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THE COMPLEXITY OF COMPUTING THE SIGN OF THE TUTTE
POLYNOMIAL∗

LESLIE ANN GOLDBERG† AND MARK JERRUM‡

Abstract. We study the complexity of computing the sign of the Tutte polynomial of a graph.
As there are only three possible outcomes (positive, negative, and zero), this seems at first sight
more like a decision problem than a counting problem. Surprisingly, however, there are large regions
of the parameter space for which computing the sign of the Tutte polynomial is actually #P-hard.
As a trivial consequence, approximating the polynomial is also #P-hard in this case. Thus, approxi-
mately evaluating the Tutte polynomial in these regions is as hard as exactly counting the satisfying
assignments to a CNF Boolean formula. For most other points in the parameter space, we show
that computing the sign of the polynomial is in FP, whereas approximating the polynomial can be
done in polynomial time with an NP oracle. As a special case, we completely resolve the complexity
of computing the sign of the chromatic polynomial—this is easily computable at q = 2 and when
q ≤ 32/27, and is NP-hard to compute for all other values of the parameter q.
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1. Introduction. The Tutte polynomial of an undirected1 graph is a two-variable
polynomial that captures many interesting properties of the graph, such as (by mak-
ing appropriate choices of the two variables) the number of q-colorings, the number
of nowhere-zero q-flows, the number of acyclic orientations, and the probability that
the graph remains connected when edges are deleted at random.

Much work [2, 4, 3, 5, 11, 20] has studied the difficulty of evaluating the polynomial
(exactly or approximately) when the values of the variables are fixed, and a graph is
given as input.

Our early paper [3] identified a large region of points where the approximate
evaluation of the polynomial is NP-hard and a short hyperbola segment along which
approximate evaluation is even #P-hard. Thus, an approximation of the polynomial
at a point on this short hyperbola segment would enable one to exactly solve a problem
in #P. Kuperberg [12, Theorem 1.3] uses quantum results to show similar (classical)
#P-hardness for all points (x, y) in the negative quadrant satisfying (x−1)(y−1) > 4.
In this paper, we show that, in fact, for most of the NP-hard points identified in
[3], approximation is #P-hard. Moreover, it is #P-hard for a very simple reason:
determining the sign of the polynomial—i.e., whether the evaluation of the polynomial

∗Received by the editors July 3, 2012; accepted for publication (in revised form) October 8, 2014;
published electronically December 16, 2014. This work was partially supported by EPSRC grant
EP/I011935/1 Computational Counting. The research leading to these results was supported by the
European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013) ERC grant agreement 334828. This work reflects only the authors’ views and not the views of
the ERC or the European Commission. The European Union is not liable for any use that may be
made of the information contained therein. A preliminary version of these results appeared in the
proceedings of ICALP 2012.

http://www.siam.org/journals/sicomp/43-6/88330.html
†Department of Computer Science, University of Oxford, Wolfson Building, Oxford OX1 3QD,

UK (leslie.goldberg@cs.ox.ac.uk).
‡School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK

(m.jerrum@qmul.ac.uk).
1All graphs in this paper are undirected, so we shall drop the qualifier in what follows.

1921

http://www.siam.org/journals/sicomp/43-6/88330.html
mailto:leslie.goldberg@cs.ox.ac.uk
mailto:m.jerrum@qmul.ac.uk


1922 LESLIE ANN GOLDBERG AND MARK JERRUM

is positive, negative, or zero—is #P-hard. This seems surprising since determining
the sign of the polynomial is nearly a decision problem (there are only three possible
outcomes) but it is #P-hard nearly everywhere (at all of the red points in the plane
in Figure 1).

Past work [9] has studied the sign of the Tutte polynomial—in particular, Jackson
and Sokal sought to determine for which choices of the two variables the sign is
“trivial” in the sense that it does not depend on the input graph (or it depends only
very weakly on the input graph, for example when it depends only on the number of
vertices in the graph).

To illustrate how our work fits in with the work of Jackson and Sokal, we start
with an important univariate case. The chromatic polynomial P (G; q) of an n-vertex
graph G is the unique degree-n polynomial in the variable q such that P (G; q) is
the number of proper q-colorings of G. Jackson [8, Theorem 5] showed that for
q ∈ (1, 32/27] the sign of P (G; q) depends upon G in an essentially trivial way. In
particular, for every connected simple graph with n ≥ 2 vertices and b blocks, P (G; q)

is nonzero with sign (−1)n+b−1. The sign of P (G; q) is also known to be a trivial
function of G for q ≤ 1. (See, for example, [9, Theorem 1.1].) Jackson [8, Theorem
12] demonstrated the significance of the value 32/27 by constructing an infinite family
of graphs such that P (G; q) = 0 at a value of q which is arbitrarily close to 32/27.
In fact, Jackson and Sokal conjectured [9, Conjecture 10.3(e)] that the value 32/27
is a phase transition in the sense that, for every q above this critical value, the sign
of P (G; q) is a nontrivial function of G. In particular, they conjectured that for any
fixed q > 32/27, and all sufficiently large n and m, there are 2-connected graphs G
with n vertices and m edges that make P (G; q) nonzero with either sign.

It turns out that this intuition is correct (see Corollary 56) and that q = 32/27 is,
in some sense, a phase transition for the complexity of computing the sign of P (G; q):

• As was known, for q ≤ 32/27, the sign of P (G; q) is a trivial function of G,
which is easily computed.

• At q = 2, the evaluation P (G; q) is the number of 2-colorings of G. The sign
of P (G; q) is positive if G is bipartite and is 0 otherwise. Thus, the sign of
P (G; q) is not a trivial function of G, but P (G; q) is still easily computed in
polynomial time.

• For every q > 32/27 except q = 2, computing the sign of P (G; q) is NP-hard.

However, the full version of Jackson and Sokal’s conjecture turns out to be incorrect.
See Observations 39 and 41 for counterexamples.

While computing the sign of P (G; q) is NP-hard for every q �= 2 which is greater
than 32/27, the precise complexity of computing the sign does actually depend upon q.
We show (see Corollary 56) that for each fixed noninteger q > 32/27, the complexity
of computing the sign of P (G; q) is #P-hard. This means that a polynomial-time
algorithm for computing the sign of P (G; q), given G, would give a polynomial-time
algorithm for exactly solving every problem in #P. On the other hand, for integers
q > 2, the problem of computing the sign of P (G; q) is merely NP-complete.2

As one would expect, both of these results have ramifications for the complex-
ity of approximating P (G; q). A fully polynomial randomized approximation scheme
(FPRAS) for evaluating P (G; q), given G, can be used as a polynomial-time random-

2As there are three potential outcomes, determining the sign cannot be NP-complete in a strict
sense. However, in this case, one of the outcomes (negative) is impossible, so we can view the
determination of the sign as an NP-problem by identifying positive with “accept” and zero with
“reject.” This view will be taken throughout the paper.
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ized algorithm for computing the sign of P (G; q). Thus, we can immediately deduce
that if q is a noninteger greater than 32/27, then there is no FPRAS for P (G; q) unless
there is a randomized polynomial-time algorithm for exactly solving every problem
in #P. See section 2.4 for a more thorough discussion of this claim.

On the other hand, for integer values q > 32/27, we show that the problem of
evaluating P (G; q) is in the complexity class #PQ, which is defined as follows.

Definition. FP is the class of functions computable by polynomial-time algo-
rithms. We say that a function f : Σ∗ → Q is in the class #PQ if f(x) = a(x)/b(x),
where a, b : Σ∗ → N, and a ∈ #P and b ∈ FP.

If f is in #PQ, then there is an approximation scheme for f that runs in polyno-
mial time, using an oracle for an NP predicate (for a more detailed discussion, see [3,
section 2.2]). Thus, it is presumably much easier to approximate P (G; q) when q is
an integer greater than 32/27, as compared to a noninteger.

All of these considerations generalize smoothly to the Tutte polynomial, which
we now define. Since we will later need the multivariate generalization [16] of the
polynomial, we use the “random cluster” formulation of the Tutte polynomial, which
for a graph G = (V,E) is defined as a polynomial in indeterminates q and γ as follows:

(1) Z(G; q, γ) =
∑
A⊆E

qκ(V,A)γ|A|,

where κ(V,A) denotes the number of connected components in the graph (V,A). The
chromatic polynomial discussed earlier is related to the Tutte polynomial via the
identity [9, equation (2.15)] P (G; q) = Z(G; q,−1).

In fact, Tutte defined the Tutte polynomial using a different, two-variable pa-
rameterization, in terms of variables x and y. This polynomial is defined for a graph
G = (V,E) by

(2) T (G;x, y) =
∑
A⊆E

(x− 1)
κ(V,A)−κ(V,E)

(y − 1)
|A|−|V |+κ(V,A)

.

It is well known (see, for example, [16, equation (2.26)]) that when q = (x− 1)(y− 1)
and γ = y − 1 we have

(3) T (G;x, y) = (y − 1)
−|V |

(x− 1)
−κ(V,E)

Z(G; q, γ).

This paper studies the complexity of computing the sign of the (random cluster)
Tutte polynomial. The definitive statement of our results requires a number of formal
definitions and is presented as Theorem 1 in section 5. However, an informal descrip-
tion of Theorem 1 appears in Figure 1, which illustrates the the (x, y) plane divided
into a number of regions A–M according to their complexity.3 The colors depict the
complexity of computing the sign of the polynomial for a fixed point (x, y). If the
point (x, y) is colored red, then the problem of computing the sign is #P-hard. If
the point (x, y) is colored green, then the problem of computing the sign is in FP.

3For convenience, our proofs use the random cluster formulation of the Tutte polynomial (1).
However, in order to make our results easily comparable to other results in the literature, such
as [3, 11], we classify points using the (x, y)-coordinatization of (2). This is without loss of generality
since it is easy to go from one coordinate system to the other using (3). However, the reader should
note that if y = 1, then γ = 0 and q = (x− 1)(y− 1) = 0, so computing Z(G; q, γ) is trivial, whereas
the complexity of computing T (G; x, y) is unclear. In general, any two-parameter version of the Tutte
polynomial will omit some points. This issue is discussed further in [6, section 1].
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Fig. 1. An illustration of Theorem 1. Computing the sign of the Tutte polynomial is #P-hard
at red points, is NP-complete at blue points, and is in FP at green points. We have not resolved the
complexity at white points. At red points, approximating the Tutte polynomial is also #P-hard. At
blue and green points, it can be done in polynomial time with an NP oracle. Guide for the greyscale
(print) version: The red points appear as a darker grey in regions B, C, D, E, F, G, H, and I. The
green points appear as a lighter grey in regions A, J, K, L, and M and also as dashed hyperbola
segments and at the points (−1, 0), (−1,−1), (0,−1), and (0,−5). The blue points are (−2, 0),
(−3, 0), (−4, 0), (−5, 0), (0,−2), and (0,−3).

Finally, if the point (x, y) is colored blue, then the problem of computing the sign
is NP-complete. (There are still some points for which we have not resolved the
complexity—these are colored white.)

To resolve any ambiguities in Figure 1, a formal description of the regions appear-
ing there is provided in Figure 2. For each region of interest, the condition for a point
(x, y) to belong to that region is given. Note that q is used to denote (x − 1)(y − 1).

Once again, there are ramifications for the complexity of approximating the Tutte
polynomial. Since an FPRAS for Z(G; q, γ) gives a randomized algorithm for comput-
ing its sign, we can again deduce that there is no FPRAS for points that are colored
red (unless there is a randomized polynomial-time algorithm for exactly solving every
problem in #P). By contrast, for all of the points that are colored green or blue, we
also show that the problem of computing Z(G; q, γ) is in the complexity class #PQ.
Thus, the polynomial can be approximated in polynomial time using an NP oracle.

In order to reach into some of the regions, for example, F, it has been necessary to
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• Region A: x ≥ 0 and y ≥ 0.
• Region B: min(x, y) ≤ −1 and max(x, y) < 0.
• Region C: x < −1 and y > 1.
• Region D: x > 1 and y < −1.
• Region E: x ≤ −1 and 0 < y ≤ 1.
• Region F: 0 < x ≤ 1 and y ≤ −1.
• The boundary between regions B and E: x ≤ −1 and y = 0.
• The boundary between regions B and F: x = 0 and y ≤ −1.
• Region G: max(|x|, |y|) < 1 and q > 32/27.
• Region H: max(|x|, |y|) < 1 and q ≤ 32/27 and x < −2y − 1.
• Region I: max(|x|, |y|) < 1 and q ≤ 32/27 and y < −2x− 1.
• Region J: −1 ≤ x < 0 and y ≥ 1.
• Region K: x ≥ 1 and −1 ≤ y < 0.
• Region L: 0 < x < 1 and −x < y < 0.
• Region M: 0 < y < 1 and −y < x < 0.
• The rest: There are some remaining unresolved points. These points (simul-
taneously) satisfy all of the following inequalities: max(|x|, |y|) < 1, y < −x,
q ≤ 32/27, y ≥ −2x− 1, x ≥ −2y − 1, and q �= 1.

Fig. 2. A formal description of the regions appearing in Theorem 1 and Figure 1. For each
region of interest, we give the condition for a point (x, y) to belong to that region. Throughout we
use q to denote (x− 1)(y − 1).

use gadgets that go beyond the series-parallel graphs that have so far proved adequate
in this area. For example, exploring region F has necessitated the use of a gadget based
on the Petersen graph.

Our classification is not complete and leaves some areas unresolved (colored white
in Figure 1). Although the methods could no doubt be pushed a little further, at the
expense of adding further complexity to the proofs, it seems likely that a complete clas-
sification is some way off. For example, showing that the sign of the Tutte polynomial
is hard to compute at the point (0,−4) would necessarily provide a counterexample
to Tutte’s long-standing 5-flow conjecture. In the other direction, it is difficult to
conceive of an efficient algorithm for deciding the sign that would not at the same
time resolve the conjecture.

2. Preliminaries.

2.1. The Tutte polynomial. It will be helpful to define the multivariate version
of the random cluster formulation of the Tutte polynomial. Let γ be a function that
assigns a (rational) weight γe to every edge e ∈ E. We refer to γ as a “weight
function.” We define

Z(G; q,γ) =
∑
A⊆E

qκ(V,A)
∏
e∈A

γe.

Given a graph G = (V,E) with distinguished nodes s and t, Zst(G; q,γ) denotes
the contribution to Z(G; q,γ) arising from edge-sets A in which s and t are in the
same component of (V,A). That is,

Zst(G; q,γ) =
∑

A⊆E: s and t in same component

qκ(V,A)
∏
e∈A

γe.
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Similarly, Zs|t denotes the contribution arising from edge-sets A in which s and t are
in different components, so Z(G; q,γ) = Zst(G; q,γ) + Zs|t(G; q,γ).

2.2. Implementing new edge weights, series compositions, and parallel
compositions. Our treatment of implementations, series compositions, and parallel
compositions is completely standard and is taken from [5, section 2.1]. The reader
who is familiar with this material can skip this section (which is included here for
completeness).

Let W be a set of (rational) edge weights and fix a value q. Let w∗ be a weight
(which may not be in W ) which we want to “implement.” Suppose that there is a
graph Υ, with distinguished vertices s and t and a weight function γ̂ : E(Υ) → W ,
such that

(4) w∗ = qZst(Υ; q, γ̂)/Zs|t(Υ; q, γ̂).

In this case, we say that Υ and γ̂ implement w∗ (or even that W implements w∗).
The purpose of “implementing” edge weights is this. Let G be a graph with

weight function γ. Let f be some edge of G with weight γf = w∗. Suppose that W
implements w∗. Let Υ be a graph with distinguished vertices s and t with a weight
function γ̂ : E(Υ) → W satisfying (4). Construct the weighted graph G′ by replacing
edge f with a copy of Υ (identify s with either endpoint of f (it doesn’t matter which
one), and identify t with the other endpoint of f and remove edge f). Let the weight
function γ′ of G′ inherit weights from γ and γ̂ (so γ′e = γ̂e if e ∈ E(Υ) and γ′e = γe
otherwise). Then the definition of the multivariate Tutte polynomial gives

(5) Z(G′; q,γ′) =
Zs|t(Υ; q, γ̂)

q2
Z(G; q,γ).

So, as long as q �= 0 and Zs|t(Υ; q, γ̂) is easy to evaluate, evaluating the multivariate
Tutte polynomial of G′ with weight function γ′ is essentially the same as evaluating
the multivariate Tutte polynomial of G with weight function γ.

Two especially useful implementations are series and parallel compositions. These
are explained in detail in [9, section 2.3]. So we will be brief here. Parallel composition
is the case in which Υ consists of two parallel edges e1 and e2 with endpoints s and t
and γ̂e1 = w1 and γ̂e2 = w2. It is easily checked from (4) that w∗ = (1+w1)(1+w2)−1.
Also, the extra factor in (5) cancels, so in this case Z(G′; q,γ′) = Z(G; q,γ).

Series composition is the case in which Υ is a length-2 path from s to t consisting
of edges e1 and e2 with γ̂e1 = w1 and γ̂e2 = w2. It is easily checked from (4) that
w∗ = w1w2/(q+w1 +w2). Also, the extra factor in (5) is q+w1 +w2, so in this case
Z(G′; q,γ ′) = (q + w1 + w2)Z(G; q,γ). It is helpful to note that w∗ satisfies(

1 +
q

w∗

)
=

(
1 +

q

w1

)(
1 +

q

w2

)
.

We say that there is a “shift” from (q, α) to (q, α′) if there is an implementation
of α′ consisting of some Υ and ŵ : E(Υ) →W whereW is the singleton setW = {α}.
This is the same notion of “shift” that we used in [3]. Taking y = α+1 and y′ = α′+1
and defining x and x′ by q = (x− 1)(y− 1) = (x′ − 1)(y′− 1), we equivalently refer to
this as a shift from (x, y) to (x′, y′). It is an easy but important observation that shifts
may be composed to obtain new shifts. So, if we have shifts from (x, y) to (x′, y′) and
from (x′, y′) to (x′′, y′′), then we also have a shift from (x, y) to (x′′, y′′).
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The k-thickening of [11] is the parallel composition of k edges of weight α. It
implements α′ = (1 + α)k − 1 and is a shift from (x, y) to (x′, y′) where y′ = yk (and
x′ is given by (x′ − 1)(y′ − 1) = q). Similarly, the k-stretch is the series composition
of k edges of weight α. It implements an α′ satisfying

1 +
q

α′ =
(
1 +

q

α

)k
.

It is a shift from (x, y) to (x′, y′) where x′ = xk. (In the classical bivariate (x, y)
parameterization, there is effectively one edge weight, so the stretching or thickening
is applied uniformly to every edge of the graph.)

Since it is useful to switch freely between (q, α) coordinates and (x, y) coordinates,
we also refer to the implementation in (4) as an implementation of the point (x, y) =
(q/w∗ + 1, w∗ + 1) using the points

{(x, y) = (q/w + 1, w + 1) | w ∈W}.

Thus, if q = (x1− 1)(y1− 1) = (x2− 1)(y2− 1), then the series composition of (x1, y1)
and (x2, y2) implements the point(

q

y1y2 − 1
+ 1, y1y2

)
,

and the parallel composition of these implements the point(
x1x2,

q

x1x2 − 1
+ 1

)
.

We make extensive use of series and parallel composition, and the above identities
will be employed without comment.

2.3. Computational problems. For fixed rational numbers q, γ, and γ1, . . . , γk,
we consider the following computational problems4 from [3].

Name Tutte(q, γ).
Instance A graph G = (V,E).
Output The rational number Z(G; q, γ).

Name Tutte(q; γ1, . . . , γk).
Instance A graph G = (V,E) and a weight function γ : E → {γ1, . . . , γk}.
Output The rational number Z(G; q,γ).

We also consider variants in which the goal is to compute the sign of the Tutte
polynomial.

Name SignTutte(q, γ).
Instance A graph G = (V,E).
Output Determine whether the sign of Z(G; q, γ) is positive, negative, or 0.

Name SignTutte(q; γ1, . . . , γk).
Instance A graph G = (V,E) and a weight function γ : E → {γ1, . . . , γk}.
Output Determine whether the sign of Z(G; q,γ) is positive, negative, or 0.

4In [3] we referred to these as MultiTutte(q, γ) and MultiTutte(q; γ1, . . . , γk), respectively,
but we use the shorter names here since there is no confusion.
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2.4. Randomized algorithms and approximate counting. A randomized
algorithm for a computational problem takes an instance of the problem and returns
a result. We require that for each instance, and each run of the algorithm, the
probability that the result is equal to the correct output for the given instance is at
least 3

4 .

A randomized approximation scheme is an algorithm for approximately computing
the value of a function f : Σ∗ → R. The approximation scheme has a parameter ε > 0
which specifies the error tolerance. A randomized approximation scheme for f is a
randomized algorithm that takes as input an instance x ∈ Σ∗ (e.g., an encoding of
a graph G) and an error tolerance ε > 0 and outputs a number z ∈ Q (a random
variable of the “coin tosses” made by the algorithm) such that, for every instance x,

Pr
[
e−ε ≤ z/f(x) ≤ eε

] ≥ 3

4
,

where, by convention, 0/0 = 1. (The slight modification of the more familiar definition
is to ensure that functions f taking negative values are dealt with correctly.)

The randomized approximation scheme is said to be a fully polynomial randomized
approximation scheme, or FPRAS, if it runs in time bounded by a polynomial in |x|
and ε−1.

Completeness of a problem in #P is defined with respect to polynomial-time
Turing reduction. Suppose SignTutte(q, γ) is #P-hard for some setting of the pa-
rameters q, γ. Then, clearly, SignTutte(q, γ) ∈ FP would imply #P = FP. In addi-
tion, the existence of a polynomial-time randomized algorithm for SignTutte(q, γ)
would imply the existence of a polynomial-time randomized algorithm for every prob-
lem in #P. The reasoning is as follows. Suppose the randomized algorithm for
SignTutte(q, γ) has failure probability at most 1

4 . By a standard powering argu-
ment, the failure probability can be reduced so that it is exponentially small in the
input size. But a polynomial-time Turing reduction makes only polynomially many
oracle calls, so the probability that even a single one produces the wrong answer is
exponentially small, and certainly less than 1

4 . As an immediate consequence, an
FPRAS for Tutte(q, γ) would again imply the existence of a polynomial-time ran-
domized (but exact in the event of success) algorithm for every problem in #P.

3. #P-hardness of computing the sign of the Tutte polynomial—the
multivariate case. We use the fact that the following problem is #P-complete. This
was shown by Provan and Ball [15].

Name #Minimum Cardinality (s, t)-Cut.
Instance A graph G = (V,E) and distinguished vertices s, t ∈ V .
Output |{S ⊆ E : S is a minimum cardinality (s, t)-cut in G}|.

Lemma 2. Suppose q > 1 and that γ1 ∈ (−2,−1) and γ2 /∈ [−2, 0]. Then
SignTutte(q; γ1, γ2) is #P-hard.

Proof. We will give a Turing reduction from#Minimum Cardinality (s, t)-Cut

to SignTutte(q; γ1, γ2).

Let G, s, t be an instance of #Minimum Cardinality (s, t)-Cut. Assume with-
out loss of generality that G has no edge from s to t. Let n = |V (G)| and m = |E(G)|.
Assume without loss of generality that G is connected and that m ≥ n is sufficiently
large. Let k be the size of a minimum cardinality (s, t)-cut in G, and let C be the
number of size-k (s, t)-cuts.
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The following calculations are more general than necessary so that we can reuse
them in the proof of Lemma 3 (where q < 1 and q may even be negative). Let

M∗ = max

((
8max

(
|q|, 1

|q|
))m

,
2

|q − 1|
)
.

Let h be the smallest integer such that (γ2+1)h−1 > M∗, and letM = (γ2+1)h−1.
Note that we can implement M from γ2 via an h-thickening, and h is at most a
polynomial in m.

Let δ =
(
2max(|q|, |q|−1)

)m
/M . Let M be the constant weight function which

gives every edge weight M . We will use the following facts:

(6) Mmq − δMm|q| ≤ Zst(G; q,M ) ≤Mmq + δMm|q|

and

(7) CMm−kq2(1− δ) ≤ Zs|t(G; q,M ) ≤ CMm−kq2(1 + δ).

Fact (6) follows from the fact that each of the (at most 2m) terms in Zst(G; q,M ),
other than the term with all edges in A, has absolute value at mostMm−1(max(|q|, 1))n
and 2mMm−1(max(|q|, 1))n ≤ δMm|q|. Fact (7) follows from the fact that all terms
in Zs|t(G; q,M ) are complements of (s, t)-cuts. Each term that is not a complement

of a size-k (s, t)-cut has absolute value at most Mm−k−1q2(max(|q|, 1))n and

2mMm−k−1q2(max(|q|, 1))n ≤ δCMm−kq2.

For a parameter ε in the open interval (0, 1) which we will tune below, let γ′ =
−1 − ε ∈ (−2,−1). We will discuss the implementation of γ′ below. Let G′ be the
graph formed from G by adding an edge from s to t. Let γ be the edge-weight function
for G′ that assigns weight M to every edge of G and assigns weight γ′ to the new
edge. Then, using the definition of the Tutte polynomial,

Z(G′; q,γ) = Zst(G; q,M )(1 + γ′) + Zs|t(G; q,M )

(
1 +

γ′

q

)
= −εZst(G; q,M ) + Zs|t(G; q,M)

(
1− 1 + ε

q

)
.(8)

Now suppose ε =M−2m. Then

Z(G′; q,γ) = −M−2mZst(G; q,M ) + Zs|t(G; q,M )

(
1− 1 +M−2m

q

)
.

Now since M > 2/(q − 1) and M ≥ 1, we have 1 − (1 +M−2m)/q ≥ (1 − 1/q)/2.
(Note that M is bounded away from 1, so M−2m can be made a small as we need by
taking m sufficiently large.) So, using (6) and (7),

Z(G′; q,γ) ≥ ((1− 1/q)/2)CMm−kq2(1− δ)−M−2mMmq(1 + δ),

which is positive since k ≤ m. On the other hand, using the definition ofM and facts
(6) and (7) above, we can confirm that when ε = 1, Z(G′; q,γ) is negative. Also,
when ε = q − 1 we have Z(G′; q,γ) = −(q − 1)Zst(G; q,M ), which again is negative.
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Thus we have a range from ε = M−2m to ε = min(1, q − 1) of length at most 1
in which Z(G′; q,γ) changes sign. The idea is to perform binary search on this range
to find an ε where Z(G′; q,γ) = 0. For this value of ε, we have εZst(G; q,M ) =
Zs|t(G; q,M )

(
1 − 1+ε

q

)
. It turns out that, given this identity, estimates (6) and (7)

above will give us enough information to calculate C.
As one would expect, there are small technical complications. Since we are some-

what constrained in what values ε we can implement, we won’t be able to discover
the exact value of ε that we need, but we will be able to approximate it sufficiently
closely to compute C exactly from (6) and (7). Suppose for a moment that we are
able, for a given ε ∈ (M−2m,min(1, q − 1)), to compute the sign of Z(G′; q,γ). Our
basic strategy will be binary search, subdividing the initial interval �m2 lgM	 times,

so eventually we’ll get an interval of width at most M−m2

which contains an ε where
Z(G′; q,γ) = 0.

To do this, we need to address the issue of computing the sign of Z(G′; q,γ)
using an oracle for SignTutte(q; γ1, γ2). We have already seen above that it is
easy to implement the weight M using γ2 (and that the implementation has poly-
nomial size)—we now need to consider the implementation of γ′ = −1 − ε (where
ε ∈ (M−2m,min(1, q − 1)) is the particular value that is being queried).

Let y′ = −ε be the point that we desire to implement. Let y1 = γ1+1. Note that
y1 ∈ (−1, 0). Let j be the smallest odd integer so that |y1|j < ε. Let T− = |y1|−2

and T+ = |y1|−3. Let T = −ε/yj+2
1 . Note that 1 < T− ≤ T ≤ T+.

Let (x2, y2) = (q/γ2 + 1, γ2 + 1). Note that y2 /∈ [−1, 1]. We will define a small
quantity π below. Looking ahead to Lemma 5, we see that, from the point (x2, y2),
we can implement a point (x′′, y′′) with T −π ≤ y′′ ≤ T . The size of the graph used to
implement (x′′, y′′) is at most a polynomial in log(π−1). It does not depend upon T ,
though it does depend on the fixed bounds T− and T+. Now implement y′ by a
parallel composition of y′′ and j+2 copies of y1. (We can do this parallel composition
because j is only polynomially big in m.) Note that −ε ≤ y′ ≤ −ε + π|y1|j+2, so of
course −ε ≤ y′ ≤ −ε+ π.

Thus, in the binary search, we may not be able to query the exact value of ε that
we want to, but we can query a value that is between ε− π and ε.

Recall that our goal is to end up with a subinterval of the initial interval (M−2m,

min(1, q − 1)) such that the subinterval has width at most M−m2

and contains an ε

where Z(G′; q,γ) = 0. We do this by setting π = M−m2

/3 so that π is only a third
as large as the smallest subinterval width (where we stop the binary search). We also
adjust the binary search, subdividing the original interval up to �m2 log3/2M	 times

rather than �m2 log2M	 times, to make up for the fact that we might end up with
(crudely) at most two-thirds of the interval after one iteration, rather than half. The

result, then, is that we can find a subinterval of width at most M−m2

which contains
an ε where Z(G′; q,γ) = 0.

Now let ε be an endpoint of this subinterval. Let

ρ = 2mmax(|q|, 1)mMmM−m2

.

Since ε ≥ M−2m and m is sufficiently large, we have ρ ≤ εMm|q|4−m. From the
definition of Tutte polynomial, Z(G′; q,γ) is linear as a function of γ′ (and hence of
ε), and the coefficient of γ′ is a sum of 2m terms, each bounded in absolute value by

max(|q|, 1)nMm ≤ max(|q|, 1)mMm. Since γ′ is within distance M−m2

of the zero of
Z(G′; q,γ), we see that |Z(G′; q,γ)| ≤ ρ.



COMPUTING THE SIGN OF THE TUTTE POLYNOMIAL 1931

Now using (8), (6), and (7), we have

−ρ+ εMmq(1 − δ)(
1− 1+ε

q

)
Mm−kq2(1 + δ)

≤ C ≤ ρ+ εMmq(1 + δ)(
1− 1+ε

q

)
Mm−kq2(1− δ)

,

so, since δ ≤ 4−m,

(9)
(1 − 2 · 4−m)εMmq(

1− 1+ε
q

)
Mm−kq2(1 + 4−m)

≤ C ≤ εMmq(1 + 2 · 4−m)(
1− 1+ε

q

)
Mm−kq2(1− 4−m)

.

Now the point is that C is an integer between 1 and 2m. Even though the value
of k is not known, the fact that M > 4m means that there can only be one integer k
such that the above interval contains an integer between 1 and 2m (so k can easily be
deduced). All of the other quantities in the lower and upper bounds in (9) are known.

Now let R = εMk

q−(1+ε) , so (9) becomes

(10)

(
1− 2 · 4−m
1 + 4−m

)
R ≤ C ≤ R

(
1 + 2 · 4−m
1− 4−m

)
.

Now, R < 2m+1 since otherwise the left-hand side of (10) is greater than 2m.
Also, multiplying through by (1+4−m)(1− 4−m), the width of the interval is at most
6 · 4−mR < 1, so the width of the interval in (10) is less than 1, and so the (integral)
value of C can be calculated exactly.

We have a similar lemma for q < 1.
Lemma 3. Suppose q < 1 and q �= 0 and that γ1 ∈ (−1, 0) and γ2 /∈ [−2, 0]. Then

SignTutte(q; γ1, γ2) is #P-hard.
Proof. The situation is very similar to that of Lemma 2.
We start with the situation 0 < q < 1. In this case, we follow the proof of

Lemma 2. Then facts (6) and (7) hold, as before. For the tunable parameter ε ∈ (0, 1),
we let γ′ = −1 + ε ∈ (−1, 0). Implementing G′ as in the proof of Lemma 2, we have

(11) Z(G′; q,γ) = εZst(G; q,M) + Zs|t(G; q,M )

(
1− 1− ε

q

)
.

Now, suppose ε =M−2m. Then since M > 2/(1− q) and M ≥ 1, we have

1− (1−M−2m)/q ≤ 1
2 (1 − 1/q) < 0.

Using facts (6) and (7), we find that Z(G′; q,γ) is negative. On the other hand, at
ε = 1− q, Z(G′; q,γ) is positive.

To implement γ′, let y′ = ε be the point that we desire to implement. Let
y1 = γ1 + 1. Note that y1 ∈ (0, 1). Now proceed as in the proof of Lemma 2,
with T = ε/yj+2

1 , and T− and T+ as before. Once again we find a subinterval of

(M−2m, 1 − q) of width at most M−m2

which contains an ε where Z(G′; q, γ) = 0,
so we let ε be an endpoint of this subinterval and we conclude that |Z(G′; q, γ)| ≤ ρ.
Now we finish as in the proof of Lemma 2.

The argument for q < 0 also follows the proof of Lemma 2. Here, Zst(G; q,M )
is negative and Zs|t(G; q,M ) is positive. Taking γ′ = −1 + ε, as above, we still have
(11). Now, suppose ε = M−2m. Then by (11), Z(G′; q,γ) ≥ M−2mZst(G; q,M ) +
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Zs|t(G′q,M), which is positive. On the other hand, at ε = 1, Z(G′; q,γ) is nega-
tive. Now the implementation of γ′ proceeds as above, except that we use Lemma 7
(working from points (x1, y1) and (x2, y2)) instead of Lemma 5.

So we find a subinterval of (M−2m, 1) of width at most M−m2

which contains an
ε where Z(G′; q, γ) = 0. Letting ε be an endpoint of this subinterval, we conclude
that |Z(G′; q, γ)| ≤ ρ. Now we finish as in the proof of Lemma 2.

4. Implementing new edge weights. In this section, we collect the informa-
tion that we need about implementing edge weights within various regions of the Tutte
plane. The following straightforward lemmas are useful.

Lemma 4. Suppose q > 0 and that (x, y) is a point with x < −1. Then (x, y) can
be used to implement a point (x′, y′) with y′ > 1.

Proof. A 2-stretch from (x, y) suffices since it implements the point (x′, y′) =
(x2, (x + y)/(1 + x)). If x < −1 and q = (x − 1)(y − 1) is positive, then y < 1,
so x + y and 1 + x are both negative. Since y < 1, we conclude that −y > −1, so
−x− y > −1− x and y′ > 1.

We will use the following lemma, which is [5, Lemma 3.26]. The lemma in [5] was
stated for q > 5 (which was all that was needed in that paper), but the proof uses
only q > 0. The statement in [5] was in terms of the coordinates q and γ, but we have
translated it to (x, y) coordinates here since that is how it will be used here. Finally,
the statement of the lemma in [5] allowed the implementation to use two additional
points (x′2, y

′
2) and (x′3, y

′
3) (this was to make the statement of the lemma match other

lemmas in that paper). However, these additional points were not used in the proof,
so we don’t include them here.

Lemma 5 (see [5, Lemma 3.26]). Suppose that (x1, y1) is a point with y1 /∈ [−1, 1]
and that q = (x1 − 1)(y1 − 1) > 0. Suppose that T− and T+ satisfy 1 < T− ≤ T+.
Given a target edge-weight T ∈ [T−, T+] and a positive value π which is sufficiently
small with respect to x1, y1, T

−, and T+, a point (x, y) with T − π ≤ y ≤ T can
be implemented using the point (x1, y1). The size of the graph Υ used to implement
(x, y) is at most a polynomial in log(π−1). (This upper bound on the size of Υ does
not depend on T , though it does depend on the fixed bounds T− and T+.)

By duality of x and y, we have the following corollary.

Corollary 6. Suppose that (x1, y1) is a point with x1 /∈ [−1, 1] and that q =
(x1 − 1)(y1 − 1) > 0. Suppose that T− and T+ satisfy 1 < T− ≤ T+. Given a
target edge-weight T ∈ [T−, T+] and a positive value π which is sufficiently small with
respect to x′1, y

′
1, T

−, and T+, a point (x, y) with T − π ≤ x ≤ T can be implemented
using the point (x1, y1). The size of the graph Υ used to implement (x, y) is at most
a polynomial in log(π−1). (This upper bound on the size of Υ does not depend on T ,
though it does depend on the fixed bounds T− and T+.)

We will also use the following related lemma, which is [5, Lemma 3.27]. Once
again, we translated to (x, y) coordinates and eliminated unused points.

Lemma 7 (see [5, Lemma 3.27]). Suppose that (x1, y1) is a point with y1 /∈ [−1, 1]
and (x2, y2) is a point with y2 ∈ (−1, 1). Suppose that q = (x1 − 1)(y1 − 1) =
(x2 − 1)(y2 − 1) < 0. Suppose that T− and T+ satisfy 1 < T− ≤ T+. Given a
target edge-weight T ∈ [T−, T+] and a positive value π which is sufficiently small with
respect to x1, y1, x2, y2, T

−, and T+, a point (x, y) with T − π ≤ y ≤ T can be
implemented using the points (x1, y1) and (x2, y2). The size of the graph Υ used to
implement (x, y) is at most a polynomial in log(π−1). (This upper bound on the size
of Υ does not depend on T , though it does depend on the fixed bounds T− and T+.)
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The reader may find it useful to consult Figure 1, and the formal definitions listed
early in section 6, to see the relevant regions of the (x, y) plane that we consider.

4.1. Region B. The following four lemmas prepare the conditions for applying
Lemma 2 to points in region B. Note that the value q = (x − 1)(y − 1) exceeds 1 in
this region.

Lemma 8. Suppose (x, y) is a point with x < −1 and y < −1. Then we can
use (x, y) to implement a point (x1, y1) with y1 ∈ (−1, 0) and a point (x2, y2) with
y2 /∈ [−1, 1].

Proof. Let q = (x−1)(y−1). Let j be an odd positive integer which is sufficiently
large such that |x|j +1 > q. Implement (x′, y′) = (xj , q/(xj − 1)+ 1) from (x, y) with
a j-stretch. Note that y′ ∈ (0, 1). Now, for a sufficiently large positive integer k,
implement (x1, y1) using the parallel composition of (x, y) with k copies of (x′, y′) so
that y1 = y′ky ∈ (−1, 0). Finally, let (x2, y2) = (x, y).

Lemma 9. Suppose (x, y) is a point with x < −1 and y = −1. Then we can
use (x, y) to implement a point (x1, y1) with y1 ∈ (−1, 0) and a point (x2, y2) with
y2 /∈ [−1, 1].

Proof. Let j be a sufficiently large odd integer such that q/(|x|j + 1) < 1. Imple-
ment (x′, y′) using a j-stretch from (x, y) so that y′ = q/(xj − 1) + 1 ∈ (0, 1). Imple-
ment (x1, y1) by taking a parallel composition of (x′, y′) and (x, y) so that y1 = −y′.
Finally, implement (x2, y2) from (x, y) using Lemma 4.

Lemma 10. Suppose (x, y) is a point with x < −1 and −1 < y < 0. Then we can
use (x, y) to implement a point (x1, y1) with y1 ∈ (−1, 0) and a point (x2, y2) with
y2 /∈ [−1, 1].

Proof. We let (x1, y1) = (x, y). We implement (x2, y2) from (x, y) using Lemma
4.

Lemma 11. Suppose (x, y) is a point with −1 ≤ x < 0 and y < −1. Then we can
use (x, y) to implement a point (x1, y1) with y1 ∈ (−1, 0) and a point (x2, y2) with
y2 /∈ [−1, 1].

Proof. Implement (xa, ya) by a 2-thickening of (x, y). Note that ya = y2 > 1, and
therefore, since q > 0, xa > 1 as well. Let j be an integer that is sufficiently large
such that |x| · xja + 1 > q. Implement (xb, yb) by a series composition of (x, y) with j
copies of (xa, ya) so that

yb = q/(xxja − 1) + 1 ∈ (0, 1).

Let k be a sufficiently large integer such that |y|ykb ∈ (0, 1). Implement (x1, y1) by a
parallel composition of (x, y) and k copies of (xb, yb) so that y1 = yykb . Finally, let
(x2, y2) = (x, y).

4.2. Regions G, H, and I. We next consider the problem of implementing
edge-weights starting from a point in the “vicinity of the origin,” which corresponds
to points with |x| < 1 and |y| < 1. In the vicinity of the origin, we have 0 < q < 4.
As noted in the introduction, there is a “phase transition” at q = 32/27, so we start
by considering q > 32/27.

Lemma 12. Suppose (x, y) is a point with |x| < 1 and |y| < 1 and q = (x−1)(y−
1) > 32/27. Then (x, y) can be used to implement a point (x′, y′) with y′ > 1.

Proof. We will use the “diamond operation” of Jackson and Sokal [9, section
8]. This corresponds to choosing the graph Υ with vertex-set {s, t, u, v} and edge-set
{(s, u), (u, t), (s, v), (v, t)}. (Υ is a parallel composition of two paths from s to t, each
of which is formed from the series composition of two edges.) If we start with the
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weight function γ̂ that assigns weight γ to every edge of Υ, then it is easy to check (see

[9, equation (8.1)]) that the implemented weight w∗ from (4) is γ2(γ2+4γ+2q)

(q+2γ)2
. Equiva-

lently, the point implemented from (x, y) (which we denote as (♦q,1(x, y),♦q,2(x, y)))
is given by

(♦q,1(x, y),♦q,2(x, y)) =
(
x+ x2 + x3 + y

1 + 2x+ y
,
(x+ y)2

(1 + x)2

)
.

The diamond operation is well defined as long as x �= −1 and y �= −1 − 2x.
Jackson and Sokal [9, Lemma 8.5(c)] prove that if you start from a point (x1, y1) with
y1 < 1 and q > 32/27 and apply a sequence of diamond operations for j = 1, 2, . . .
with (xj+1, yj+1) = (♦q,1(xj , yj),♦q,2(xj , yj)), then for each j, we have yj+1 > yj and
there is a k such that yk ≥ 1. Their analysis allows the situation xk−1 = −1, so the
terminating point has yk = ∞ (which would not give an implementation of a finite
yk > 1, which we require), and it also allows yk−1 = −1− 2xk−1, which gives yk = 1
(whereas we require yk > 1).

We start with (x1, y1) = (x, y) and apply the sequence of diamond operations
until we reach a point (xj , yj) with yj > 1. However, there are two exceptions.

First, suppose, for some j, that yj = −1−2xj. Then instead of taking (xj+1, yj+1)
= (♦q,1(xj , yj),♦q,2(xj , yj)) we define (xj+1, yj+1) as follows: We let (x′1, y′1) =
(x2j ,−1) be the point implemented by a series composition of two copies of (xj , yj).

We then let (x′2, y
′
2) = (x4j , (x

2
j − 1)/(x2j + 1)) be the point implemented by a series

composition of two copies of (x′1, y
′
1). Finally, we let (xj+1, yj+1) = (1 − x−2

j + x2j ,

(1− x2j )/(1+ x2j)) be the point implemented by a parallel composition of (x′1, y′1) and
(x′2, y

′
2). Note that yj+1 − yj = 2(x3j + xj + 1)/(x2j + 1). Now note that q = 2− 2x2j ,

so, since q ≥ 32/27, we have xj > −0.64. Thus, yj+1 − yj is positive, as required (the
denominator is always positive, and the numerator is positive for xj ≥ −0.68). Note
that exceptional points (xj , yj) where yj = −1 − 2xj arise at most twice during the
sequence of points (x1, y1), (x2, y2), . . . since the hyperbola (x−1)(y−1) = q intersects
the line y = −1− 2x only in at most two places. Also, yj+1 �= 1, so the sequence does
not terminate incorrectly at (xj+1, yj+1).

For the second exception, suppose that we get to a point (xj , yj) with xj = −1.
Then (xj , yj) = (−1,−q/2+1). Now, j �= 1 since we start in the vicinity of the origin
(so we don’t have x1 = −1). If (xj , yj) was obtained as a result of the exceptional
case above, then q < 2 (since then q = 2−2x2j−1 and xj−1 �= 0 since that would imply
yj−1 = −1, contrary to the fact that the y’s are all strictly above −1). Otherwise,
(xj , yj) was obtained as the result of a diamond operation. It is not possible that
xj−1 = −yj−1 since then q = (xj−1 − 1)(yj−1 − 1) = −x2j−1 + 1 ≤ 1. Thus, from the
definition of the diamond operation, yj > 0. Thus, since yj = −q/2 + 1, we also have
q < 2. Let (x∗, y∗) be obtained as a parallel composition of two copies of (xj , yj) and
then (x′′, y′′) as a series composition of (xj , yj) and (x∗, y∗). By direct calculation
from the series/parallel formulas,

(x∗, y∗) =
( −q
4− q

,
(q − 2)2

4

)
and (x′′, y′′) =

(
q

4− q
,
q2 − 6q + 4

2(2− q)

)
.

It can be verified that y′′ < −1 in the range 32/27 ≤ q < 2. (y′′ is monotonically
decreasing in q, and less than −1 at q = 32/27.) So letting (x′, y′) be a parallel
composition of two copies of (x′′, y′′) we are done since y′ > 1.

Lemma 13. Consider a point (x, y) such that y < −1 − 2x and x > −1. Then
(x, y) can be used to implement a point (x′, y′) with y′ > 1.



COMPUTING THE SIGN OF THE TUTTE POLYNOMIAL 1935

Proof. Let (x′′, y′′) = (x2, x+y1+x ) be the point implemented by a 2-stretch from
(x, y). Note that y′′ < −1. Now implement (x′, y′) by a 2-thickening of (x′′, y′′).

Lemma 14. Consider a point (x, y) such that x < −1 − 2y and y > −1 and
q = (x − 1)(y − 1) > 0. Then (x, y) can be used to implement a point (x′, y′) with
y′ > 1.

Proof. Let (x′, y′) = (x+y1+y , y
2) be the point implemented by a 2-thickening. Note

that x′ < −1. Then use Lemma 4.
Lemma 15. Suppose that (x, y) is a point satisfying max(|x|, |y|) < 1 and q =

(x − 1)(y − 1) > 1. Suppose that (x, y) also satisfies at least one of the following
conditions.

• q > 32/27, or
• y < −1− 2x, or
• x < −1− 2y.

Then (x, y) can be used to implement a point (x1, y1) with −1 < y1 < 0.
Proof. If −1 < y < 0, then we simply take (x1, y1) = (x, y). Thus, we can assume

0 ≤ y < 1. This implies −1 < x < 0, and q > 32/27 or y < −1− 2x.
By Lemmas 12 and 13, we can implement a point (x′1, y

′
1) with y′1 > 1. Since

(x′1 − 1)(y′1 − 1) = q, we also have x′1 > 1.
Note that the restrictions on x and y imply 1 < q < 2. Choose an even integer j

so that xj < 1− q/4. By Corollary 6 (taking T = (1− q/4)/xj and π = q/(8xj), say)
the point (x′1, y

′
1) can be used to implement a point (x′′, y′′) with

1− q/2

xj
< x′′ <

1

xj
.

Implement (x∗, y∗) by taking the series composition of (x′′, y′′) with j copies of (x, y).
Note that y∗ = q

x′′xj−1 + 1 < −1.
Now implement (x1, y1) by choosing a sufficiently large integer 	 and taking the

parallel composition of (x∗, y∗) with 	 copies of (x, y) so that y1 = y∗y�.

4.3. Regions C and D.
Lemma 16. Suppose (x, y) is a point satisfying one of the following.
• y > 1 and x < −1, or
• x > 1 and y < −1.

Then (x, y) can be used to implement a point (x1, y1) with y1 ∈ (0, 1).
Proof. Note that q < 0. Choose an even number j such that xj − 1 > |q|.

Implement (x1, y1) by taking a j-stretch of (x, y) so that y1 = q/(xj − 1) + 1.

4.4. Region E.
Lemma 17. Suppose (x, y) is a point satisfying x < −1 and 0 < y < 1 and

1 < (x − 1)(y − 1) < 2. Then (x, y) can be used to implement a point (x1, y1) with
−1 < y1 < 0.

Proof. Let q = (x − 1)(y − 1). Note that 1 − q/2 > 0 since q < 2. Let j be a
sufficiently large integer such that 0 < yj < 1 − q/2. Note that 1 − q < 0 so that
1− q < yj < 1− q/2. Implement (x′, y′) by j-thickening from the point (x, y) so that
x′ = q/(yj − 1) + 1. Note that −1 < x′ < 0. Now let k be an odd integer which
is sufficiently large such that 0 < x(x′)k < 1 − q/2 so 1 − q < x(x′)k < 1 − q/2.
Implement (x1, y1) by taking a series composition of (x, y) with k copies of (x′, y′) so
that x1 = x(x′)k. Then y1 = q/(x(x′)k − 1) + 1 so −1 < y1 < 0, as required.

Lemma 18. Suppose (x, y) is a point satisfying x < −1 and 0 < y < 1. Suppose
that q = (x− 1)(y− 1) > 2 is not an integer. Then (x, y) can be used to implement a
point (x′, y′) with y′ < 0.
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Proof. Let q = (x− 1)(y− 1). Let us first examine what points we can implement
from the point (x1, y1) = (1− q, 0) and from points nearby. We will later show how to
implement points near (x1, y1) from the given point (x, y). Let n = �q�+2. Note that
n ≥ 4 and that n− 2 < q < n− 1. Let Γn be the graph obtained from the complete
graph Kn on n vertices by deleting some edge (s, t). Let γ be the weight function
that gives every edge of Γn weight y1 − 1 = −1. From section 2.2, the graph Γn and
the weight function γ implement the weight

(12) w(q, n) =
qZst(Γn; q,−1)

Zs|t(Γn; q,−1)
.

We wish to calculate some properties of w(q, n). Recall from the introduction
that Z(G; q,−1) is equal to the chromatic polynomial P (G; q). We will next calculate
Zst(Γn; q,−1) and Zs|t(Γn; q,−1) as polynomials in q using known facts about the
chromatic polynomial. In particular, when q is a positive integer, Z(G; q,−1) gives
the number of proper q-colorings of G.

Now, let V denote the vertex set of Kn. We can expand the definition of
Z(Kn; q,−1) as

Z(Kn; q,−1) =
∑

A⊆E−(s,t)

(
qκ(V,A∪{(s,t)})(−1)

|A|+1
+ qκ(V,A)(−1)

|A|)
.

If a subset A connects s and t, then κ(V,A∪{(s, t)}) = κ(V,A) so that the contribution
from this A is zero. On the other hand, if a subset A does not connect s and t, then
κ(V,A ∪ {s, t}) = κ(V,A)− 1. Thus,

Z(Kn; q,−1) = Zst(Γn; q,−1)(1− 1) + Zs|t(Γn; q,−1)(1− 1
q )

= Zs|t(Γn; q,−1)(1− 1
q ).(13)

Note that the factor (1 − 1
q ) is positive.

Similarly,

Zst(Γn; q,−1) = Z(Γn; q,−1)− Zs|t(Γn; q,−1),

so we have

(14) Zst(Γn; q,−1) = Z(Γn; q,−1)− Z(Kn; q,−1)

1− 1
q

,

and

(15) Zs|t(Γn; q,−1) =
Z(Kn; q,−1)

1− 1
q

.

The properties of w(q, n) that we require will follow from (12), (14), and (15).

First note that Z(Kn; q,−1) =
∏n−1
i=0 (q − i). This is clear at positive integer q since

both sides can be in interpreted as the number of q-colorings of an n-clique. But we
know that Z(Kn; q,−1) is a polynomial in q, so the two sides must be equal for all q.

Let Nq,n =
∏n−2
i=0 (q − i), so Z(Kn; q,−1) = Nq,n(q − n + 1). Then Z(Γn; q,−1) =

Nq,n(q−n+2) since, again, both sides may be interpreted as the number of q-colorings
of a certain graph, in this case Γn. (If you color the vertices of Γn in order, coloring s
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last, there are q−(n−2) choices for s, rather than q−(n−1) in Kn.) Then, from (12),
(14), and (15),

w(q, n) =
qZst(Γn; q,−1)

Zs|t(Γn; q,−1)
=
qZ(Γn; q,−1)− qZ(Kn;q,−1)

1−1/q

Z(Kn;q,−1)
1−1/q

=
(q − 1)Z(Γn; q,−1)− qZ(Kn; q,−1)

Z(Kn; q,−1)

=
(q − 1)(q − n+ 2)− q(q − n+ 1)

q − n+ 1

=
n− 2

q − n+ 1
,

where we use the fact that q is not integral, so Z(Kn; q,−1) �= 0.
Now since n > 2 and 1 < q < n − 1, we can see that the numerator n − 2 is

positive, the denominator q − n + 1 is negative, and n − 2 > n − q − 1, and hence
w(q, n) < −1.

We now have

(16)
qZst(Γn; q,−1)

Zs|t(Γn; q,−1)
< −1.

Unfortunately, we are not finished because we cannot necessarily implement the weight
−1 exactly from the given point (x, y). However, by continuity, (16) implies that there
is a small positive ε (depending on q and n) such that if |z − Zst(Γn; q,−1)| ≤ ε and
|z′ − Zs|t(Γn; q,−1)| ≤ ε, then we have qz

z′ < −1.
To finish, we will show that we can implement an edge-weight−1+δ from (x, y) so

that |Zst(Γn; q,−1+δ)−Zst(Γn; q,−1)| ≤ ε and |Zs|t(Γn; q,−1+δ)−Zs|t(Γn; q,−1)| ≤
ε. Thus, we can implement an edge-weight less than −1 by using Γn with all edge-
weights equal to −1 + δ.

We finish with the relevant technical details. First, let V be the vertex set of Γn.
For any δ ∈ (0, ε/(2mqnm)), note that

Zst(Γn; q,−1 + δ)− Zst(Γn; q,−1) =
∑
A

qκ(V,A)(−1)
|A|+1

(
1− (1− δ)

|A|)
≤
∑
A

qκ(V,A)
(
1− (1 − δ)

|A|)
≤ 2mqnmδ

< ε,

where the sum is over edge-subsets A with s and t in the same component. Similarly,
Zst(Γn; q,−1)− Zst(Γn; q,−1 + δ) < ε and |Zs|t(Γn; q,−1 + δ)− Zs|t(Γn; q,−1)| ≤ ε.

It remains to show that we can implement weight −1 + δ from the given (x, y).
Using (x, y) coordinates, the point we wish to implement is (x′′, y′′) = (1+q/(δ−1), δ).
This can be done using a k-thickening from (x, y), choosing k to be sufficiently large
such that yk ≤ ε/(2mqnm).

As we shall see shortly, region B consists of those points (x, y) for which min(x, y) ≤
−1 and max(x, y) < 0. Also, region G consists of points (x, y) with max(|x|, |y|) < 1
and q = (x− 1)(y − 1) > 32/27. We use these definitions in the following lemma.

Lemma 19. Suppose (x, y) is a point satisfying x < −1 and 0 < y < 1. Suppose
that q = (x − 1)(y − 1) > 2 is not an integer. Then (x, y) can be used to implement
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a point (x′, y′) apart from the special point (−1,−1) which is either in region B or in
region G.

Proof. By Lemma 18, the point (x, y) can be used to implement a point (x′, y′)
with y′ < 0. We know that (x′, y′) is not the special point (−1,−1) since q is not an
integer. If (x′, y′) is in region B or region G, then we are finished. Otherwise, the
point (x′, y′) satisfies 0 ≤ x′ < 1 and y′ ≤ −1. Let j be a sufficiently large integer such
that |y′|yj < 1. Then implement the point (x′′, y′′) by taking the parallel composition
of (x′, y′) with j copies of (x, y) so that y′′ = y′yj . Note that −1 < y′′ < 0 so that
the point (x′′, y′′) is in region B or G, as required.

4.5. The flow polynomial. In order to implement new edge-weights from re-
gion F (and also to show tractability results and NP-completeness results for region
F in section 7.5), we must introduce a specialization of the Tutte polynomial called
the flow polynomial.

A q-flow of an undirected graph G = (V,E) is defined as follows [16, section 2.4].
Choose an arbitrary direction for each edge. Let H be any Abelian group of order q.
A q-flow is a mapping ψ : E → H such that the flow into each vertex is equal to the
flow out (doing arithmetic in H).

Consider the following polynomial, where the sum is over q-flows of G (see [16,
equation (2.21)]):

F (G; q, u) =
∑
ψ

∏
e∈E

(1 + uδ(ψ(e), 0)) ,

where δ is the Kronecker delta function defined by δ(a, b) = 1 if a = b and δ(a, b) = 0
otherwise. It is a nontrivial fact that F (G; q, u) depends only on q, the size of H , and
not on H itself. This polynomial is related to the Tutte polynomial via the following
identity [16, equation (2.22)].

Fact 20. If q is a positive integer, then F (G; q, q/γ) = q−|V |( q
γ

)|E|
Z(G; q, γ).

The flow polynomial of G, which we write as F (G; q), is given by F (G; q,−1).
A q-flow ψ of a graph G = (V,E) is said to be nowhere-zero if, for every e ∈ E,
ψ(e) �= 0. From Fact 20 it is easy to see that if q is a positive integer, then F (G; q) =

q−|V |(−1)
|E|
Z(G; q,−q) is the number of nowhere-zero q-flows of G.

4.6. Region F.
Lemma 21. Suppose (x, y) is a point satisfying 0 < x < 1 and y < −1 and

0 < (x − 1)(y − 1) < 1. Then (x, y) can be used to implement a point (x1, y1) with
0 < y1 < 1.

Proof. Let j be a sufficiently large positive integer such that xj < 1−q. Implement
(x1, y1) by a j-stretch of (x, y) so that y1 = q/(xj − 1) + 1.

Lemma 22. Suppose (x, y) is a point satisfying 0 < x < 1 and y < −1 and
1 < (x − 1)(y − 1) < 2. Then (x, y) can be used to implement a point (x1, y1) with
−1 < y1 < 0.

Proof. Let q = (x − 1)(y − 1). Note that 1 − q/2 > 0 since q < 2. Let j be a
sufficiently large integer such that 0 < xj < 1 − q/2. Note that 1 − q < 0 so that
1− q < xj < 1− q/2. Implement (x1, y1) by a j-stretch from the point (x, y) so that
y1 = q/(xj − 1) + 1. Note that −1 < y1 < 0.

Lemma 23. Suppose (x, y) is a point satisfying 0 < x < 1 and y < −1 for which
q = (x − 1)(y − 1) is not an integer. Suppose 2 < q < 4. Then (x, y) can be used to
implement a point (x′, y′) with x′ < 0.
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Proof. Let q = (x−1)(y−1). As in the proof of Lemma 18, we start by examining
what points we can implement from the point (x′, y′) = (0, 1 − q) and from points
nearby.

Suppose that G is a graph which contains the edge (s, t). Let Γ = G − (s, t).
Following the approach of Lemma 18, let

(17) w(q) =
qZst(Γ; q,−q)
Zs|t(Γ; q,−q) ,

which is the weight implemented by Γ with edge-weight −q.
Then, using reasoning similar to the derivation of (13),

Z(G; q,−q) = Zst(Γ; q,−q)(1 − q) + 1
qZs|t(Γ; q,−q)(q − q)

= Zst(Γ; q,−q)(1 − q).(18)

Also,

Zs|t(Γ; q,−q) = Z(Γ; q,−q)− Zst(Γ; q,−q)
= Z(Γ; q,−q) + Z(G; q,−q)/(q − 1).

Thus, we can use Fact 20 to see that

w(q) =
qZst(Γ; q,−q)
Zs|t(Γ; q,−q)

= −q
(

Z(G; q,−q)/(q − 1)

Z(Γ; q,−q) + Z(G; q,−q)/(q − 1)

)
= −q

(
Z(G; q,−q)

(q − 1)Z(Γ; q,−q) + Z(G; q,−q)
)

= −q
(

F (G; q)

F (G; q)− (q − 1)F (Γ; q)

)
.

First, suppose 2 < q < 3. Following the reasoning in Lemma 18, we will show
below that, for a suitable G, F (G; q) > 0 and F (Γ; q) < 0. Together, these imply that
the denominator F (G; q) − (q − 1)F (Γ; q) is positive and also that it is larger than
the numerator F (G; q). Thus, w(q) < 0 and w(q) > −q. (It is our goal to implement
a γ′ in the range −q < γ′ < 0 since, for this γ′, q/γ′ + 1 < 0, so the corresponding
x-coordinate is less than 0.)

By continuity, there is a positive ε (which depends upon q and G) such that
if |z − Zst(Γ; q,−q)| ≤ ε and |z′ − Zs|t(Γ; q,−q)| ≤ ε, then −q < qz

z′ < 0. As
in the proof of Lemma 18, we can show that, for a sufficiently small δ ∈ (0, 1),
|Zst(Γ; q,−q − δ) − Zst(Γ; q,−q)| ≤ ε and |Zs|t(Γ; q,−q − δ) − Zs|t(Γ; q,−q)| ≤ ε.
Then we finish by implementing the weight −q− δ from the given (x, y) using a large
stretch so that

(x′′, y′′) = (xk, q/(xk − 1) + 1) = (δ/(q + δ), 1− q − δ).

For 3 < q < 4 the proof will be similar except that we will establish F (G; q) < 0
and F (Γ; q) > 0 so that the denominator of the final expression for w(q) is negative
and is larger in absolute value than the numerator.
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To complete the proof, we must establish that F (G; q) and F (Γ; q) have different
signs. Let G be the Petersen graph. Since G is edge-transitive, the edge (s, t) may be
chosen arbitrarily. It can be verified, e.g., using Maple, that

F (G, q) = q6 − 15q5 + 95q4 − 325q3 + 624q2 − 620q + 240

and

F (Γ, q) = q5 − 12q4 + 58q3 − 138q2 + 157q − 66.

Now we note that F (G; q) has four real zeros at q = 1, 2, 3, 4 and two complex zeros,
and F (G; 2.5) > 0. Also, F (Γ; q) has three real zeros at q = 1, 2, 3 and two complex
zeros, and F (Γ; 2.5) < 0.

Remark 24. The construction used in the proof of Lemma 23 breaks down for
q > 4 because F (G; q) and F (Γ; q) have the same signs. It is conceivable that the
lemma could be proved for noninteger q in the range 4 < q < 6 by using a generalized
Petersen graph rather than a Petersen graph in the construction. Indeed, Jacobsen
and Salas have shown [10] that there are generalized Petersen graphs whose flow
polynomials have roots between 5 and 6. Given the current state of knowledge, we
are pessimistic about the prospects of proving the lemma for all q > 4. Currently, it
is an open question [10] whether there is a uniform upper bound Q for real zeros of
arbitrary bridgeless graphs (so that every bridgeless graph G would have F (G; q) > 0
for all q > Q). If so, then computing the sign of the flow polynomial will be trivial for
q > Q, so computing the sign of the Tutte polynomial will also be trivial for y < −Q+1
along the y-axis. If not, then it seems likely that the hardness construction can be
extended. (Thus, it doesn’t seem to be possible to resolve all of the unresolved points
in region F without solving the open problem about flow polynomials.)

5. The main theorem. This section is devoted to a formal statement of our
results concerning the complexity of SignTutte(q, γ) and Tutte(q, γ). In what fol-
lows, #P-hardness is defined with respect to polynomial-time Turing reductions. NP-
hardness is defined by a many-one reduction from an NP-complete decision problem,
whose instance is a “yes instance” if the corresponding instance of SignTutte(q, γ)
has a positive sign and a “no instance” otherwise. In Figure 1, which is a pictorial rep-
resentation of our theorem, #P-hard points are depicted in red, NP-complete points
are depicted in blue, and FP points are depicted in green. Points depicted in white
are unresolved.

Theorem 1 gives a complete description of what we know about the complexity
of SignTutte(q, γ) and Tutte(q, γ). For consistency with existing work by a va-
riety of authors, we classify the complexity in terms of the (x, y) parameterization.
Throughout, we maintain the connection between the parameterizations (q, γ) and
(x, y) so that always γ = y − 1 and q = (x− 1)(y − 1).

Theorem 1.

The points in the (x, y) plane are classified as follows:
• Region A: Points (x, y) with x ≥ 0 and y ≥ 0. In this region, SignTutte(q, γ) ∈
FP and Tutte(q, γ) ∈ #PQ. When q = 0, we have the stronger Tutte(q, γ) ∈
FP.

• Region B: Points (x, y) with min(x, y) ≤ −1 and max(x, y) < 0. In this
region, SignTutte(q, γ) is #P-hard, except at the point (x, y) = (−1,−1),
where Tutte(q, γ) ∈ FP.

• Region C: Points (x, y) with x < −1 and y > 1. In this region, SignTutte(q, γ)
is #P-hard.
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• Region D: Points (x, y) with x > 1 and y < −1. In this region, SignTutte(q, γ)
is #P-hard.

• Region E: Points (x, y) with x ≤ −1 and 0 < y ≤ 1. Note that these points
have q ≥ 0. When q = 0, we have Tutte(q, γ) ∈ FP. When q �= 0 is
an integer, SignTutte(q, γ) ∈ FP and Tutte(q, γ) ∈ #PQ. When q is a
noninteger, SignTutte(q, γ) is #P-hard, apart from the line segment with
x = −1 and 11/27 ≤ y < 1, which is unresolved.

• Region F: Points (x, y) with 0 < x ≤ 1 and y ≤ −1. Once again, these
points have q ≥ 0. When q = 0, we have Tutte(q, γ) ∈ FP. When q �= 0
is an integer, SignTutte(q, γ) ∈ FP and Tutte(q, γ) ∈ #PQ. When q is
a noninteger satisfying 0 < q < 4, SignTutte(q, γ) is #P-hard, apart from
the line segment with y = −1 and 11/27 ≤ x < 1, which is unresolved. Points
with noninteger q > 4 are also unresolved.

• The boundary between regions B and E: Points (x, y) with x ≤ −1 and
y = 0. Note that q ≥ 2. When q is not an integer, i.e., x is not an integer,
SignTutte(q, γ) is #P-hard. At (x, y) = (−1, 0) we have Tutte(q, γ) ∈
FP, while at the rest of the points (x, 0), where x is a negative integer,
SignTutte(q, γ) is NP-complete and Tutte(q, γ) ∈ #PQ.

• The boundary between regions B and F: Points (x, y) with x = 0 and y ≤ −1.
Note that q ≥ 2. When 2 < q < 4 is not an integer, i.e., −3 < y < −1 is
not an integer, SignTutte(q, γ) is #P-hard. When q > 4 is not an inte-
ger, i.e., y < −3 is not an integer, the complexity of SignTutte(q, γ) and
Tutte(q, γ) is unresolved. At the points (0,−2) and (0,−3), SignTutte(q, γ)
is NP-complete and Tutte(q, γ) ∈ #PQ. The complexity at the point (0,−4)
is unresolved. At the rest of the points (0, y), where y ≤ −5 is a negative
integer, SignTutte(q, γ) ∈ FP and Tutte(q, γ) ∈ #PQ.

• Region G: Points (x, y) with max(|x|, |y|) < 1 and q > 32/27. In this region,
SignTutte(q, γ) is #P-hard.

• Region H: Points (x, y) with max(|x|, |y|) < 1, q ≤ 32/27, and x < −2y − 1.
In this region, SignTutte(q, γ) is #P-hard, apart from points with q = 1,
where Tutte(q, γ) ∈ FP.

• Region I: Points (x, y) with max(|x|, |y|) < 1, q ≤ 32/27, and y < −2x − 1.
In this region, SignTutte(q, γ) is #P-hard, apart from points with q = 1,
where Tutte(q, γ) ∈ FP.

• Region J: Points (x, y) with −1 ≤ x < 0 and y ≥ 1. In this region,
SignTutte(q, γ) ∈ FP and Tutte(q, γ) ∈ #PQ.

• Region K: Points (x, y) with x ≥ 1 and −1 ≤ y < 0. In this region,
SignTutte(q, γ) ∈ FP and Tutte(q, γ) ∈ #PQ.

• Region L: Points (x, y) with 0 < x < 1 and −x < y < 0. In this region,
SignTutte(q, γ) ∈ FP and Tutte(q, γ) ∈ #PQ.

• Region M: Points (x, y) with 0 < y < 1 and −y < x < 0. In this region,
SignTutte(q, γ) ∈ FP and Tutte(q, γ) ∈ #PQ.

• The rest: There are some remaining unresolved points. These points (simul-
taneously) satisfy all of the following inequalities: max(|x|, |y|) < 1, y < −x,
q ≤ 32/27, y ≥ −2x− 1, x ≥ −2y − 1, and q �= 1.

Proof. The proof follows from the following lemmas, which appear in the rest of
the paper.

• Region A: Lemma 37.
• Region B: Corollaries 25–27 and section 7.2.
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• Region C: Corollary 30.
• Region D: Corollary 30.
• Region E: Corollaries 31 and 33, and Observation 39.
• Region F: Corollaries 34 and 36, and Observation 41.
• The boundary between regions B and E: Corollary 32 and Observation 40.
• The boundary between regions B and F: Corollary 35 and Observation 42.
• Region G: Corollary 28.
• Region H: Corollaries 28 and 29, and section 7.7.
• Region I: Corollaries 28 and 29, and section 7.7.
• Region J: Corollary 50.
• Region K: Corollary 48.
• Region L: Corollary 53.
• Region M: Corollary 55.

All #P-hardness results are proved in section 6. Tractability results and NP-
completeness results are proved in section 7, where we also show that Tutte(q, γ) is
in #PQ for these points.

6. #P-hardness. In this section and the next we use the following shorthand.
We say that a point (x, y) is #P-hard, NP-complete, or in FP if, for γ = y − 1
and q = (x − 1)(y − 1), the corresponding problem SignTutte(q, γ) is #P-hard,
NP-complete, or in FP, respectively.

6.1. Points in region B.
Corollary 25. Suppose that (x, y) is a point such that min(x, y) < −1 and

max(x, y) < 0. Then (x, y) is #P-hard.
Proof. Note that q = (x − 1)(y − 1) > 1. The corollary follows from Lemmas 2,

8, 9, 10, and 11.
Corollary 26. Suppose that (x, y) is a point satisfying x = −1 and −1 < y < 0.

Then (x, y) is #P-hard.
Proof. A 3-thickening from (x, y) implements the point

(x′, y′) =
(−1 + y + y2

1 + y + y2
, y3
)
.

Now x′ < −1 and −1 < y′ < 0, so (x′, y′) was already shown to be #P-hard by
Corollary 25.

Similarly, we have the following.
Corollary 27. Suppose that (x, y) is a point satisfying y = −1 and −1 < x < 0.

Then (x, y) is #P-hard.

6.2. Points in regions G, H, and I.
Corollary 28. Suppose that (x, y) is a point satisfying max(|x|, |y|) < 1 and

q = (x − 1)(y − 1) > 1. Suppose that (x, y) also satisfies at least one of the following
conditions:

• q > 32/27, or
• y < −1− 2x, or
• x < −1− 2y.

Then (x, y) is #P-hard.
Proof. The corollary follows from Lemmas 2, 12, 13, 14, and 15.
Corollary 29. Suppose that (x, y) is a point satisfying max(|x|, |y|) < 1 and

q = (x − 1)(y − 1) < 1. Suppose that (x, y) also satisfies at least one of the following
conditions:
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• y < −1− 2x, or
• x < −1− 2y.

Then (x, y) is #P-hard.
Proof. Note that q > 0. The corollary follows from Lemmas 3, 13, and 14. We

implement the point (x1, y1) required by Lemma 3 by taking a 2-thickening of (x, y)
so that y1 = y2 ∈ (0, 1).

6.3. Points in regions C and D.
Corollary 30. Suppose (x, y) is a point satisfying one of the following:
• y > 1 and x < −1, or
• x > 1 and y < −1.

Then (x, y) is #P-hard.
Proof. Note that q < 0. The corollary follows from Lemmas 3 and 16. The point

(x2, y2) required by Lemma 3 is just (x, y) itself.

6.4. Points with noninteger q in region E and on the boundary between
regions B and E. Note that q is an integer when (x, y) = (−1, 0) and when y = 1.
We will discuss these points in section 7.

Corollary 31. Suppose (x, y) is a point satisfying x < −1 and 0 < y < 1.
Suppose that q = (x− 1)(y − 1) > 0 is not an integer. Then (x, y) is #P-hard.

Proof. If 0 < q < 1, then the result follows from Lemmas 3 and 4. If 1 < q < 2,
then the result follows from Lemmas 2, 17, and 4. So suppose q > 2. By Lemma
19, the point (x, y) can be used to implement a point other than the special point
(−1,−1) that is in region B or G. All of these points are known to be #P-hard by
Corollaries 25, 26, 27, and 28.

Corollary 32. Consider a point (x, y) satisfying x < −1 and y = 0. Suppose
that q = (x − 1)(y − 1) is not an integer. Then (x, y) is #P-hard.

Proof. Note that q = (x − 1)(0− 1) = 1− x > 0. Let

(x′, y′) =
(
x3,

x+ x2

1 + x+ x2

)
be the point implemented by a 3-stretch from (x, y). Note that x + x2 > 0 so that
0 < y′ < 1. Also, x′ < −1. Thus, (x′, y′) is #P-hard by Corollary 31.

Corollary 33. Suppose that (x, y) is a point satisfying x = −1 and 0 < y <
11/27. Then (x, y) is #P-hard.

Proof. Note that q = (x− 1)(y− 1) > 32/27. Implement (x′, y′) by a 2-thickening
from (x, y) so that (x′, y′) =

(−1+y
1+y , y

2
)
. Note that −1 < x′ < 0 and 0 < y′ < 1 so

that (x′, y′) is in region G and is #P-hard by Corollary 28.

6.5. Points with noninteger q in region F and on the boundary between
regions B and F. Note that q is an integer when (x, y) = (0,−1) and when x = 1.
We will discuss these points in section 7.

Corollary 34. Suppose (x, y) is a point satisfying 0 < x < 1 and y < −1.
Suppose that q = (x − 1)(y − 1) is not an integer. Suppose 0 < q < 4. Then (x, y) is
#P-hard.

Proof. If 0 < q < 1, then the result follows from Lemmas 3 and 21. If 1 < q < 2,
then the result follows from Lemmas 2 and 22. So suppose 2 < q < 4. By Lemma 23,
(x, y) can be used to implement a point (x′, y′) with x′ < 0. The point (x′, y′) is in
one of the regions E, B, or G. It is not the special point (−1,−1) from region B since
q is not an integer. It is not the unresolved line segment from region E since q > 2.
Thus, (x′, y′) is #P-hard by Corollaries 25, 26, 27, 28, 31, 32, and 33.
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As we explained in Remark 24, it seems possible that Corollary 34 could be
extended, say up to q = 6, by doing more complicated calculations in the proof of
Lemma 23, analyzing the flow polynomial of generalized Petersen graphs, rather than
just the flow polynomial of the Petersen graph. However, our lack of knowledge about
the zeros of the flow polynomial seems to be a barrier to extending the lemma to cover
all q.

Corollary 35. Consider a point (x, y) satisfying x = 0 and y < −1. Suppose
that q = (x − 1)(y − 1) is not an integer and that q < 4. Then (x, y) is #P-hard.

Proof. Note that 2 < q < 4. Let

(x′, y′) =
(

y + y2

1 + y + y2
, y3
)

be the point implemented by a 3-thickening from (x, y). Note that y+ y2 > 0 so that
0 < x′ < 1. Also, y′ < −1. Thus, (x′, y′) is #P-hard by Corollary 34.

Corollary 36. Suppose that (x, y) is a point satisfying 0 < x < 11/27 and
y = −1. Then (x, y) is #P-hard.

Proof. Note that q = (x − 1)(y − 1) > 32/27. Implement (x′, y′) by a 2-stretch
from (x, y) so that (x′, y′) =

(
x2, −1+x

1+x

)
. Note that 0 < x′ < 1 and −1 < y′ < 0 so

that (x′, y′) is in region G and is #P-hard by Corollary 28.

7. Tractability results and NP-completeness results. As we mentioned
earlier, we say that a point (x, y) is in FP if SignTutte(q, γ) can be solved in
polynomial time, where q = (x−1)(y−1) and γ = y−1. These points are depicted in
green in Figure 1. For each point in FP, and also for the points that are NP-complete
(depicted in blue), we show that Tutte(q, γ) is in #PQ. Thus, Tutte(q, γ) can be
efficiently approximated using an NP oracle.

7.1. Points in region A. The following lemma is implicit in the work of Tutte
[18, 19]. The connection is explained explicitly in [3, section 2.3].

Lemma 37. Suppose (x, y) is a point satisfying min(x, y) ≥ 0. Let q = (x−1)(y−
1) and γ = y− 1. Then for every graph G, Z(G; q, γ) > 0 so that SignTutte(q, γ) is
in FP. Furthermore, Tutte(q, γ) is in #PQ. In the case q = 0, we have Z(G; q, γ) =
0 and Tutte(q, γ) is trivially in FP.

7.2. Points in region B. It is known [11] that Tutte(4,−2) is in FP (so it is
certainly in #PQ). Thus, the point (x, y) = (−1,−1) is in FP.

7.3. Points with integer q in region E. The points in region E have x ≤ −1
and 0 < y ≤ 1. Thus, they have q = (x− 1)(y − 1) ≥ 0 and γ = y − 1.

First, if y = 1, then q = 0. We will handle this easy case below. So, suppose
y < 1 so that −1 < γ < 0. Note that q > 0 so that since we restrict attention to
integer q, q ≥ 1. Consider the Potts-model partition function for G (see [16, equation
(2.7)]),

ZPotts(G; q, γ) =
∑

σ:V→[q]

∏
e=(u,v)∈E

(1 + γδ(σ(u), σ(v))) ,

where δ is the Kronecker delta function defined by δ(a, b) = 1 if a = b and δ(a, b) = 0
otherwise. The following well-known fact is due to Fortuin and Kasteleyn (see [16,
Theorem 2.3]).

Fact 38. If q ≥ 1 is an integer, then ZPotts(G; q, γ) = Z(G; q, γ).
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The following observation now follows from Fact 38.
Observation 39. Let (x, y) be a point with x ≤ −1 and 0 < y ≤ 1. Let

q = (x− 1)(y − 1) and γ = y − 1. Suppose that q is an integer.
• If y = 1, then Z(G; q, γ) = 0 so that SignTutte(q, γ) and Tutte(q, γ) are
both in FP.5

• Otherwise, Z(G; q, γ) > 0 so that SignTutte(q, γ) is in FP. Also, Tutte(q, γ)
is in #PQ.

Note that Observation 39 disproves [9, Conjecture 10.3(e)]. Jackson and Sokal
conjectured that for every fixed x ≤ −1 and 0 < y < 1 satisfying q = (x− 1)(y− 1) >
32/27, for all sufficiently large n and m, there are 2-connected graphs with n vertices
and m edges that make Z(G; q, y−1) nonzero with either sign, but this is clearly false
when q is an integer.

7.4. Points with integer q on the boundary between regions B and E.
These points have x ≤ −1 and y = 0. Since q = (x − 1)(y − 1) = 1− x is an integer,
we conclude that x is an integer. From Fact 38, Z(G; q,−1) is the number of proper
q-colorings of G.

Observation 40. The point (−1, 0) is in FP since Z(G; 2,−1) is equal to the
number of 2-colorings of G, and this can be computed in polynomial time. For integer
x < −1, the point (x, 0) is NP-complete. Z(G; 1− x,−1) is positive if G has a proper
(1− x)-coloring and is 0 otherwise. Tutte(1− x,−1) is in #P, so it is in #PQ.

7.5. Points with integer q in region F. The points in region F have 0 < x ≤ 1
and y ≤ −1. They have q = (x − 1)(y − 1) ≥ 0 and γ = y − 1.

First, if x = 1, then q = 0. We will handle this easy case below. So, let us restrict
our attention to the range 0 ≤ x < 1. This corresponds to γ ≤ −2 and q/γ ∈ (−1, 0).
Recall the definition of the flow polynomial from section 4.5. Using Fact 20 we obtain
the following observation.

Observation 41. Let (x, y) be a point with 0 < x ≤ 1 and y ≤ −1. Let
q = (x− 1)(y − 1) and γ = y − 1. Suppose that q is an integer.

• If x = 1, then Z(G; q, γ) = 0 so that SignTutte(q, γ) and Tutte(q, γ) are
both in FP.

• Otherwise, q−|V |
(
q
γ

)|E|
Z(G; q, γ) > 0 so that SignTutte(q, γ) is in FP.

Also, Tutte(q, γ) is in #PQ.
Like Observation 39, Observation 41 provides counterexamples to [9, Conjecture

10.3(3)]. They conjectured that for every fixed 0 < x ≤ 1 and y ≤ −1 satisfying
q = (x−1)(y−1) > 32/27, for all sufficiently large n and m (including even m), there
are 2-connected graphs with n vertices and m edges that make Z(G; q, y− 1) nonzero
with either sign, but this is clearly false when q is an integer.

7.6. Points with integer q on the boundary between regions B and F.
These points have x = 0 and y ≤ −1. Since q = (x− 1)(y − 1) = 1 − y is an integer,
we conclude that y is an integer.

Recall from section 4.5 that if q is a positive integer, then q−|V |(−1)
|E|
Z(G; q,−q)

is the number of nowhere-zero q-flows of G. A graph has a nowhere-zero 2-flow iff
it is Eulerian [1, Theorem 11.21]. Thus, this can be tested in polynomial time. On
the other hand, it is NP-complete to test whether a graph has a nowhere-zero 3-flow,

5The case y = 1 is trivial for us because we are using the (q, γ) parameterization, where a single
point (q, γ) = (0, 0) corresponds to the line (x, 1) in the (x, y) parameterization. This issue is touched
on in the introduction.
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even if the graph is planar. To see this, note that a planar graph has a nowhere-zero
3-flow iff its dual has a proper 3-coloring, and it is NP-complete to determine whether
a planar graph is 3-colorable. It is also NP-complete to test whether a graph has a
nowhere-zero 4-flow, even if the graph is cubic. To see this, consider a cubic graph G
and let H be the Abelian group Z2 × Z2. A 4-flow maps the edges of G to (0, 1),
(1, 0), and (1, 1). To be nowhere-zero, it maps one of each to the edges adjacent
to each vertex. So the number of nowhere-zero 4-flows is the same as the number
of proper 3-edge-colorings of G. But it is NP-complete to decide whether a graph
has such an edge coloring [7]. A “bridge” (or cut-edge) of a graph is an edge whose
deletion increases the number of connected components. It is known [1, Corollary
11.26] that no graph with a bridge has a nowhere-zero q-flow for any integer q ≥ 2.
However, Seymour has shown [1, Theorem 11.32] that every bridgeless graph has a
nowhere-zero 6-flow. Thus, determining whether a graph has a nowhere-zero q-flow is
in FP for q ≥ 6. We do not know the complexity of determining whether a graph has
a nowhere-zero 5-flow. Indeed, it is currently an open question whether there exists
a bridgeless graph without a nowhere-zero 5-flow.

Observation 42. The point (0,−1) is in FP since Z(G; 2,−2) is computable
from the number of nowhere-zero 2-flows of G, and this can be computed in polynomial
time. The point (0,−2) is NP-complete since Z(G; 3,−3) allows one to determine
the number of nowhere-zero 3-flows of G. The point (0,−3) is NP-complete since
Z(G; 4,−4) allows one to determine the number of nowhere-zero 4-flows of G. For
integer y ≤ −5, the point (0, y) is in FP since Z(G; 1 − y, y − 1) is computable from
the number of nowhere-zero (1− y)-flows of G. This quantity is positive iff G has no
bridge. Tutte(1− x,−1) is in #P, so it is in #PQ.

7.7. Points in regions H and I. It is known [11] that points (x, y) with
(x − 1)(y − 1) = 1 are in FP since Tutte(1, γ) is in FP so that SignTutte(1, γ) is
also in FP.

7.8. Matroids. The definitions from section 2 can be generalized from graphs
to matroids. To deal with regions J and K (and also with regions L and M in future
sections), it is advantageous to work with matroids, rather than with graphs, because
we can then exploit a duality between the variables x and y. In order to avoid
difficulties over how matroids should be presented, we will work with the class of
binary matroids. This is a more general class than the class of graphs—every graph
corresponds to a binary matroid, but there are binary matroids that do not correspond
to graphical matroids.

A matroid M is a combinatorial structure defined by a set E (the “ground set”)
together with a “rank function” rM : 2E → N which must satisfy the following
conditions (see [14] for details):

1. 0 ≤ rM(A) ≤ |A|,
2. A ⊆ B implies rM(A) ≤ rM(B) (monotonicity), and
3. rM(A ∪B) + rM(A ∩B) ≤ rM(A) + rM(B) (submodularity).

A subset A ⊆ E satisfying rM(A) = |A| is said to be independent. Every other
subset A ⊆ E is said to be dependent. A maximal (with respect to inclusion) inde-
pendent set is a basis, and a minimal dependent set is a circuit. A circuit with one
element is a loop.

The multivariate Tutte polynomial of a matroid M with ground set E and rank
function rM is defined as follows (see [16, equation (1.3)]), where the weight function
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γ assigns weights to elements of the ground set:

(19) Z̃(M; q,γ) =
∑
A⊆E

q−rM(A)
∏
e∈A

γe.

If γ assigns weight γ to every element of E, then we use Z̃(M; q, γ) as shorthand for

Z̃(M; q,γ).
Let M be a matrix over a field F with row set V and column set E. M is said to

“represent” a matroid M with ground set E. The rank rM(A) of a set of columns A
in this matroid is defined to be the rank of the submatrix consisting of those columns.
A matroid is said to be representable over the field F if it can be represented in this
way. It is said to be binary if it is representable over the two-element field F2.

The cycle matroid of an undirected graph G = (V,E) is the binary matroid
M(G) represented by the vertex-edge incidence matrix M of G (in which rows are
vertices and columns are edges). It can be deduced from the definition above that
rM(G)(A) = |V | − κ(V,A). The Tutte polynomial of a cycle matroid M(G) is very
closely connected to the Tutte polynomial of the underlying graph G . In particular,
(see [16, equations (1.2) and (1.3)]),

(20) Z(G; q,γ) = q|V | Z̃(M(G); q,γ).

Every matroidM has a dual matroidM∗ with the same ground set. Furthermore,
M∗ is binary iffM is (see [14]), and a binary matrix representingM∗ can be efficiently
computed from a representation of M [17, p. 63]. A cocircuit in M is a set that is
a circuit in M∗; equivalently, a cocircuit is a minimal set that intersects every basis.
A cocircuit with one element is a coloop. We use the following fact [16, equation
(4.14a)].

Fact 43. Suppose that M is a matroid with ground set E and that γ is a weight
function assigning weights to elements in E. Let M∗ be the dual of M, and let γ∗ be
the weight function that assigns weight q/γe to every ground set element e ∈ E. Then

Z̃(M∗; q,γ) = q−rM∗ (E)

(∏
e∈E

γe

)
Z̃(M; q,γ∗).

Two important matroid operations are deletion and contraction. Suppose e ∈ E
is a member of the ground set of matroid M. The contraction M/e of e from M is
the matroid on ground set E − {e} with rank function given by rM/e(A) = rM(A ∪
{e}) − rM({e}) for all A ⊆ E − {e}. The deletion M\e of {e} from M is the
matroid on ground set E −{e} with rank function given by rM\e(A) = rM(A) for all
A ⊆ E−{e}. Given a matrix representing a matroid M, there are efficient algorithms
for constructing matrices representing contractions and deletions of M [17, Chapter
3]. We use the following fact (see, for example, [16, equation (4.18b)]).

Fact 44. If M is a matroid with a loop e, then

Z̃(M; q,γ) = (1 + γe)Z̃(M\ e; q,γ).
We also use a related fact about coloops (see, for example, [13, equation (2.6)]).
Fact 45. If M is a matroid with a coloop e, then

Z̃(M; q,γ) = (1 + γe/q)Z̃(M/e; q,γ).

We introduce two computational problems for binary matroids.



1948 LESLIE ANN GOLDBERG AND MARK JERRUM

Name MatroidSignTutte(q, γ).
Instance A matrix representing a binary matroid M and an edge-weight γ.
Output Determine whether the sign of Z̃(M; q, γ) is positive, negative, or 0.
Name MatroidTutte(q, γ).
Instance A matrix representing a binary matroid M and an edge-weight γ.
Output Z̃(M; q, γ).

7.9. Points in regions J and K. The points in regions J and K satisfy −1 ≤
min(x, y) < 0 and max(x, y) ≥ 1. Let q = (x − 1)(y − 1) and γ = y − 1. Note that
q ≤ 0. It is known (see [9, Theorem 4.1] that in these regions, the sign of Z(G; q, γ) is
essentially a trivial function of G, apart from some factors arising from loops in the
matroid associated with G and in its dual matroid. We will show that, for all of these
points, Tutte(q, γ) is in #PQ. In fact, we will show that MatroidTutte(q, γ) is
in #PQ. Working with matroids, instead of with graphs, will enable us to prove the
results for one region (region K) and immediately to deduce the same results for the
other region (region J), by duality of the variables x and y. (The replacement of γe
with q/γe in Fact 43 is equivalent to swapping x and y.)

7.9.1. Points in region K. Points in region K have x ≥ 1 and −1 ≤ y < 0.
Let q = (x − 1)(y − 1) and γ = y − 1.

First, if x = 1, then q = 0. We will handle this easy case below. So, let us restrict
our attention to the range x > 1. Then q < 0 and −2 ≤ γ < −1. We will use the
following lemma, which is similar in spirit to [9, Theorem 4.1].6

Lemma 46. Suppose that q < 0 and M is a loopless matroid. Suppose that γ is a
weight function in which every weight γe satisfies −2 ≤ γe ≤ 0. Then Z̃(M; q,γ) > 0

and the problem of computing Z̃(M; q,γ) is in #PQ.

Proof. We start with some preprocessing. Before trying to compute Z̃(M; q,γ),
we first modify M, without changing its Tutte polynomial, to get rid of any size-2
circuits. We do this by parallel composition. So if we have a size-2 circuit containing
elements e1 and e2, we replace it with a new element e which is the parallel composition
of the two elements in the circuit. In the matrix representing M, the size-2 circuit
arises as a pair of identical columns. In the representation of the new matroid, the
columns corresponding to elements e1 and e2 are deleted and the new element e
corresponds to one of these columns. The new weight γe is given by γe1 +γe2 +γe1γe2
(see [9, equation (2.34)]). The reason that we want to do this preprocessing is that, in
the recursive step, we will want to be able to contract an element of a circuit without
creating a loop. The reason that we can do the preprocessing without falsifying the
conditions in the statement of the lemma is that the region −2 ≤ γ ≤ 0 maintains
itself for parallel composition: If −2 ≤ γe1 ≤ 0 and −2 ≤ γe2 ≤ 0, then −2 ≤ γe ≤ 0.

Now suppose that M has no size-2 circuit. Let r = rM and E = E(M). Then

Z̃(M; q,γ) =
∑
A⊆E

q−r(A)
∏
e∈A

γe.

Base case. If r(E) = |E|, then, from the axioms of rank functions of matroids,
for every S ⊆ E, r(S) = |S|, so

Z̃(M; q,γ) =
∑
A⊆E

q−|A| ∏
e∈A

γe =
∑
A⊆E

∏
e∈A

γe
q
.

6We need to repeat the steps of their proof here because we want to extract computational
information in addition to the sign.
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The contribution from A = ∅ is 1, and the contribution from each other A is nonneg-
ative. Also, Z̃(M; q,γ) can be computed by summing over the sets A.

Recursive step. Pick any e in a circuit. Then from [16, equation (4.18a)],

Z̃(M; q,γ) = Z̃(M\ e; q,γ) + γe
q
Z̃(M/e; q,γ).

Now the point is that the fraction γe/q doesn’t change the sign, and it is easy
to compute. Also, the two minors M\ e and M/e both satisfy the conditions of the
theorem.

Both minors are matroids on ground set E \ e. The rank functions are given by
rM\e(A) = r(A) and rM/e(A) = r(A ∪ e)− 1.

To see that M/e has no loop, note that rM/e({e′}) = r({e, e′}) − 1 and, since
{e, e′} is not a circuit, by the preprocessing step, r({e, e′}) = 2.

We can now classify the points in region K. See also [9, Theorem 4.1], which shows
that the sign is trivial in this region.

Lemma 47. Let (x, y) be a point with x ≥ 1 and −1 ≤ y < 0. Let q = (x−1)(y−1)
and γ = y− 1. Then MatroidSignTutte(q, γ) is in FP and MatroidTutte(q, γ)
is in #PQ.

Proof. If M has k loops, then, by Fact 44, Z̃(M; q, γ) = (1 + γ)
k
Z̃(M′; q, γ),

where M′ is the matrix formed from M by deleting these loops. If q = 0, then
Z̃(M′; q, γ) = 1. Otherwise, q < 0. Now Lemma 46 shows that Z̃(M′; q, γ) > 0 and
can be computed in #PQ.

The following corollary follows immediately using (20).
Corollary 48. Let (x, y) be a point with x ≥ 1 and −1 ≤ y < 0. Let q =

(x− 1)(y− 1) and γ = y− 1. Then SignTutte(q, γ) is in FP and Tutte(q, γ) is in
#PQ.

7.9.2. Points in region J. The following lemma classifies points in region J.
See also [9, Theorem 4.4].

Lemma 49. Let (x, y) be a point with −1 ≤ x ≤ 0 and y ≥ 1. Let q = (x−1)(y−1)
and γ = y− 1. Then MatroidSignTutte(q, γ) is in FP and MatroidTutte(q, γ)
is in #PQ.

Proof. This follows from Fact 43 and from Lemma 47.
The following corollary follows immediately using (20).
Corollary 50. Let (x, y) be a point with −1 ≤ x ≤ 0 and y ≥ 1. Let q =

(x− 1)(y− 1) and γ = y− 1. Then SignTutte(q, γ) is in FP and Tutte(q, γ) is in
#PQ.

7.10. Points in regions L and M. We use the following lemma. The statement
is a slight generalization of [9, Theorem 5.4]. However, their proof (a straightforward
generalization of their proof of [9, Theorem 5.1]) suffices.

Lemma 51 (Jackson and Sokal). Let M be a matroid with ground set E, and let
q ∈ (0, 1). Suppose that γ is a weight function such that the following hold:

1. γe > −1 for every loop e;
2. γe < −q for every coloop e; and
3. −1 − √

1− q < γe < −1 +
√
1− q for every normal (i.e., nonloop and non-

coloop) element e.
Then

(21) (−1)
rM(E)

Z̃(M; q,γ) > 0
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and the problem of computing Z̃(M; q,γ), given such a matroid M, is in #PQ.

Proof. We follow the inductive argument that Jackson and Sokal use to prove
(21) for the graphical case. This is the proof of [9, Theorem 5.1]. The induction is
on m, the number of elements in the ground set of M. If m = 0, then rM(E) = 0 so

that Z̃(M; q,γ) = 1, so the lemma is true. For m > 0, there are five cases. We apply
these in order, so in each case we assume that the previous cases don’t apply.

1. If M has a loop e, then by Fact 44,

Z̃(M; q,γ) = (1 + γe)Z̃(M\ e; q,γ).

Note that 1+γe > 0 and rM\e(E \e) = rM(E \e) = rM(E). Thus, the result
follows by induction.

2. If M has a coloop e, then by Fact 45,

Z̃(M; q,γ) = (1 + γe/q)Z̃(M/e; q,γ).

Note that 1 + γe/q < 0 and rM/e(E \ e) = rM(E) − rM(e) = rM(E) − 1.
Thus, the result follows by induction.

3. Suppose that M has a size-2 circuit consisting of edges e1 and e2. Let M′

be the matroid formed from M by deleting e2, and let γ′ be the weight
function that is the same as γ except that γ′e1 is the effective weight from
the parallel composition of e1 and e2—γ′e1 = γe1 + γe2 + γe1γe2 . Then, as in

the proof of Lemma 46 (see [9, equation (2.34)]), Z̃(M; q,γ) = Z̃(M′; q,γ′).
Also, rM′(E \ e2) = rM(E \ e2) = rM(E). Finally, Jackson and Sokal show

that M′ and γ′ satisfy the conditions of the lemma (so Z̃(M; q,γ) can be
computed by induction).

4. Suppose that M has a size-2 cocircuit consisting of edges e1 and e2. Let M′

be the matroid formed from M by contracting e2, and let γ′ be the weight
function that is the same as γ except that γ′e1 is the effective weight from the
series composition of e1 and e2—γ′e1 = γe1γe2/(q + γe1 + γe2). Then from [9,

equation (2.40)] Z̃(M; q,γ) =
( q+γe1+γe2

q

)
Z̃(M′; q,γ′). Also, Jackson and

Sokal show that (
q + γe1 + γe2

q

)
< 0.

This is what we require since rM′(E \ e2) = rM(E) − rM(e2) = rM(E) − 1.
Finally, Jackson and Sokal show that M′ and γ′ satisfy the conditions of the
lemma (so Z̃(M; q,γ) can be computed by induction).

5. Otherwise, pick any ground set element e and apply the deletion-contraction
identity [9, equation (2.29a)]

Z̃(M; q,γ) = Z̃(M\ e; q,γ) + γe
q
Z̃(M/e; q,γ).

Since e is not a cocircuit, rM\e(E \ e) = rM(E). As Jackson and Sokal
argue, M\ e and γ satisfy the conditions of the lemma. Also, γe/q < 0 and
rM/e(M \ e) = rM(E)− 1. Again, Jackson and Sokal argue that M/e and γ
satisfy the conditions of the lemma, so the result follows by induction.



COMPUTING THE SIGN OF THE TUTTE POLYNOMIAL 1951

7.11. Points in region L.

Lemma 52. Let (x, y) be a point with 0 < x < 1 and −x < y < 0. Let
q = (x − 1)(y − 1) and γ = y − 1. Then MatroidSignTutte(q, γ) is in FP and
MatroidTutte(q, γ) is in #PQ.

Proof. Note that q = (1 − x)(1 − y) < (1 − x)(1 + x) = 1 − x2 < 1. Also,
q > (1− x) > 0. Thus, q ∈ (0, 1).

Now since y > −x, we have y(y− 1) < (−x)(y− 1) so that y2− y < x−xy, which
implies that y2 < x + y − xy = 1 − q. This implies that y < |y| < √

1− q so that
y > −√

1− q. Thus, −1−√
1− q < γ < −1 +

√
1− q.

Finally, since 0 < x(1 − y), we have y < y + x(1 − y) = 1− q so that γ < −q.
Now let M be a matroid and let γ be a weight function assigning weight γ to

every element the ground set of M. If M has k loops, then by Fact 44, Z̃(M; q,γ) =

(1 + γ)
k
Z̃(M′; q,γ), where M′ is the matroid formed fromM by deleting these loops.

Note that M′ and γ satisfy the hypotheses of Lemma 51.

The following corollary follows immediately using (20).

Corollary 53. Let (x, y) be a point with 0 < x < 1 and −x < y < 0. Let
q = (x− 1)(y − 1) and γ = y − 1. Then SignTutte(q, γ) is in FP and Tutte(q, γ)
is in #PQ.

7.12. Points in region M.

Lemma 54. Let (x, y) be a point with 0 < y < 1 and −y < x < 0. Let
q = (x − 1)(y − 1) and γ = y − 1. Then MatroidSignTutte(q, γ) is in FP and
MatroidTutte(q, γ) is in #PQ.

Proof. This follows from Fact 43 and Lemma 52.

The following corollary follows immediately using (20).

Corollary 55. Let (x, y) be a point with 0 < y < 1 and −y < x < 0. Let
q = (x− 1)(y − 1) and γ = y − 1. Then SignTutte(q, γ) is in FP and Tutte(q, γ)
is in #PQ.

8. Putting things together for points with |y| < 1. Collecting Obser-
vations 40 and 39 and Corollaries 25, 26, 28, 31, 32, and 33, we get the following
corollary.

Corollary 56. Suppose (x, y) is a point satisfying |y| < 1 such that q = (x −
1)(y − 1) ≥ 32/27. Let γ = y − 1.

• If (x, y) = (−1, 0), then SignTutte(q, γ) and Tutte(q, γ) are in FP.
• If (x, y) = (x, 0) for any integer x < −1, then SignTutte(q, γ) is NP-
complete. Tutte(q, γ) is in #PQ.

• If x ≤ −1 and 0 < y < 1 and q is an integer, then Z(G; q, γ) > 0 so that
SignTutte(q, γ) is in FP. Also, Tutte(q, γ) is in #PQ.

• Otherwise, SignTutte(q, γ) is #P-hard.

Acknowledgment. The authors are grateful to Bill Jackson for pointing out
that computing the sign is NP-hard at the point (0,−3).
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