaves the r.h.s. of (9.1)
unchanged, and does not increase the l.h.s. Therefore, condition (9.1) is equivalent to
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110 Chapter 9: Logarithmic Sobolev inequalities

one in which the quantification is over non-negative functions f : Ω → R+. Then, by
substituting f q/2 for f , we see that (9.1) is equivalent to

(9.2) EP (f q/2, f q/2) ≥ αq Eπ
[
f q ln

f

‖f‖π,q

]
, for all f : Ω → R+,

for any q > 0.

9.1 The relationship between logarithmic Sobolev
and Poincaré inequalities

Before considering the relationship between the logarithmic Sobolev constant α and
mixing time, it is instructive to compare α directly with the familiar Poincaré constant λ.

Theorem 9.1. Denote by α and λ the optimal logarithmic Sobolev and Poincaré con-
stants for some MC with transition matrix P . Then λ ≥ 2α.

Proof. The proof is due to Rothaus [69].
Let f : Ω → R be an arbitrary function with Eπ f = 0. By the logarithmic Sobolev

inequality,

ε2EP (f, f) = EP (1 + εf, 1 + εf)

≥ αEπ
[
(1 + εf)2

{
ln((1 + εf)2)− lnEπ[(1 + εf)2]

}]
,(9.3)

for all ε > 0. When ε is sufficiently small, 1 + εf is a strictly positive function, and we
may expand (9.3) as a Taylor series in ε:

ε2EP (f, f) ≥ αEπ
[
(1 + εf)2

{
2εf − ε2f2 − ε2 Eπ f2 +O(ε3)

}]
= αEπ

[
2εf + 3ε2f2 − ε2 Eπ f2 +O(ε3)

]
= 2ε2αEπ f2 +O(ε3)

= 2ε2αVarπ f +O(ε3).

Letting ε→ 0, we see that λ ≥ 2α.

The advantage of the logarithmic Sobolev constant over spectral gap, as we shall see
in §9.3, is that α is more tightly related to mixing time than λ. The main disadvantage
is that the inequality assured by Theorem 9.1 is not always tight, and even when it is, α
may be harder to calculate than λ. It is natural to ask how big the gap can be between
α and λ, but we do not pause to consider that question here. Those seeking an answer
are directed to Diaconis and Saloff-Coste [20, Cor. A.4].

9.2 Hypercontractivity

Just as spectral gap is related to decay of variance, so the logarithmic Sobolev constant is
related to a more powerful phenomenon known as “hypercontractivity”. For conciseness,
we write ft for P tf , where, as usual, P tf : Ω → R denotes the function defined by

[P tf ](x) =
∑
y∈Ω

P t(x, y)f(y), for all x ∈ Ω.
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For convenience, we’ll work in continuous time (refer to §5.5). Recall that P t = exp(Qt)
where Q = P − I, and that d

dtft = Qft.

Lemma 9.2. Let q(t) = 1 + e2αt, where α satisfies (9.1), and let f : Ω → R+ be any
non-negative function. Then, for all t ≥ 0,

d

dt
‖ft‖π,q(t) ≤ 0.

Remark 9.3. Recall, from §5.5, the analogous statement for spectral gap λ, which in
the notation of the current section could be written

d

dt
‖ft‖2π,2 ≤ −2λ ‖ft‖2π,2,

assuming f is normalised so that Eπ f = 0. In that section, we fixed q = 2 and investi-
gated the the decay of ‖ft‖π,q with time. In contrast, in Lemma 9.2 we set a fixed bound
for ‖ft‖π,q(t) but arrange for q(t) to increase with time t, so that the variation of ft
is being measured with respect to an ever more demanding norm. Since q(t) increases
exponentially fast with t, the norm we are working with soon comes “close” to the `∞
norm. Thus Lemma 9.2 makes a powerful statement about ft(x) at every point x, and
in particular when x is the initial state.

The proof of Lemma 9.2 may be clarified by introducing the general Dirichlet form
EP (f, g). Until now, we have encountered the Dirichlet form only the special case f = g,
and this allowed us the luxury of being able to use various expressions for EP (f, f)
interchangeably. It is important to note that these equivalent definitions do not remain
equivalent when generalised, in the natural way, to the situation f 6= g, at least when P
is not time-reversible. Since in this chapter we sometimes want to allow f 6= g, while at
the same time not restricting ourselves to the time-reversible case, it is important for us
to use the “correct” definition, which is

EP (f, g) = −Eπ[fQg] = −
∑
x

π(x)f(x)[Qg](x) = −
∑
x,y

π(x)f(x)Q(x, y)g(y),

where, as usual, Q = P − I. Note, in particular, that the above expression may not be
equal to

(9.4)
1

2

∑
x,y

π(x)P (x, y)(f(y)− f(x))(g(y)− g(x))

when f 6= g and P is not time reversible.

Exercise 9.4. Show that (9.4) is equal to EP (f, g) when either f = g or P is time
reversible, and provide a counterexample to the equivalence in general.

The proof of Lemma 9.2 follows a preparatory lemma.

Lemma 9.5.

EP (f q−1, f) ≥ 2

q
EP (f q/2, f q/2),

for all non-negative functions f , and all q ≥ 2.
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Proof. The proofs in this section are largely based on Guionnet and Zegarlinski [41],
but the calculation is modified to avoid their assumption that P is time-reversible. In
order to achieve this, we have to give away a factor of 2 in the rate of convergence.
The possibility of proving Lemma 9.2 without assuming time-reversibility was noted by
Diaconis and Saloff-Coste [20, Thm 3.5], who credit Bakry as their source.

First note the inequality

(9.5) zq − qz + (q − 1) ≥ (zq/2 − 1)2, for all q ≥ 2 and z ≥ 0.

To see this, write h(z) := zq − qz + (q − 1) − (zq/2 − 1)2, and note that h(1) = 0,
h′(1) = 0, and h′′(z) ≥ 0 for all z ≥ 0 (provided q ≥ 2), where prime signifies derivative
with respect to z. Then, provided f ≥ 0 and q ≥ 2,

EP (f q−1, f) = −Eπ[f q−1Qf ]

=
∑
x,y

π(x)f(x)q−1
(
I(x, y)− P (x, y)

)
f(y)

=
q − 1

q

∑
x

π(x)f(x)q +
1

q

∑
y

π(y)f(y)q

−
∑
x,y

π(x)P (x, y)f(x)q−1f(y)

=
∑
x,y

π(x)P (x, y)

[
q − 1

q
f(x)q +

1

q
f(y)q − f(x)q−1f(y)

]
≥ 1

q

∑
x,y

π(x)P (x, y)
[
f(x)q/2 − f(y)q/2

]2
(9.6)

=
2

q
EP (f q/2, f q/2),

where inequality (9.6) uses (9.5).

Proof of Lemma 9.2. With the groundwork out of the way, we are just left with a cal-
culation akin to that in §5.5. Since ln z is an monotone increasing function, it is enough
to show

d

dt
ln ‖ft‖π,q(t) ≤ 0.

So with q = q(t) = 1 + e2αt,

d

dt
ln ‖ft‖π,q =

d

dt

[
1

q
ln(Eπ f qt )

]
= − q

′

q2
ln(Eπ f qt ) +

1

q Eπ f qt
Eπ
[
f qt

(
q′ ln ft + q

f ′t
ft

)]
=

1

Eπ f qt

{
− q
′

q2
(Eπ f qt ) ln(Eπ f qt ) +

q′

q
Eπ[f qt ln ft] + Eπ[f q−1t Qft]

}
=

1

Eπ f qt

{
q′

q
Eπ
[
f qt ln

ft

(Eπ f qt )1/q

]
− EP (f q−1t , ft)

}
≤ 1

Eπ f qt

{
2αEπ

[
f qt ln

ft
‖ft‖π,q

]
− 2

q
EP (f

q/2
t , f

q/2
t )

}
(9.7)

≤ 0,(9.8)
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where inequality (9.7) uses Lemma 9.5 and the fact that q′ ≤ 2αq, and (9.8) is from (9.2).

9.3 Mixing

Remark 9.3, although couched in informal terms, strongly suggests that hypercontractiv-
ity might be the key to obtaining bounds on mixing time with much reduced dependence
on the distribution of the initial state. We now make that idea precise.

Theorem 9.6. Suppose (Ω,P ) is an ergodic MC satisfying the logarithmic Sobolev in-
equality (9.1) with constant α. Then, for any ε > 0,

‖P t(x, ·)− π‖TV ≤ ε,

whenever t ≥ α−1[ln lnπ(x)−1+2 ln ε−1+ln 4]. (To avoid pathologies, interpret ln lnπ(x)−1

as zero when π(x) > e−1.)

Proof. Let A ⊂ Ω be arbitrary and define f : Ω → R to be the characteristic function
of A. Recall that λ denotes spectral gap. Then, from §5.5,

Varπ ft1 ≤ e−2λt1 Varπ f ≤ 1
4e
−2λt1 = 1

4ε
2

where t1 = λ−1 ln ε−1. It follows that

‖ft1‖2π,2 = (E ft1)2 + Varπ ft1 ≤ π(A)2 + 1
4ε

2,

and hence
‖ft1‖π,2 ≤ π(A) + 1

2ε.

Then, by Lemma 9.2

(9.9) ‖ft‖π,q(t2) ≤ π(A) + 1
2ε,

for any t2 ≥ 0 and t = t1 + t2. Set t2 = 1
2α
−1[ln lnπ(x)−1 + ln ε−1 + ln 2]. (We need

t2 ≥ 0, so interpret ln lnπ(x)−1 as zero when π(x) > e−1.) Then

π(x)1/q(t2) ≥ π(x)exp(−2αt2) = e−ε/2 ≥ 1− 1
2ε,

and hence

(9.10) ‖ft‖π,q(t2) ≥
[
π(x)ft(x)q(t2)

]1/q(t2) ≥ (1− 1
2ε)ft(x) ≥ ft(x)− 1

2ε.

Combining (9.9) and (9.10) yields P t(x,A) = ft(x) ≤ π(A) + ε. But A is arbitrary, so
‖P t(x, ·)− π‖TV ≤ ε. Finally, observe that

t = t1 + t2 =
1

2α

[
ln lnπ(x)−1 + 2 ln ε−1 + ln 2

]
,

where we have used Theorem 9.1 to eliminate λ in favour of α.

Remark 9.7. Comparing Theorem 9.6 against Corollary 5.9 we appreciate the potential
gain from using α in place of λ. Recall that the size of the state space, and hence π(x)−1,
is typically exponential in some reasonable measure of instance size.
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9.4 The cube (again)

The analysis of random walk on the cube from Chapter 8 may readily be adapted
from spectral gap to logarithmic Sobolev constant. This will lead directly to our first
application of Theorem 9.6. A move convincing application will be provided by the
bases-exchange walk. This section and the next is a reworking of Jerrum and Son [47].

For the time being, we’ll take (Ω,P ) to be an arbitrary time-reversible finite-state
MC (Ω,P ), and only later specialise it to the random walk on the cube. As in §8.1 we
suppose a partition of the state space Ω = Ω0 ∪Ω1 is given. For convenience we repeat
here the formula expressing the decomposition of Dirichlet form:

EP (f, f) = π(Ω0)EP0(f, f) + π(Ω1)EP1(f, f) + C,(9.11)

where

EPb
(f, f) =

1

2

∑
x,y∈Ωb

πb(x)P (x, y)(f(x)− f(y))2, for b = 0, 1

and

C =
∑

x∈Ω0,y∈Ω1

π(x)P (x, y)(f(x)− f(y))2.

To proceed, we need an analogue of (8.1) (decomposition of variance) for the entropy-
like quantity Lπ(f). It is the following:

Lπ(f) = π(Ω0)Lπ0(f) + π(Ω1)Lπ1(f) + Lπ(f̄ ),(9.12)

where

Lπb(f) = Eπb
[
f2
(

ln f2 − ln(Eπb f
2)
)]

and

Lπ(f̄) =
∑
b=0,1

π(Ωb)
[
(Eπb f

2)
(

ln(Eπb f
2)− ln(Eπ f2)

)]
.(9.13)

The use of the notation Lπ(f̄) for the expression on the right hand side of (9.13) is
justified, provided we interpret f̄ : Ω → R+ as the function that is constant

√
Eπb f2 on

Ωb, for b = 0, 1.

Exercise 9.8. Verify identity (9.12). (The calculation is given at end of chapter.)

As in Chapter 8, we aim to exploit (9.11) and (9.12) to synthesise an inequality of the
form EP (f, f) ≥ αLπ(f) from ones of the form EPb

(f, f) ≥ αb Lπb(f) and C ≥ ᾱLπ(f̄ ).
Inequalities EPb

(f, f) ≥ αb Lπb(f) will clearly come from the inductive hypothesis, ex-
actly as before. The derivation of C ≥ ᾱLπ(f̄ ) is by way of algebraic manipulation,
similar in spirit to that used in Chapter 8, but of greater complexity. This increase in
calculational complexity represents the main downside in using the logarithmic Sobolev
constant.

In the following lemma, we take the first step in relating C to Lπ(f̄ ).

Lemma 9.9. Let r and s be positive numbers with r + s = 1. Then

rξ2 ln
ξ2

rξ2 + sη2
+ sη2 ln

η2

rξ2 + sη2
≤ (ξ − η)2,

for all ξ, η ∈ R.
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Proof. Applying the inequality ln a ≤ a− 1, which is valid for all a > 0:

rξ2 ln
ξ2

rξ2 + sη2
+ sη2 ln

η2

rξ2 + sη2
≤ rξ2 s(ξ

2 − η2)
rξ2 + sη2

+ sη2
r(η2 − ξ2)
rξ2 + sη2

=
rs(ξ2 − η2)2

rξ2 + sη2

=
rs(ξ + η)2

rξ2 + sη2
(ξ − η)2

≤ (ξ − η)2.

To verify the final inequality, first note that by scaling one may assume that ξ + η = 1;
it is then easy to see (by calculus) that the extremal case is when ξ = s and η = r.

Corollary 9.10. With Lπ(f̄ ) defined as in (9.13),

Lπ(f̄ ) ≤
(√

Eπ0 f2 −
√
Eπ1 f2

)2
.

Remark 9.11. In view of our interpretation of f̄ , the right hand side of the inequality
appearing in Corollary 9.10 may be written

(
f̄(Ω0) − f̄(Ω1)

)2
. In other words, Corol-

lary 9.10 may be regarded as providing a logarithmic Sobolev inequality for a two-state
MC. In is natural to ask what is the optimal constant c such that

cLπ(f̄ ) ≤
(√

Eπ0 f2 −
√
Eπ1 f2

)2
?

The question has been answered by Diaconis and Saloff-Coste [20, Theorem A.2], though
it proves a surprisingly hard nut: Diaconis and Saloff-Coste refer to its resolution as “a
tedious calculus exercise”.

Given the crude approximations used in the proof of Lemma 9.9, we would expect
our estimate c = 1 to be a long way off, and indeed it is when either r = π(Ω0) or
s = π(Ω1) is close to zero. Nevertheless, when r = s = 1

2 , we lose only a factor 2.
Fortunately, in our applications, little is gained by using more refined estimates for c.
Better, then, to keep things simple!

Recall the random walk on the n-dimensional cube from the beginning of §8.1. Our
partition of the state space in this instance is the natural one, namely Ωb = {x =
x0x1 . . . xn−1 ∈ Ω : x0 = b}. Corollary 9.10 puts us neatly back on the track of our
earlier calculation, where our goal was to bound the spectral gap.

Consider the r.v. (G0, G1) ∈ R2 defined by the following trial: select z ∈ {0, 1}n−1
u.a.r.; then let (G0, G1) = (f(0z)2, f(1z)2) ∈ R2. (Recall that bz denotes the element of
Ωb obtained by prefixing z by the bit b.) Then, using Ez to denote expectations with
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respect to a uniformly selected z ∈ {0, 1}n−1,

Lπ(f̄ ) ≤
(√

Eπ0 f2 −
√

Eπ1 f2
)2

from Cor. 9.10

=
(√

Ez G0 −
√

Ez G1

)2
≤ Ez

[(√
G0 −

√
G1

)2]
(9.14)

= 2
∑

z∈{0,1}n−1

π(0z)
(
f(0z)− f(1z)

)2
=

2

p

∑
z∈{0,1}n−1

π(0z)P (0z, 1z)
(
f(0z)− f(1z)

)2
=

2

p
C,

where (9.14) is by Lemma 8.1 (Jensen’s inequality), noting the the function (R+)2 → R+

defined by (ξ, η) 7→ (
√
ξ − √η )2 is convex. Thus, by the same inductive argument

as before αn,p ≥ p/2, where αn,p denotes the logarithmic Sobolev constant of the n-
dimensional cube with constant transition probability p.

Remark 9.12. Where did we lose a factor 4 relative to the spectral gap calculation? A
factor of 2 was lost to the sloppy estimate in Lemma 9.9. The loss of the other factor
of 2 must, by Theorem 9.1, be inevitable.

Note that, by Theorem 9.6, our logarithmic Sobolev constant translates to anO
(
n(log n+

log ε−1)
)

upper bound on mixing time for the random walk on the n-dimensional cube.

9.5 The bases-exchange walk (again)

A convenient feature of the cube, as regards our analysis, is that transitions from Ω0 to
Ω1 support a perfect matching. We saw, in the context of the spectral gap lower bound
of Chapter 8, that it is enough for our purposes that the transitions support a fractional
matching. The same is true here.

Recall the bases-exchange random walk from §8.3. From Lemma 8.12, we know that
the transitions from Ω0 to Ω1 support a fractional matching w : Ω0 × Ω1 → [0, 1]. As
before, we regard (Ω0 ×Ω1, w) as a probability space.

Let (G0, G1) ∈ R2 be the r.v. defined on (Ω0×Ω1, w) as follows: select (x, y) ∈ Ω0×Ω1

according to the distribution w(·, ·) and return (G0, G1) = (f(x)2, f(y)2). Then, using
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Ew to denote expectations with respect to the sample space just described,

Lπ(f̄ ) ≤
(√

Eπ0 f2 −
√
Eπ1 f2

)2
=
(√

EwG0 −
√

EwG1

)2
≤ Ew

[(√
G0 −

√
G1

)2]
=

∑
(x,y)∈Ω0×Ω1

w(x, y)
(
f(x)− f(y)

)2
≤

∑
(x,y):w(x,y)>0

π(x)

π(Ω0)

(
f(x)− f(y)

)2
≤ 1

p π(Ω0)

∑
(x,y)∈Ω0×Ω1

π(x)P (x, y)
(
f(x)− f(y)

)2
≤ 2

p
C,

where we have assumed, by symmetry, that π(Ω0) ≥ π(Ω1) and hence π(Ω0) ≥ 1
2 .

Exactly the same inductive argument as in the case of the cube yields p/2 as the
logarithmic Sobolev constant for the bases-exchange walk.

Example 9.13. Consider again the walk on spanning trees of a graph described in
Example 8.19. Applying Theorem 9.6 in place of 5.9, improves our bound on mixing
time to from O(mn2 logm) to O(mn log n).

Exercise 9.14. By exhibiting a suitable graph, show that the bound in Example 9.13
is of the correct order of magnitude, at least in some circumstances.

Remark 9.15. What we have done in this chapter can be viewed as a application of a
more general “decomposition” approach to the analysis of MCs apparently introduced by
Caracciolo, Pelissetto and Sokal [17], and exploited by authors such as Madras, Martin
and Randall [61, 59]. See Jerrum, Son, Tetali and Vigoda [48] for a general treatment
of decomposition along the lines of this chapter and the previous one.

9.6 An alternative point of view

In this section we explore an alternative approach to relating the logarithmic Sobolev
constant α to mixing time. The idea is to measure closeness to stationarity in terms of the
“Kullback-Leibler divergence”, and show that convergence in this sense is exponential,
at a rate determined by α.

First, another inequality in the same spirit as Lemma 9.5.

Lemma 9.16. EP (f, ln f) ≥ EP (
√
f,
√
f ), and hence EP (ln f, f) ≥ EP (

√
f,
√
f ), for any

f : Ω → R+.

Proof. The key to the proof is the inequality

(9.15) a2(ln a− ln b) ≥ a(a− b),
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which is valid for all a, b > 0. (By homogeneity it is enough to verify (9.15) in the case
a = 1, when it reduces to the well known ln b ≤ b− 1.) The result now follows from the
following sequence of inequalities:

EP (f, ln f) = −
∑
x,y

π(x)f(x)Q(x, y) ln f(y)

=
∑
x

π(x)f(x)
[

ln f(x)−
∑
y

P (x, y) ln f(y)
]

= 2
∑
x

π(x)f(x)
[

ln
√
f(x)−

∑
y

P (x, y) ln
√
f(y)

]
≥ 2

∑
x

π(x)f(x)
[

ln
√
f(x)− ln

{∑
y

P (x, y)
√
f(y)

}]
(9.16)

≥ 2
∑
x,y

π(x)
√
f(x)

[√
f(x)−

∑
y

P (x, y)
√
f(y)

]
(9.17)

= −2
∑
x,y

π(x)
√
f(x)Q(x, y)

√
f(y)

= 2EP (
√
f,
√
f ),

where (9.16) is Jensen’s inequality (Lemma 8.1), and (9.17) uses inequality (9.15) with
a =

√
f(x) and b =

∑
y P (x, y)

√
f(y).

To see that the inequality holds with f and ln f reversed, consider the time reversal
P ∗ of P , defined by

π(x)P ∗(x, y) = π(y)P (y, x), fall all x, y ∈ Ω.

Then
EP (ln f, f) = EP ∗(f, ln f) ≥ EP ∗(

√
f,
√
f ) = EP (

√
f,
√
f ).

For probability distributions σ and π on Ω, define the Kullback-Leibler divergence of
σ from π by

(9.18) D(σ‖π) = Lπ
(√

σ

π

)
=
∑
x∈Ω

σ(x) ln
σ(x)

π(x)
.

The word “divergence” and the curious but conventional notation is supposed to em-
phasise the fact that D(· ‖ ·) is not a metric. (It is not symmetric, for one thing.)

Remark 9.17. In interpreting definition (9.18) we use the reasonable convention 0 ln 0 =
0. Since we only deal with ergodic MCs, we do not have to contemplate the possibility
that π(x) = 0 for some x ∈ Ω.

Exercise 9.18. Verify that D(σ‖τ) is non-negative, and that D(σ‖τ) = 0 implies σ = τ .

Denote by πt = π0P
t : Ω → [0, 1] the distribution of Xt given that the initial

distribution (that of X0) is π0. In long-hand,

πt(x) =
∑
y∈Ω

π0(y)P t(y, x).
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Note that d
dtπt = πtQ, where, as usual, Q = P − I (c.f. §5.5). The alternative approach

to bounding mixing time rests on exponential decay of Kullback-Leibler divergence.

Theorem 9.19. d
dtD(πt‖π) ≤ −2αD(πt‖π), and hence D(πt‖π) ≤ e−2αtD(π0‖π).

Proof.

d

dt
D(πt‖π) =

d

dt

∑
x

πt(x) ln
πt(x)

π(x)

=
∑
x

[πtQ](x) ln
πt(x)

π(x)
+
∑
x

[πtQ](x)

=
∑
x

[πtQ](x) ln
πt(x)

π(x)

=
∑
x,y

π(x) ln
πt(x)

π(x)
Q(x, y)

πt(y)

π(y)

= −EP
(

ln
πt
π
,
πt
π

)
.(9.19)

At this point we might decide to continue by defining a modified logarithmic Sobolev
constant based on the Dirichlet form (9.19) in place of the usual one. (See Bobkov and
Tetali [7].) Instead, we’ll use Lemma 9.16 to bring us onto a more familiar path. Picking
up from (9.19),

d

dt
D(πt‖π) = −EP

(
ln
πt
π
,
πt
π

)
≤ −2EP

(√
πt
π
,

√
πt
π

)
by Lemma 9.16

≤ −2αLπ
(√

πt
π

)
= −2α

∑
x

π(x)
πt(x)

π(x)
ln
πt(x)

π(x)

= −2αD(πt‖π).

Suppose we start at a fixed state X0 = x, so that π0 is the distribution with all its
mass at the state x. Then D(π0‖π) = ln(π(x)−1). This is promising: compared to the
decay of variance argument in §5.5, this relatively small initial value provides us with a
head start. However, it is not immediately clear how Kullback-Leibler divergence relates
to our familiar total variation distance. Fortunately, the two are tightly related (in the
direction that concerns us here at any rate) by Pinsker’s inequality :

(9.20) 2‖σ − π‖2TV ≤ D(σ‖π).

A proof of Pinsker’s inequality may be found in the appendix to this chapter (§9.7). (If
you want to try to prove Pinsker’s inequality for yourself at this point, be warned that
it is surprisingly tricky!)
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Putting the pieces together,

‖πt − π‖2TV ≤
1

2
D(πt‖π) ≤ 1

2
e−2αtD(π0‖π) =

1

2
e−2αt lnπ(x)−1.

Thus we are assured that ‖πt − π‖2TV ≤ ε provided

t ≥ 1

2α

[
ln lnπ(x)−1 + 2 ln ε−1 − ln 2

]
,

recovering Theorem 9.6.
As a proof of Theorem 9.6, the approach taken in this section is probably a little

smoother than that of §9.3. For one thing, it avoids the two-stage argument of §9.3
which requires the `2-norm to be brought under control before the norm itself is sharp-
ened. However, hypercontractivity is stronger than exponential convergence of Kullback-
Leibler divergence, implying, for example, convergence in `2-norm and not just in total
variation distance (`1-norm). In fact, the connection between the logarithmic Sobolev
constant and convergence in `2-norm is surprisingly tight: refer to Diaconis and Saloff-
Coste [20, Cor. 3.11] for details.

9.7 Appendix

Proof of identity (9.12). By appropriately scaling the function f , it is enough to estab-
lish (9.12) when Eπ f2 = 1. With this simplification,

Lπ(f) = Eπ[f2 ln f2] =
∑
b=0,1

π(Ωb)Eπb [f
2 ln f2]

and

Lπ(f̄ ) =
∑
b=0,1

π(Ωb)(Eπb f
2) ln(Eπb f

2)

Subtracting,

Lπ(f)− Lπ(f̄ ) =
∑
b=0,1

π(Ωb)Eπb
[
f2(ln f2 − ln(Eπb f

2)
]

=
∑
b=0,1

π(Ωb)Lπb(f),

as required.

Proof of Pinsker’s inequality (9.20). Our starting point is the inequality

(9.21) u lnu− u+ 1 ≥ 0, for all u > 0,

whose validity is easy to check. From there we bootstrap to the inequality

(9.22) 3(u− 1)2 ≤ (2u+ 4)(u lnu− u+ 1), for all u > 0.

To verify (9.22), define h(u) = (2u + 4)(u lnu − u + 1) − 3(u − 1)2, and observe that
h(1) = h′(1) = 0, and h′′(u) = 4u−1(u lnu − u + 1) ≥ 0, where we have used (9.21). It
follows that h(u) ≥ 0 for all u > 0.
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Pinsker’s inequality itself follows from the following sequence of (in)equalities, where
u(x) = σ(x)/π(x):

‖σ − π‖2TV =
1

4

[∑
x

∣∣σ(x)− π(x)
∣∣]2

=
1

2

[∑
x

π(x)
∣∣u(x)− 1

∣∣]
≤ 1

12

[∑
x

π(x)
√

2u(x) + 4
√
u(x) lnu(x)− u(x) + 1

]2
(9.23)

≤ 1

12

[∑
x

π(x)(2u(x) + 4)

][∑
x

π(x)
(
u(x) lnu(x)− u(x) + 1

)]
(9.24)

=
1

2

∑
x

π(x)u(x) lnu(x)

=
1

2
D(σ‖π).

Here, inequality (9.23) is from (9.22), and inequality (9.24) is Cauchy-Schwarz.


