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1 Introduction

Let A be a set, and P,Q be partial orders on A. The pair (P,Q) is said to be com-
plementary if every pair of distinct elements of A is comparable in precisely one of P
and Q. Complementary pairs of partial orders first appear in the work of Dushnik and

Miller [4], where they are termed conjugate pairs.

Two results concerning complementary partial orders are presented in this paper.
Although the proofs are straightforward, the results themselves are perhaps rather
surprising. The first, amounting to not more than an observation, is that there is a
natural bijection between complementary pairs of partial orders on A and pairs of linear
orders on A. This observation, which is implicit in earlier literature, provides a very

clean machine representation for complementary partial orders.

The second result appears to be new. Suppose that P,Q are partial orders on A
such that every pair of elements of A is comparable in at least one of P and Q. The
pair (P, Q) is not in general complementary, since there may be pairs of elements of A
which are comparable in both P and Q. However, it can be proved that there exist
partial orders P/,Q’, with P/ C P and Q' C Q, such that the pair (P’,Q’) is indeed
complementary. A simple counterexample shows that the result does not extend to the

case of three partial orders sharing the same underlying set.

The final section of the paper draws a connection between complementary partial
orders, and the problem of rectangle packing: given a large rectangle and a set of
smaller rectangles, determine whether there is an orthogonal, non-overlapping packing
of the small rectangles into the larger one. Depending on the exact specification of
the problem, rectangles may be constrained to have a particular orientation, or may
be free to rotate through right angles. There is also an optimisation version of the
problem, in which a minimum height packing of rectangles into a semi-infinite ‘bin’ of
fixed width is sought; this has been studied by several authors, beginning with Baker
et al. [1] and Coffman et al. [3]. Aside from being of theoretical interest, the rectangle
packing problem arises naturally in a number of practical applications: the layout of
multi-project chips, screen management, and stock cutting, are examples. There are

also some less obvious applications: Codd [2], for example, demonstrates that certain



scheduling problems can be formulated in terms of rectangle packing.

The rectangle packing problem is a continuous one, in the sense that the smaller
rectangles can potentially be placed at a continuous infinity of points within the larger
rectangle. In the final section it is shown that the curious properties of complementary
partial orders, described above, allow an elegant reduction from the continuous prob-
lem to an equivalent, discrete one. Once the problem has been reduced in this way,
it is open to attack by the usual techniques in combinatorial optimisation. Applica-
tion of the branch and bound strategy provides exact solutions to instances involving
a small number (< 10} of rectangles; alternatively, hill-climbing or simulated anneal-
ing [6] heuristics can be used to obtain good approximate solutions to larger instances.
Since the rectangle packing problem is NP-complete—as can be establiched by an easy
reduction from BIN PACKING [5, p.226]—we cannot reasonably expect to find a solution

which is simultaneously exact and efficient.

The reduction mentioned above can also be applied to more elaborate versions of
the rectangle packing problem in which, for example, there are proximity constraints
between certain pairs of rectangles. It thus provides an appealing approach to the phase

in VLSI design known as fleorplanning [7].

2 Complementary Partial Orders

In this section we explore some properties of complementary partial orders which are
relevant to the rectangle packing problem. Some of the results are interesting in their
own right. Firstly, let us fix our notation. Suppose 4 is a set, and P a partial order on
A. We denote by P~ the inverse of P, and by P® (= PU P~1) the symmetric closure
of P. Let I4 stand for the identity relation on A. The cover relation, P¢, associated
with P, is defined by P® = P — I4 — (P — I4)%; thus, two distict elements a,b € A
are related in P° if they are related in P and there are no elements of A lying strictly
between @ and b in the partial order P. We call a pair (P, @) of partial orders on 4
complementary iff P°UQ* = A x A and P°N Q* = I4. Thus a pair of partial orders is

complementary iff every pair of distinct elements of 4 is comparable in exactly one of



the two orders. We denote by C = C(A) the set of all complementary partial orders on
A, and by £ = L(A) the set of all linear orders on A.

Lemma 1 If P,Q are complementary partial orders on a set A, then L = P U Q is

a linear order on A,

Proof: Reflexivity, antisymmetry and totality of L are straightforward, so we may
proceed immediately to transitivity. It is enough to show that QoP C PUQ (and
hence by symmetry P o @ C P U Q); transitivity of I then follows from the chain of

inclusions

L*=(Pu@)?
=P?UQ*UQoPUPQ
CPUQUQoPUPoQ (by transitivity of P and Q)
= L.

So let (a,b) € Qo P, a # b, and choose ¢ € A such that aPc and c@b. If ¢ is equal either
to a or b, then it is immediate that (a,b) € P U Q; so suppose that ¢ is distinct from a
and b. It cannot be the case that a P15, since that would imply bPc¢ and hence b and ¢
comparable in both partial orders; similarly, the possibility aQ~1b may be eliminated.
Since @ and b are comparable in one or other partial order, we are forced to conclude

{a,b) € PUQ. Hence Qo P C PUQ as claimed. 0

Theorem 2 Let f € L? — C be defined by f({(L, M)) = (LN M,LNM™1) for all
L,M € L. Then the function f is well-defined, i.e. the pair (LNM,LOM™1) is indeed

complementary for all choices of L, M. Furthermore, f is a bijection.

Proof: Since the intersection of any two partial orders is a partial order, P = LNM and
Q@ = LN M~ are certainly partial orders. Now let a,b be arbitrary distinct elements
of A. Precisely one of the following conditions must hold: (i) aLb, aMb (ii) aLb,bMa
(iii) bLa,aMb (iv) bLa,bMa. In cases (i) and (iv), @ and b are comparable in P but



not @, and in cases (ii) and (iii), « and b are comparable in Q but not P. Thus P and

Q are indeed complementary, as claimed.

We show that f is a bijection by giving its inverse explicitly. Define g € ¢ — £? by
g((P,Q)) = (PUQ, PUQ™ ") for all complementary pairs (P, @). By the previous lemma,
¢ is well-defined: PUQ and P U Q™! are indeed linear orders. It is a straightforward

matter to check that go f and fog are the identity functions on £? and C respectively. O

Corollary 38 The number of complementary pairs of partial orders on a set of

cardinality n is precisely (n!)2.

Remark 1 The correspondence described in the previous theorem is implicit in the

work of Dushnik and Miller [4].

The following theorem gives an alternative characterisation of complementary partial

orders in terms of a minimality condition.

Theorem 4 Let A be a finite set, and P,Q be partial orders on A satisfying
PfUQ® = A X A. Suppose that P and @ are minimal in the following sense: for all
partial orders P; C P and @ C ¢, the condition PlUQS = A x A implies Py = P and

@1 = Q. Then the pair (P, Q) is complementary.

Proof: Let P,Q be as in the statement of the theorem. We make the preliminary
observation that P°NQ = PN Q° = @. For suppose (a,b) € P°NQ, and let P; =
P — {{a,b)}; then P; is a partial order satisfying P’ U Q® = 4 X A, contradicting

minimality of P.

We shall now assume that (P, Q) is not a complementary pair and obtain a contra-
diction. Because P and ¢ are not complementary, there must exist pairs of elements of
A which are comparable in both P and Q. Let aq,...,a; be a minimum length sequence
of distinct elements of A with a;P°a;1 for 0 < ¢ <! -1, and such that ag and a; are

comparable in Q. Suppose, without loss of generality, that aoQa;. (If the converse



relation holds, then the proof goes through with @ replaced by Q! thoughout.} Let
b0,...,bm be a sequence of distinct elements of A with by = aq, b, = a;, and b;Q@b; 4,

for 0 <i<m—1. Since P°NQ = PNQ®=48§, both ! and m must be greater than 1.

Consider the relationships holding between a; and b; for 1 < ¢ < m — 1. Since the
sequence ay, ..., ¢; is of minimal length, none of these pairs is comparable in Q. Thus for
each 1, 1 <1 < m—1, either a; Pb; or b;Pa; must hold; moreover, we know that boPay
and a; Pb,,. Hence there exists j, with 0 < 7 < m — 1, for which b;Pay and a; Pbj ;.
By transitivity of P, b;Pb;,1, and hence (b;,b;41) € P N Q°, a contradiction. O

The following corollary plays a significant role in the application of complementary

partial orders to the rectangle packing problem.

Corollary 5 Let A be a finite set, and P,Q be partial orders on A satisfying
P?UQ® = A X A. Then there exist partial orders P, C P and Qg C Q such that the

pair (P, Qo) is complementary.

Proof: Consider the set P of all pairs (R, S) of partial orders which satisfy B C P,
5 C Q and R°US® = A x A. Choose a pair {(Py,Qo) € P which is minimal with
respect to set inclusion. (Since A is finite, minimal elements certainly exist.) Then by

theorem 4, the pair (Ps, Qo) is complementary. O

Remark 2 It has been observed by Gordon Plotkin that the corollary extends to
arbitrary sets A (not just finite ones) by application of the compactness theorem of

propositional logic.

Remark 3 That the corollary does not extend to the case of three partial orders
on the same underlying set A can be seen from the following counterexample. Let
A = {a,b,c,d}, and let

P =1TI4U{{a,b),(bd), (a,d)}

Q= I, U {{a,c), (e, d), <a)d>}

and



R=14U {<bac>}

be partial orders on A. It is easy to check that P* U Q® U R®* = A x A, and that of all
triples of partial orders satisfying this property, P,Q, R are minimal with respect to set

inclusion. However, ¢ and d are comparable in both P and Q.
3 Rectangle Packing

We shall consider the version of the rectangle packing problem in which orientations
of rectangles are fixed—the extension to the case where rotations are allowed will be
clear. It is convenient to describe the positions of rectangles in a Cartesian coordinate
system in which the large rectangle, with sides of length X and Y say, has vertices
at points (0,0), (X,0), (0,Y) and (X,Y). The positions of the small rectangles can
be specified by giving the coordinates of the vertex nearest the origin. Let the set of
small rectangles be A. For each a € A, d.(a) and d,(a) give, respectively, the z- and

y-dimensions of the rectangle a.

Now suppose that, for each pair of rectangles, an z- or y-constraint (possibly both)
is specified. The existence of an z-constraint between rectangles a and b will be denoted
a <z b, and the existence of a y-constraint by @ <, b. A particular layout of rectangles
satisfies the constraint @ <, b iff there exists a constant o such that the rectangle a is
contained entirely within the region z < o and b entirely within the region z > a. If
a layout satisfies all the constraints, then, clearly, none of the rectangles can overlap.
Since the satisfaction of the constraints a <, b and b <, ¢ automatically ensures
satisfaction of the constraint @ <, ¢, we lose nothing by assuming that <, and <y
are both strict partial orders (i.e. obtained from a partial order by subtraction of the

identity relation I4).

The rectangle packing problem with the additional constraints specified by <, and
<y is easily solved. {Note that non-overlapping of rectangles is an automatic conse-
quence of satisfaction of the sets of constraints <, and <,.) For all @ € A, denote
by uz{a,<;) the minimum, over all packings satisfying the constraints <z, of the z-
coordinate of rectangle a; the analogue in the y-dimension may be denoted pyla, <y).

For a given strict partial order <, the values p.(a, <), for a € A, can be computed



by dynamic programming [8, p.483] from the inductive rule

0, if a is minimal in <,
ﬂ'z(a: <z)

max{p.(b, <z) + dz(b) : b <, a}, otherwise.

A similar procedure can be applied in the y-dimension. Notice that the minimum z- and
y-coordinates specified by u, and py, are achievable by all rectangles simultaneously in
a single packing. Thus the small rectangles may be packed into the larger one, subject

to the additional constraints <; and <y, iff

max {pz{a,<z) +d.(a) :a€ A} < X

max {py(a, <y} +dy(a):a€ A} < Y

This deals with the (artificially) constrained problem; for the {original) uncon-
strained problem it is sufficient to solve the constrained version for all possible pairs
(<z,<y) of strict partial orders which are jointly total. (We shall say that a pair of
strict partial orders on A is jointly total if every pair of distinct elements of A is com-
parable in at least one order.) Clearly, if the unconstrained problem has no solution,
then nor do any of the constrained problems. Conversely, suppose the unconstrained
problem does have a solution. Consider any packing of the small rectangles into the
larger, and let <, be the maximal set of z-constraints consistent with the packing, <,
be the maximal set of y-constraints. (The relations <, and <, will necessarily be strict
partial orders; moreover they are jointly total.}) For this choice of <, and <y i is easy

to see that the constrained problem has a feasible solution.

Now corollary 5 tells us that we do not need to consider all possible pairs of strict
partial orders (<, <,) which are jointly total. Those pairs which allow distinct ele-
ments of A to be compared in both <, and <, orders correspond to over-constrained
problems—corollary 5 assures that weaker strict partial orders exist which are still
jointly total. Thus, an exact solution to the rectangle packing problem can be obtained
by solving the constrained problem for all possible pairs of complementary strict par-
tial orders. The correspondence, made explicit in theorem 2, between complementary
pairs of strict partial orders, and pairs of linear orders on the same set, makes cycling
through the possibilities very easy. Of course, the very large number of possibilities

to be tested prohibits the application of this naive approach to any but the smallest



problem instances. (By corollary 3], the number of constrained problems to be solved
is (n!)?, where n is the number of rectangles.) Building the constraints <, and <y in-
crementally, and applying branch-and-bound [8, p.519], allows the range of applicability

to be extended, but only up to n ~ 15 (or n ~ 10 if rotations are allowed).

Fortunately, the method presented here lends itself well to approximation algorithms
using heuristic search. For each non-overlapping arrangement of rectangles in the posi-
tive quadrant of the coordinate system, associate a cost which expresses how ‘far away’
the arrangement is from being a feasible solution. Starting with a randomly selected
pair of complementary partial orders <, and < y, solve the constrained problem deter-
mined by <, and <,, and compute the associated cost. Then attempt to reduce the
cost by applying a succession of pertubations to <, and <y. A simple heuristic is to
accept only perturbations which reduce the cost function, but there are more complex
techniques [6] which allow the cost function sometimes to increase. Because the current
constraints <., <y can be represented by a very simple data structure, namely a pair of
linear orders, the perturbations are very easy to effect: a simple example is to transpose

a pair of elements in one of the linear orders.

An appropriate cost function for layouts can be computed as follows: Find the
smallest rectangle which bounds the layout, letting its dimensions be X’ and Y'. Then

assign cost

(max{X’ - X, 0})2 + (max{Y' -, (}})2

to the layout. (Recall that X,Y are the dimensions of the large rectangle into which
the smaller ones are to be packed.) The squaring of terms in the cost function tends to
penalise layouts whose aspect ratio varies substantially from the ideal. In practice, it is
advantagous to introduce a secondary cost function which can distinguish between lay-
outs which are equally good according to the primary criterion. The following secondary

cost function appears to give good results:

/R

Here R is the region formed by the union of the small rectangles. Under the influence
of the secondary cost fuction, rectangles tend to migrate towards the origin, until, in

due course, an improvement in the primary cost function can be made.



Some small scale experiments were performed, using the cost functions described
above. Starting from a randomly chosen pair of linear orders, simple hill-climbing was

employed to find a packing optimal with respect to the following perturbations:
¢ transposing a pair of adjacent rectangles in one of the linear orders,
e interchanging two rectangles, and
e rotating a rectangle.

Ten runs of the algorithm were made, using as input the 55 rectangles with integer
side lengths less than or equal to 10, which are distinct up to rotation. On grounds of
area alone, no packing of these rectangles into a square of side 41 is possible. On two
of the runs, the packing obtained was of size 42 x 44, on five runs of size 43 x 43, on
two runs of size 42 x 43, and on a single run an optimal square packing of size 42 x 42
was achieved. For this last packing, the utilisation of area within the large square is
better than 96.6%. The time taken to reach a local optimum in a problem of this size,
using an unsophisticated Pascal implementation running on a Vax 11/780, is about

5-10 minutes. This could be much improved by careful programming.

It is tempting to think that the reduction described here could be applied to more
complex problems, such as VLSI floorplanning, by making suitable modifications to
the cost function. In the case of floorplanning, it would be necessary to incorporate
an additional component into the cost function, to account for wiring costs between

modules. It is by no means clear how this might best be done.
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