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APPROXIMATING THE PERMANENT*

MARK JERRUM{ AND ALISTAIR SINCLAIRT

Abstract. A randomised approximation scheme for the permanent of a 0-1 matrix is presented. The
task of estimating a permanent is reduced to that of almost uniformly generating perfect matchings in a
graph; the latter is accomplished by simulating a Markov chain whose states are the matchings in the graph.
For a wide class of 0-1 matrices the approximation scheme is fully-polynomial, i.e., runs in time polynomial
in the size of the matrix and a parameter that controls the accuracy of the output. This class includes all
dense matrices (those that contain sufficiently many 1’s) and almost all sparse matrices in some reasonable
probabilistic model for 0-1 matrices of given density.

For the approach sketched above to be computationally efficient, the Markov chain must be rapidly
mixing: informally, it must converge in a short time to its stationary distribution. A major portion of the
paper is devoted to demonstrating that the matchings chain is rapidly mixing, apparently the first such result
for a Markov chain with genuinely complex structure. The techniques used seem to have general applicability,
and are applied again in the paper to validate a fully-polynomial randomised approximation scheme for
the partition function of an arbitrary monomer-dimer system.
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1. Summary. The permanent of an n X n matrix A with 0-1 entries a;; is defined by

n—1
per (A)=% 'Ho Qi (i)»

where the sum is over all permutations o of [n]={0, - - - , n—1}. Evaluating per (A)
is equivalent to counting perfect matchings (1-factors) in the bipartite graph G =
(U, V, E),where U=V =[n]and (i, j) € E if and only if a;; = 1. The permanent function
arises naturally in a number of fields, including algebra, combinatorial enumeration,
and the physical sciences, and has been an object of study by mathematicians since
first appearing in 1812 in the work of Cauchy and Binet (see [26] for background).
Despite considerable effort, and in contrast with the syntactically very similar deter-
minant, no efficient procedure for computing this function is known.

Convincing evidence for the inherent intractability of the permanent was provided
in the late 1970s by Valiant [32], who demonstrated that it is complete for the class
4P of enumeration problems, and thus as hard as counting any NP structures. Interest
has therefore recently turned to finding computationally feasible approximation
algorithms for this and other hard enumeration problems [18], [30]. To date, the best
approximation algorithm known for the permanent is due to Karmarkar et al. [17]
and has a runtime that grows exponentially with the input size.

The notion of approximation we will use in this paper is as follows. Let f be a
function from input strings to natural numbers. A fully-polynomial randomised approxi-
mation scheme (fpras) for f is a probabilistic algorithm that, when presented with a
string x and a real number & > 0, runs in time polynomial in |x| and 1/¢ and outputs
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a number that with high probability approximates f(x) within ratio 1+ ¢.' For definite-
ness we take the phrase “with high probability” to mean with probability at least 3.
This may be boosted to 1 — 8 for any desired 8 >0 by running the algorithm O(lg ")
times and taking the median of the results [16, Lemma 6.1]. An fpras therefore embodies
a strong notion of effective approximation.

A promising approach to finding an fpras for the permanent was recently proposed
by Broder [8], who reduces the problem of approximately counting perfect matchings
in a graph to that of generating them randomly from an almost uniform distribution.
The latter problem is then amenable to the following dynamic stochastic technique.
Given a graph G, construct a Markov chain whose states correspond to perfect and
“near-perfect” matchings in G and which converges to a stationary distribution that
is uniform over the states. Transitions in the chain correspond to simple local perturba-
tions of the structures. Then, provided convergence is fast enough, we can generate
matchings almost uniformly by simulating the chain for a small number of steps and
outputting the structure corresponding to the final state.

When applying this technique, we are faced with the thorny problem of proving
that a given Markov chain is rapidly mixing, i.e., that after a short period of evolution
the distribution of the final state is essentially independent of the initial state. “Short”
here means bounded by a polynomial in the input size. Since the state space itself may
be exponentially large, rapid mixing is a strong property: the chain must typically be
close to stationarity after visiting only a very small fraction of the space.

Recent work on the rate of convergence of Markov chains has focused on stochastic
concepts such as coupling [1] and stopping times [3]. While these methods are
intuitively appealing and yield tight bounds for simple chains, the analysis involved
becomes extremely complicated for more interesting processes that lack a high degree
of symmetry. Using a complex coupling argument, Broder [8] claimed that the perfect
matchings chain above is rapidly mixing provided the bipartite graph is dense, i.e., has
minimum vertex degree at least n/2. This immediately implies the existence of an fpras
for the dense permanent. However, the coupling proof is hard to penetrate; more
seriously, as was first observed by Mihail [25], it contains a fundamental error that is
apparently not correctable. As a result Broder has withdrawn his proof (see the erratum
to [8]).

In this paper we propose a completely different approach to analysing the rate
of convergence of Markov chains that is based on a structural property of the underlying
weighted graph. Under fairly general conditions, a finite ergodic Markov chain is
rapidly mixing if and only if the conductance of its underlying graph is not too small.
This characterisation, discussed in detail in a companion paper [29], is related to recent
work by Alon [4] and Alon and Milman [5] on eigenvalues and expander graphs.

While similar characterisations of rapid mixing have been noted by other authors
(see, e.g., [2], [22]), they have been of little practical value because independent
estimates of the conductance have proved elusive for nontrivial chains. Using a novel
method of analysis, we are able to derive a lower bound on the conductance of Broder’s
perfect matchings chain under the same density assumption, thus verifying that it is
indeed rapidly mixing. This is the first rapid mixing result we know of for a Markov
chain with nontrivial structure. The existence of an fpras for the dense permanent is
therefore established.

Reductions from approximate counting to almost uniform generation similar to
that mentioned above for perfect matchings also hold for the large class of combinatorial

' For nonnegative real numbers q, d, &, we say that d approximates a within ratio 1+ ¢ if a(1+¢) '=d=
a(l+e).
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structures that are self-reducible [16], [29]. Consequently, the Markov chain approach
is potentially a powerful general method for obtaining approximation algorithms for
hard combinatorial enumeration problems.

In fact, Markov chain simulation is a rather useful algorithmic tool with a variety
of computational applications. Perhaps the most familiar of these are to be found in
the field of statistical physics, where a physical system is typically modelled by a set
of combinatorial structures, or configurations, each of which has an associated weight
depending on its energy. Most interesting properties of the model can be computed
from the partition function, which is just the sum of the weights of the configurations.
An fpras for this function may usually be obtained with the aid of a generator that
selects configurations with probabilities roughly proportional to their weights. This
suggests looking for a Markov chain on configurations with the appropriate (nonuni-
form) stationary distribution. Such chains are in fact the basis of the ubiquitous Monte
Carlo method of Metropolis et al. [6] that is extensively used among other things to
estimate the expectation of certain operators on configurations under the weighted
distribution.

In such applications efficiency again depends crucially on the rate of convergence
of the Markov chain. Significantly, our proof technique for rapid mixing seems to
generalise easily to other interesting chains. We substantiate this claim here by consider-
ing a Metropolis-style process for monomer-dimer systems [14], which are a model of
physical systems involving diatomic molecules. In this case configurations correspond
to matchings (independent sets of edges of any size) in a given weighted graph, and
the weight of a configuration is the product of its edge weights. Using our earlier
method of analysis, we are able to show that this Markov chain is rapidly mixing under
very general conditions. As a result we deduce the existence of an fpras for the
monomer-dimer partition function. This includes as a special case an fpras for the
4 P-complete problem of counting all matchings in an arbitrary graph.

The monomer-dimer chain also provides valuable new insight into our original
problem of approximating the permanent. Most notably, by appending suitably chosen
weights to the edges of the input graph we can use the chain to obtain a more elegant
approximation scheme for counting perfect matchings. The scheme is immediately
seen to be fully-polynomial if and only if the number of “near-perfect” matchings in
the graph does not exceed the number of perfect matchings by more than a polynomial
factor. This turns out to be rather a weak condition: it is satisfied not only by all dense
graphs but also, in a sense that we will make precise later, by almost every bipartite
graph that contains a perfect matching. Moreover, we present an efficient randomised
algorithm for testing the condition for an arbitrary graph, allowing pathological
examples to be recognised reliably.

A further byproduct of our work on the monomer-dimer process is the following.
Consider the problem of finding a maximum cardinality matching in a given graph.
The Markov chain above may be viewed as an application of the search heuristic
known as simulated annealing [21] to this optimisation problem. Suppose the maximum
cardinality of a matching is m and let ¢ >0 be fixed. Then our results readily imply
that, with a suitable choice of edge weights (or equivalently, “temperature”), the search
finds a matching of size at least (1—¢)m in polynomial time with high probability.
This represents a considerable simplification of a recent result of Sasaki and Hajek [27].

The remainder of the paper is structured as follows. In § 2 we state our characterisa-
tion of rapid mixing in terms of conductance for a broad class of Markov chains, and
illustrate by means of a simple example our technique for obtaining lower bounds on
the conductance. Section 3 is devoted to a proof that Broder’s method does indeed
yield an fpras for the dense permanent. In § 4 we discuss the Markov chain for
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monomer-dimer systems and derive an fpras for the partition function. Other applica-
tions of this chain, including the improved algorithm for the permanent, appear in § 5.
Section 6 deals with the approximation of the permanent of a randomly selected 0-1
matrix of given density. Finally, in § 7 we list a few open problems.

2. Markov chains and rapid mixing. In this section we establish some general
machinery for reasoning about the nonasymptotic behavior of Markov chains which
will play a central role throughout the paper. We assume a nodding acquaintance with
the elementary theory of finite Markov chains in discrete time. (For more information
the reader is referred to [20].)

Let (X,);Z, be a time-homogeneous Markov chain with finite state space N and
transition matrix P =(p;;);jcx. (All chains in this paper are assumed to be of this
form.) If the chain is ergodic we let = (), denote its stationary distribution, the
unique vector satisfying wP = and ), m; = 1. In this case, if the chain is allowed to
evolve for ¢t steps from any initial state the distribution of its final state approaches =
as t->o00. Necessary and sufficient conditions for ergodicity are that the chain is (a)
irreducible, i.e., any state can be reached from any other in some number of steps; and
(b) aperiodic, i.e., ged {s:i is reachable from j in s steps} =1 for all i, je V.

As explained in the previous section, our intention is to use simulation of an
ergodic chain as a means of sampling elements of the state space A from a distribution
close to w. We shall always assume that individual transitions can be simulated at low
cost. From the point of view of efficiency, our major concern is therefore the rate at
which the chain approaches stationarity. As a time-dependent measure of deviation
from the limit, we define the relative pointwise distance (r.p.d.) after ¢ steps by

0
A(t) =max lpi = m ,
ijeN 7Tj

where pi is the t-step transition probability from state i to state j. Thus A(t) gives
the largest relative difference between the distribution of the state at time ¢ and 4,
maximised over initial states i. Our aim is to establish conditions under which the
chain is rapidly mixing, in the sense that A(¢) tends to zero fast as a function of .

An ergodic Markov chain is said to be time-reversible if it satisfies the detailed
balance condition

(1) pymi=pim Vi jeN.

Analysis of time-reversible Markov chains is simplified by the following observation.

LeEMMA 2.1. Suppose (X,) is an ergodic Markov chain with finite state space N and
transition matrix P. Let w= (m;);. » be any vector satisfying the detailed balance condition
(1) and the normalisation condition Y, ;= 1. Then the Markov chain (X,) is time-
reversible and w is its (unique) stationary distribution. 0

We may naturally identify a time-reversible chain with an underlying weighted
graph as follows. The vertices of the graph are the states of the chain, and for each
(not necessarily distinct) pair i,je ./ with p; >0 there is an edge (i,j) of weight
wy; = pyym; = pyr;. For convenience we set w;; = 0 for all pairs of states i, j between which
no transition is possible. Note that this graph uniquely specifies the Markov chain.

As in [29], we define the conductance of a time-reversible chain with underlying
graph H by

(2) q)(H) — min zies,jES wij
ZieS i
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where the minimisation is over all subsets S of states with 0<Y, (7 =3. Note that
the quotient in (2) is just the conditional probability that the stationary process escapes
from S in a single step, given that it is initially in S. The conductance in some sense
measures the rate at which the process can flow around the state space, so we might
expect it to be connected with the rate of convergence of the chain. In fact, by relating
®(H) to the second eigenvalue of the transition matrix that governs the transient
behaviour of the chain, it is possible to obtain the following result. A proof can be
found in [29].

THEOREM 2.2. Let H be the underlying graph of a time-reversible ergodic Markov
chain in which min, p;; =3, and let 7, = min; 7, be the minimum stationary state probabil-
ity. Then the r.p.d. of the chain is bounded by

(1—¢(H)2/2)"

A(t) = 0
Tmin
The following immediate corollary is useful. Define the function 7: R* >N by
r(e)=min {teN:A(t')= ¢ for all t'=1t}.
CoROLLARY 2.3. With the notation of Theorem 2.2, we have
T(e)éq)(i{)z (In 7, +lne™). 0

Theorem 2.2 allows us to investigate the rate of convergence of a time-reversible
chain by examining the structure of its underlying graph: convergence will usually be
rapid if the conductance is not too small. In our applications we will always be dealing
with families of Markov chains #(%(x) indexed by problem instances x. (Thus x might
be a graph and #%(x) some Markov chain on the set of matchings in the graph.) Let
7 denote the function 7 above for the chain #%(x). Then the rapid mixing property
referred to informally earlier requires that 7*(¢) should be bounded above by a
polynomial in the input size |x| and lge~'. This means that the number of steps
required to achieve some specified sampling accuracy increases only polynomially with
the problem size. As is clear from Corollary 2.3, rapid mixing will usually follow from
a lower bound of the form 1/poly(|x|) on the conductance ®. In this and subsequent
sections, we show how to derive such bounds for several interesting chains. Other
examples are given in [29].

Remarks. (a) The condition min; p; =3 is a technical device that simplifies the
statement of the theorem by damping oscillatory or “near-periodic” behaviour [29].
Note that an arbitrary Markov chain can be modified to make the condition hold
simply by replacing P by 3(I + P), where I is the || x || identity matrix. This operation
leaves the stationary distribution unchanged and merely reduces the conductance by
a factor of 3. (In fact, we have just added a self-loop probability of ; to each state; for
the purposes of practical implementation the waiting time at each state may be simulated
more efficiently by a separate random process.)

(b) Theorem 2.2 has a converse stating that, under the same assumptions, A(t) =
(1-2®(H))' [28]. Hence we effectively have a characterisation of rapid mixing for a
large class of time-reversible chains in terms of the graph-theoretic quantity ®.

(c) Similar relationships between subdominant eigenvalues of graphs and their
structural properties have appeared in the work of Alon [4] and Alon and Milman
[5]. The significance of Alon’s result as a sufficient condition for rapid mixing for
certain Markov chains has been noted by several authors; in particular, Aldous [2]
states a restricted version of Theorem 2.2 for random walks on regular graphs. Our
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conductance ® is a weighted edge analogue of the magnification studied in [4], [2]
and gives a cleaner and more natural formulation of this connection. Very recently,
Lawler and Sokal [22] have independently discovered a characterisation similar to
ours but in a rather more general context. a

As it stands, the rapid mixing criterion of Theorem 2.2 is essentially only of
theoretical interest. To turn it into a useful practical tool, we need to develop some
technology for estimating the conductance of the underlying graphs of natural Markov
chains. This we now do with the aid of a simple example.

For a positive integer n, let B(n)={0, 1}" denote the set of bit vectors of length
n. Consider the family of Markov chains #%(n) with state space B(n) and transitions
as follows. In any state v=(vp, ', v,_;), select i€{0, -, n—1} uniformly at
random and flip the value of the bit v;. To eliminate periodicity, remain at v with
probability 3.

ME(n) is obviously irreducible and aperiodic, and hence ergodic. Using Lemma
2.1, it is easily verified that #%(n) is time-reversible and that its stationary distribution
is uniform over B(n). The conditions of Theorem 2.2 are satisfied, so the rate of
convergence of #%(n) depends on the conductance of its underlying graph H(n). In
H(n), two states are adjacent if and only if they differ in at most one bit. Thus H(n)
is just the n-dimensional hypercube, each nonloop edge having weight (2nN)~"', where
N =|B(n)| is the number of states.

PrOPOSITION 2.4. The conductance of H(n) satisfies ®(H(n))=1/2n.

Before presenting the proof of Proposition 2.4, which is the main point of this
example, let us note that it implies rapid mixing for the family of chains #%€(n). By
Corollary 2.3 the number of simulation steps required to achieve an r.p.d. of ¢ is
O(n’*(n+1n ¢7")), which is polynomially bounded in n and lg ¢ '. Thus an algorithm
that simulates % (n) from some arbitrary initial state constitutes an efficient almost
uniform sampling procedure for bit strings of length n. (Of course, there are more
direct ways of doing this!)

Proof of Proposition 2.4. From the definition (2) we may write

1 |cut (S)

(3) (H(n)) =7 omin s

where for each S < B(n), cut (S) denotes the set of cut edges in H(n) defined by S.
Our argument hinges on the following observation. Suppose it is possible to specify
a canonical simple path in H(n) between each ordered pair of distinct states in such
a way that no oriented edge of H(n) is contained in more than bN of the paths. If S
is any subset of states with 0<|S|= N/2, then the number of paths which cross the
cut from S to its complement is clearly

ISI(N =[S =[S|N/2.

Thus for any such S the number of cut edges must be at least |S|N/2bN =|S|/2b, and
so from (3) we have

1
4 d(H =—.
(4) (H(n)) anb
To get alower bound on ®(H(n)) it therefore suffices to define a collection of canonical
paths in H(n) that are “sufficiently edge disjoint,” as measured by the parameter b.
We now proceed to define a suitable set of paths. Let u = (u;)7—, and v=(v;){_,
be distinct elements of B(n), and i, <- - - <, be the positions in which u and v differ.
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Then for 1=j =1 the jth edge of the canonical path from u to v corresponds to a
transition in which the i;th bit is flipped from u; to v;.

Consider now an arbitrary transition t of #(€(n) (or, equivalently, an oriented
edge of H(n)); our aim is to bound the number of paths that contain . Suppose that
t takes state w = (w;) to state w’ = (w}) by flipping the value of wy, and let P(t) denote
the set of paths containing f, viewed as ordered pairs of states. Rather than counting
elements of P(¢) directly, we will set up an injective mapping from P(¢) into the state
space B(n); this will yield an upper bound on the ratio b appearing in (4).

The mapping o,: P(t)~> B(n) is defined as follows. Given an ordered pair (u, v) €
P(t), set o,(u, v) =(s;), where

Thus o,(u, v) agrees with u on the first k+1 bits and with v on the remainder. Note
that we can express this definition more succinctly as o,(u, v) = u@ v®w’', where @
denotes bitwise exclusive-or.

We claim that o,(u, v) is an unambiguous encoding of the endpoints u and v, so
that o, is indeed injective. To see this, simply note that

{si, 0=i=k {w;, 0=i=k
U = v = .
Wi, Si, k<i<n.
Hence u and v may be recovered from knowledge of ¢ and o,(u, v), so o, is injective.
It follows immediately that |P(¢)|= N; in fact, since all vectors (s;) in the range of o,
satisfy s, = wy, we have the slightly stronger result that | P(¢)| = N/2. Since t was chosen
arbitrarily, the number of paths traversing any oriented edge cannot exceed N /2. Thus
we may set b =3 in inequality (4) and deduce the desired bound on the conductance
d(H(n)). 0

Remark. The bound of Proposition 2.4 is tight. To see this, let S be the subset of
B(n) consisting of all vectors with first bit 0 and note that |cut (S)|/|S|=1. Hence
®(H(n))=1/2n. 0

Some observations on the above proof are in order here. The idea of path counting
is quite general and has been used before in the literature to investigate the connectivity
properties of various graphs in other contexts (see e.g., [31], in which the hypercube
is also studied). The novelty of our proof lies in the use of the injective mapping
technique to bound the number of paths which traverse an edge. This is not actually
necessary in this simple example as the paths could have been counted explicitly. The
point is that in more complex cases the states of the chain will be less trivial structures,
such as matchings in a graph, and we will have no useful information about their
number—indeed, this is what we will ultimately be trying to compute. It is then crucial
to be able to bound the maximum number of paths through any edge in terms of the
number of states without explicit knowledge of these quantities. This is precisely what
the injective mapping technique achieves. As we will see presently, it turns out to be
rather generally applicable.

Other simple Markov chains may be analysed in a similar fashion [28]. Examples
of rapidly mixing families include random walks on n-dimensional cubes of side d
and a host of “card-shuffling” processes whose state space is the set of permutations
of n objects and whose transitions correspond to some natural shuffling scheme. These
and similar processes have been extensively studied using other methods such as
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coupling, stopping times, and group representation theory (see [1], [3], [10] for a
variety of examples). The time bounds obtained by these methods are generally rather
tighter than ours and can often be shown to be optimal. However, the full power of
our approach will become apparent in the sequel where it will permit the analysis of
highly irregular chains with only a little additional effort. Most significantly, such
chains have seemingly not proved amenable to analysis by any of the other established
methods.

3. Approximating the permanent. In this section we consider Broder’s method for
approximating the permanent of a square 0-1 matrix, as sketched in § 1. Our main
result is that the method yields an fpras for a large class of matrices, including all
those that are sufficiently dense. Thus Broder’s principal claim in [8] turns out to be
true despite the fallacious coupling argument given there.

We will work with the perfect matching formulation of the permanent as described
in §1. Let G=(U, V, E) be a bipartite graph with U=V ={0, - -, n—1}, and for
k eN let M, (G) denote the set of matchings of size k in G. Thus M, (G) is the set of
perfect matchings in G and its cardinality is equal to the permanent of the n x n 0-1
matrix associated with G. We assume throughout this section that M,,(G) is nonempty:
it is well known that this property can be tested in polynomial time [11].

The method is based on the observation that an fpras for |M,,(G)| can be construc-
ted easily given an efficient procedure for sampling perfect and “near-perfect” match-
ings in G almost uniformly at random. First we must say more precisely what we mean
by such a procedure. Let N be the set M, (G)U M, _,(G). An almost uniform generator
for N is a probabilistic algorithm that, when presented with G and a positive real bias
g, outputs an element of N such that the probability of each element appearing
approximates |#|~' within ratio 1+ . The generator is fully polynomial (f.p.) if it runs
in time bounded by a polynomial in n and lge™'. (Generators for combinatorial
structures are discussed in a more general framework in [16], [28], [29].) Actually,
since all the generators we construct in this paper are based on rapidly mixing Markov
chains, it should be clear that they embody effective procedures for sampling structures
from a given distribution under any reasonable definition.

We call the bipartite graph G dense if its minimum vertex degree is at least n/2.
It is shown in [8] that the problem of counting perfect matchings in dense graphs is
no easier than counting them in general graphs, and hence is #P-complete. The
following result is also proved in [8], and formalises the reduction from approximate
counting to almost uniform generation in the case of dense graphs.

THEOREM 3.1 (Broder). Suppose that, for all dense bipartite graphs G, there exists
an f.p. almost uniform generator for M,,(G)U M, _,(G). Then there exists an fpras for
|M, (G))| for all such graphs G. a

Broder investigates the generation problem using a family of ergodic Markov
chains #%6,,,(G) with state space N =M,(G)UM,_,(G) and uniform stationary
distribution, in which transitions are made by adding and/or deleting edges locally.
We now give a slightly modified definition of #%,,.,(G). View E as a subset of Ux V
and matchings in G as subsets of E. If A, B E and ec E then A® B denotes the
symmetric difference of A and B, while A+ e and A — e denote the sets AU {e}, A\{e},
respectively. Transitions in #€,,(G) are specified as follows. In any state M e W,
choose an edge e = (u, v) € E uniformly at random and then

(i) If M e M,(G) and e€ M, move to state M'= M —e (Type 1 transition);
(i) If M e M,_,(G) and u, v are unmatched in M, move to M'=M +e (Type
2 transition);
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(iii) If M e M,_,(G), u is matched to w in M and v is unmatched in M, move
to M'=(M+e)—(u, w); symmetrically, if v is matched to w and u is unmatched,
move to M'=(M +e)—(w, v) (Type 0 transition);

(iv) In all other cases, do nothing.

We again eliminate periodicity by introducing an additional self-loop probability of 3
for each state, i.e., with probability 3 the process does not select a random edge as
above but simply remains at M.

Using Lemma 2.1, it is a simple matter to check that #%,,.(G) is ergodic and
time-reversible with uniform stationary distribution. What is not at all obvious is that
the family of chains is rapidly mixing. This surprising fact is a consequence of the
following theorem.

THEOREM 3.2. Let G be dense and H be the underlying graph of the Markov chain
MEpn(G). Then ®(H)z=1/12n°.

We shall prove the theorem in a moment after examining its implications.

CorOLLARY 3.3. There exists an f.p. almost uniform generator for M,(G)U
M, _(G) in all dense bipartite graphs G.

Proof. On input (G, ), the generator deterministically constructs an initial state
of M%,n(G) and then simulates the chain for some number T=7(e/2) of steps,
outputting the final state. (Assuming as we may that ¢ =1, an r.p.d. of £/2 guarantees
a bias of at most &.) To see that the generator is f.p., note that for any G individual
steps of M€,,(G) can be simulated, and a perfect matching to serve as initial state
found, in polynomial time. Moreover, since 7, =|A] is certainly bounded above by
2"2, Theorem 3.2 and Corollary 2.3 imply that 7(e/2) =poly (n,1g ¢ "), so T need only
be this large. Hence the overall runtime is bounded as required. ]

Combining this with Theorem 3.1 immediately yields the following Corollary.

CoROLLARY 3.4. There exists an fpras for |M,(G)| in all dense bipartite graphs G,
and hence for the permanent of all dense squdre 0-1 matrices. ]

We return now to the proof of the key result above.

Proof of Theorem 3.2. As in (3) the conductance is given by

1 . leut (5)]
© P =Bl ot 18]
where again cut (S) denotes the set of cut edges in H defined by S. We will proceed
as in the proof of Proposition 2.4 by defining a set of canonical paths in H. If no
transition occurs in more than b|V| of these, by analogy with (4) we will have the bound

1 1
= —_—=
©) ¢(H)=4b|15|=4bn2‘
We begin by specifying, for each M € ¥, canonical paths to and from a unique “closest”
perfect matching M € M,,(G) as follows, where u € U and v e V denote the unmatched
vertices (if any) of M:
(i) If M e M,(G) then M = M and the path is empty;

(ii) If Me M,_,(G) and (u, v) € E, then M = M + e and the path consists of a
single Type 2 transition,;

(iii) If M e M, _,(G) and (u, v) £ E, fix some (u’, v') € M such that (u, v'), (u', v) €
E: note that at least one such edge must exist by the density assumption on G. Then
M=(M—(u',v'))+(u,v")+ (', v), and we specify one of the two possible paths of
length two from M to M, involving a Type 0 transition followed by a Type 2 transition.

The canonical path from M to M consists of the same edges of H traversed in
the opposite direction.
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For future reference, we observe that no perfect matching is involved in too many
canonical paths of the above form: for M € M, (G) define the set

H(M)={M'eN: M'=M)}.

Then, since each matching in (M) has at least n —2 edges in common with M, it is
easy to see that |[%(M)|=n> Note that the sets (M) partition N, implying that
|¥| = n?*|M,(G)|. It is also worth noting that this is the only point in the proof at which
the bipartite structure of G is used: we will have more to say about this later (see
remark (d) below).

Next we define a canonical path in H between an ordered pair I, F of perfect
matchings (refer to Fig. 1(a)). To do this, we first assume a fixed ordering of all even
cycles of G, and distinguish in each cycle a start vertex in U. Now consider the
symmetric difference I1® F; we may write this as a sequence Cy, - - -, C, of disjoint
even cycles, each of length at least four, where the indices respect the above ordering.
The path from I to F involves unwinding each of the cycles Cy, - - -, C, in turn in the
following way. Suppose the cycle C; has start vertex u, and consists of the sequence
of distinct vertices (uy, vy, Uy, Uy, * *, U5, v)), Where (u;, v;)€ I for 0=j=1I and the
remaining edges are in F. Then the first step in the unwinding of C; is a Type 1
transition that removes the edge (u,, vy). This is followed by a sequence of I Type 0
transitions, the jth of which replaces the edge (u;, v;) by (4, v;_,). The unwinding is
completed by a Type 2 transition that adds the edge (u,, v;).

Finally, the canonical path between any pair of matchings I, Fe /N is defined as
the concatenation of three segments as follows:

initial segment:  follow the canonical path from I to I_z
main segment:  follow the canonical path from I to F,
final segment:  follow the canonical path from F to F.

Now consider an arbitrary oriented edge of H, corresponding to a transition ¢ in
the Markov chain. We aim to establish an upper bound of the form b|.¥| on the number
of canonical paths that contain this transition. Suppose first that ¢ occurs in the initial
segment of a path from I to F, where I, F e /. Then it is clear from the definition of
initial segment that the perfect matching I is uniquely determined by t. But we have
already seen that |9 (T)|= n®. Since I € 9 (I), the number of paths that contain ¢ in
their initial segment is thus at most n’|/|. A symmetrical argument shows that the
number of paths containing ¢ in their final segment is similarly bounded.

To handle the main segments of the paths, we make use of the injective mapping
technique seen in the proof of Proposition 2.4. This will obviate the need for any
explicit counting of structures in N, which is crucial here (cf. the discussion following
the proof of Proposition 2.4). Let t be a transition from M to M’', where M, M'e N
are distinct, and denote by P(t) the set of ordered pairs (I, F) of perfect matchings
such that ¢ is contained in the canonical path from I to F. We proceed to define, for
each pair (I, F)e P(t), an encoding o,(I, F) € & from which I and F can be uniquely
reconstructed. The intention is that, if C,,- -, C, is the ordered sequence of cycles
in ID F, and ¢ is traversed during the unwinding of C;, then the encoding should agree
with I on C,,- -, C;_, and on that portion of C; that has already been unwound,
and with F elsewhere.

With this in mind, considertheset S=I®@ F®(MUM').Since INFc MUM'c
IUF and |I|=|F|=|M U M'| = n, elementary set theory tells us that |S| = n. Further-
more, suppose that some vertex u is adjacent to two edges in S. Then both these edges
necessarily lie in I@® F, which in turn implies that neither edge lies in M U M'. Hence
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FIG. 1(b). The corresponding encoding o,(I, F).

the vertex u must be unmatched in M U M'. From the form of the transitions, however,
it is clear that M U M’ contains at most one such vertex u = u,; moreover, this is the
case if and only if t is a Type O transition, and u, must then be the start vertex of the
cycle currently being unwound. In this case, we denote by e;, the edge of I incident
with u,.

We are now in a position to define the encoding:

(I®FO(MUM'))—e;, iftisTypeO,

i1, F)Z{I(JB F®(M UM otherwise.

Figure 1(b) illustrates this definition for a Type 0 transition. In view of the above
discussion, o,(1, F) is always a matching of cardinality at least n—1, and hence an
element of . It remains for us to show that I and F can be recovered from it.

First observe that /@ F can be recovered immediately using the relation

(o(I, FY®@(MUM'))+e,;, iftisTypeO,

ToF= {o,u, FY®(MU M) otherwise.

(Note that e, is the unique edge that must be added to o,(I, F)® (M U M’) to ensure
that /@ F is a union of disjoint cycles.) Thus we may infer the ordered sequence
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C,,: -, C, of cycles to be unwound on the path from I to F. The cycle C; that is
currently being unwound, together with its parity with respect to I and F, is then
determined by the transition t. The parity of all remaining cycles may be deduced from
M and the cycle ordering. Finally, the remaining portions of I and F may be recovered
using the fact that I N F= M\(I® F). Hence o,(I, F) uniquely determines the pair
(I, F), so o, is an injective mapping from P(t) to N.

The existence of o, ensures that |P(¢)|=[A| for any transition t. Since also
|9¢(M )| = n* for any perfect matching M, we see that ¢ is contained in the main segment
of at most n*|/| paths. Combining this with the results for initial and final segments
derived earlier, we deduce that the maximum total number of paths that contain ¢ is
bounded by

(n*+n*+n*)|N|=3n%N.

To complete the proof we set b=3n"in (6). 0

Remarks. (a) In his original paper [8], Broder claimed that the above rapid mixing
property holds under the same density assumption. However, as indicated in § 1, his
proof based on coupling ideas is both complex and fundamentally flawed. The problem
is that the ““coupling” defined in [8] is not, in fact, a coupling because one of the two
processes involved is not a faithful copy of #%€,,(G): this is explained in detail by
Mihail [25]. As a result Broder has withdrawn his proof (see the erratum to [8]). We
feel that this is compelling evidence of the unsuitability of coupling and related methods
for the analysis of Markov chains that lack a high degree of symmetry.

(b) A chain with larger conductance is obtained by modifying #%,,(G) slightly
so that transitions are effected by selecting a random vertex in V rather than a random
edge. This increases the transition probability in (5) from 1/2|E| to 1/2n, saving a
factor of n in the conductance bound.

(c) The f.p. almost uniform generator for M,(G)U M, _,(G) may be adapted to
one for perfect matchings in dense graphs G, by repeatedly generating elements of
M,(G)U M, _,(G) and outputting the first perfect matching which occurs. Since
IM,.(G)| = n?|¥| we should not have to wait too long, but if so some arbitrary perfect
matching may be output without affecting the bias too much. Among other things,
with appropriate choice of G this provides a way of generating certain natural restricted
classes of permutations that satisfy the density condition, such as displacements or
ménage arrangements.

(d) So far we have concentrated exclusively on bipartite graphs because of their
connection with the permanent. The Markov chain #%,,,(G) can be applied without
essential modification to arbitrary graphs G. In fact, the only point at which we have
relied on the bipartite structure of G is in the definition of the sets (M) in the proof
of Theorem 3.2 and the bound on their size. Let G = (V, E) be an arbitrary graph with
| V| =2n. As before, we assume that G contains a perfect matching. Call G dense if its
minimum vertex degree is at least n. This ensures that % (M) for M € M,(G) is still
well defined, and that [ (M)|=2n>. The rest of the proof carries through as before,
yielding b=8n"* and consequently ®(H)=1/64n° (This can again be improved if
transitions are implemented by random vertex selection.) Since a construction
analogous to that of Theorem 3.1 holds for general dense graphs, we have:

COROLLARY 3.5. There exists an fpras for |M,(G)| in arbitrary dense graphs. 0

We conclude this section by examining the role played in our results by the density
assumption. In the proof of Theorem 3.2 it was used to show that each element of
M,_(G) is “close to” a perfect matching, so that near-perfect matchings could
effectively be ignored in the conductance argument. In fact, it is enough to know that
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the total number of near-perfect matchings is not too large. More specifically, the above
results hold under the considerably weaker assumption that

(7) IM,_(G)I/IM,(G)|=q(n)

for some fixed polynomial q. (Recall that we are assuming |M,,(G)| > 0.) This condition
will arise more naturally in the context of the improved algorithm of § 5. Accordingly,
we only sketch the proof modifications necessary to extend the method of this section.
A fuller account can be found in [28].

First, it is not hard to see that the reduction of Theorem 3.1 still holds for graphs
G satisfying the weaker condition (7). (This fact relies on Theorem 5.1 of § 5.) It is
therefore enough to generate elements of &' =M, (G)U M, _,(G) using the Markov
chain M%,,,(G): the only thing we have to check is that its conductance remains
bounded below by an inverse polynomial function of n. This is a consequence of the
following generalised version of Theorem 3.2.

THEOREM 3.6. For any graph G =(V, E) with |V|=2n and |M,(G)|> 0, the con-
ductance of the underlying graph of M€, (G) is bounded below by

1 (an(G>| )
16/E| \IM,_,(G)|/ ~

Sketch of proof. Let H be the underlying graph of .#%,,(G). The proof differs
from that of Theorem 3.2 in one or two details. First, we use a variant of the canonical
path counting argument in which only paths from perfect to near-perfect matchings
are considered. If these can be defined in such a way that no edge of H carries more
than b|/| of them, then a little algebra yields (cf. (6))

_ 1 |M,(G)|
(8) CH) = hiE] (|Mn_.<G>|>'

The paths themselves are similar to those between perfect matchings in the proof of
Theorem 3.2: if I € M,(G) and Fe M,_,(G), the symmetric difference I® F consists
of a sequence Cy, - - -, C, of disjoint cycles as before, together with a single open path
O that is unwound in the obvious way after all the C,.

Let ¢ be an arbitrary transition. The injective mapping technique can again be
used to bound the cardinality of the set P(¢) of paths of the above kind that involve
t. For (I, F)e P(t) the encoding o,(I, F) is defined exactly as before, and o, is again
injective. Now, however, we find that o,(I, F)e M,_,(G)U M, _,(G), as we get an
additional pair of unmatched vertices arising from the open path O. (Note that this
time the encoding takes us outside the state space.) Since o, is injective we have

(G

POIZ 1My (641, (0= (el

where the second inequality again appeals to Theorem 5.1. Thus we may take b=
|M,_(G)|/|M,(G)| in (8), completing the proof of the theorem. a

COROLLARY 3.7. Let q be any fixed polynomial. There exists an fpras for |M, (G)|
in all 2n-vertex graphs G that satisfy |M,,_,(G)|/|M,(G)| = q(n). 0

Our earlier results for dense graphs can be derived as a special case of Corollary
3.7 with q(n) = O(n?). Note that the density bound quoted is tight in the sense that it
is possible to construct, for any fixed § >0, a sequence of (bipartite) graphs (G,) with
2n vertices and minimum vertex degree at least n/(2+68) such that the ratio
M, _1(G,)|/|M,(G,)| is exponentially large.
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Remark. Dagum et al. [9] have shown that the reduction from counting to
generation of Theorem 3.1 may be replaced by the following mechanism, with a small
increase in efficiency. In analogous fashion to #¥,,,(G), we may define for 1=k=n
a Markov chain #%,(G) whose states are k- and (k—1)-matchings in G. (Thus
ME,(G) is just M€,.(G).) By a simple extension of the proof of Theorem 3.6, whereby
multiple rather than unique canonical paths between states are counted, it can be
shown that each of the chains (%, (G) is rapidly mixing under the same condition
(7) on G. This allows the ratios |M,(G)|/|M,_,(G)]| to be estimated directly for each
k in turn. We do not dwell on this point here as we will present a more natural
algorithm in § 5. O

This concludes our discussion of perfect matchings for now. An alternative view
of all these results will emerge as a by-product of our work on a different problem in
the next section.

4. Monomer-dimer systems. This section is concerned with counting and generat-
ing at random all matchings (independent sets of edges) in a graph. Apart from their
inherent interest, these problems arise in the theory of statistical physics, a rich source
of combinatorial counting and generation problems.

A monomer-dimer system consists of a graph G =(V, E), which is usually some
form of regular lattice, together with a positive weight on each edge. The vertices of
G represent physical sites, adjacent pairs of which may be occupied by diatomic
molecules or dimers. Configurations of the system correspond to arrangements of
dimers on the lattice in which no two dimers overlap, i.e., to matchings in G. In a
configuration consisting of fewer than |V|/2 dimers, unoccupied sites are referred to
as monomers. Monomer-dimer systems have been extensively studied as models of
physical systems involving diatomic molecules. In the two-dimensional case they model
the adsorption of dimers on the surface of a crystal. Three-dimensional systems occur
in the theory of mixtures of molecules of different sizes and in the cell-cluster theory
of the liquid state. For further information, see [14] and the references given there.

For each edge e of G, the weight c(e) represents the relative probability of
occupation by a dimer. This will depend on the contribution of such a dimer to the
global energy of the system. Most thermodynamic properties of the system can be
deduced from knowledge of the partition function
) Z(G)= Y WG M)

MeM,(G)
where M, (G) is the set of configurations (matchings in G) and W(G, M) =1],.,, c(e)
is the weight of the configuration M. Counting matchings, i.e., computing (9) in the
special case where all edge weights are unity, is a # P-complete problem even when
restricted to planar graphs [15], [33]. The main result of this section is that the more
general sum (9) can in fact be approximated efficiently for any weighted graph G.

We will proceed as in the previous section via a related random generation problem
for configurations. Since the sum in (9) is weighted, however, configurations should
be generated not uniformly but with probabilities proportional to their weights. In
fact, this problem is of interest in its own right as a means of estimating the expectation
of various physical operators on configurations by the so-called Monte Carlo method
[6].

The notion of an almost uniform generator can be generalised to the weighted
case in the obvious way. We will call a probabilistic algorithm an almost W-generator
for matchings if, given a graph G with positive edge weights and a positive real bias
€>0, it outputs a matching M in G with probability that approximates
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W(G, M)/ Z(G) within ratio 1+e&. As usual, the generator is f.p. if its runtime is
bounded by a polynomial in the size of the input G and in Ig e ™"

The problem of approximating the partition function (9) is reduced to the weighted
generation problem as follows. Let e=(u, v) be any edge of the weighted graph
G =(V, E), G the graph obtained by removing e from G, and G™ the graph obtained
by removing the vertices u and v together with all their incident edges. By partitioning
matchings in G into two sets according to whether they do or do not contain e, it is
readily seen that

(i) There is a (1-1)-correspondence between M, (G) and the disjoint union of
M,(G") and M (G™);

(ii)) Z(G)=c(e)Z(G")+Z(G).
This suggests the following recursive procedure for estimating Z(G):

(1) Using an almost W-generator, construct an independent sample of elements
of M, (G) as detailed below.

(2) For some edge e of G, let z*, z~ denote the proportions of elements in the
sample that do and do not contain e, respectively. Note that these quantities estimate
c(e)Z(G™)/Z(G) and Z(G™)/Z(G), respectively.

(3) If z*=z", recursively estimate Z(G") and multiply the result by c(e)/z";
otherwise, recursively estimate Z(G™) and multiply by 1/z".

The procedure terminates when the input graph contains no edges. Note that the choice
of the larger ratio in step (3) maximises the accuracy of the method.

Some elementary but tedious statistics (see [16, Thm. 6.4]) confirms that, if the
bias in the generator is set to ¢/ a|E| for some constant «, the sample size required in
step (1) to ensure that the final answer approximates Z(G) within ratio 1+ ¢ with
probability at least } is only O(|E|*¢%). We therefore have the following theorem.

THEOREM 4.1. Suppose there exists an f.p. almost W-generator for matchings. Then
there exists an fpras for the partition function of monomer-dimer systems. 0

Remark. The foregoing is an example of a more general reduction from approxi-
mate counting to random generation, justified in detail in [16], [28], that applies to
all structures that are self-reducible. Informally, this means that the set of structures
corresponding to any problem instance is in (1-1)-correspondence with the disjoint
union of sets corresponding to a few smaller problem instances (subproblems), In the
case of matchings this property is expressed in condition (i) above. Since we are dealing
here with weighted combinatorial sums, we need to supplement the definition of
self-reducibility by demanding that any sum can be computed easily given the sums
for its subproblems: condition (ii) states this for the monomer-dimer partition function.
This implies that the Markov chain approach to random generation studied in this
paper is potentially a powerful general method for approximating hard combinatorial
counting problems. (Note that in the previous section it was necessary to resort to the
specialised reduction provided by Theorem 3.1. The reason is that, while perfect
matchings are easily seen to be self-reducible in general, this property is apparently
destroyed when restrictions are placed on the input graph as in § 3.) a

Theorem 4.1 says that we will get an fpras for the monomer-dimer partition
function provided we can efficiently generate matchings with probabilities roughly
proportional to their weights. This we achieve by simulating a Markov chain in the
style of Metropolis et al. [6]. Given a graph G =(V, E) with positive edge weights
{c(e):ee E}, we consider the chain M#%,4«(G) with state space N =M, (G) and
transitions as follows. In any state M € ¥, choose an edge e = (u, v) € E uniformly at
random and then

(i) If e M, move to M — e with probability 1/(1+c(e)) (Type 1 transition);
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(ii) If u and v are both unmatched in M, move to M +e with probability
c(e)/(1+c(e)) (Type 2 transition),

(iii) If ¢'=(u, w)e M for some w, and v is unmatched in M, move to (M +¢)—¢’
with probability c(e)/(c(e)+c(e)) (Type O transition);

(iv) In all other cases, do nothing.

As always, we simplify matters by adding a self-loop probability of 3 to each state. It
is then readily checked that #%,,4(G) is irreducible and aperiodic, and hence ergodic.
The stationary probability 7, of M e M (G) is easily seen, by Lemma 2.1, to be
proportional to its weight W(G, M) =]].cn c(e), so simulation of the chain will yield
an f.p. almost W-generator for matchings provided the family #%,,4(G) is rapidly
mixing. Now M%€,,4(G) is clearly time-reversible by virtue of the detailed balance
condition (1), so we may again apply Theorem 2.2. The crucial fact is the following.

THEOREM 4.2. For a graph G = (V, E) with positive edge weights {c(e):e<c E}, the
conductance of the underlying graph of the Markov chain M%€,4(G) is bounded below
by 1/(8|E|ck.x), where Cmax =max {1, max..g c(e)}.

Proof. Let H be the underlying graph of #%€,,4(G). The first step is to establish a
weighted version of the path counting argument that led to the bound (4). Suppose
that between each ordered pair (I, F) of distinct states we have a canonical path in
H, and let us associate with the path a weight ;7. Also, for any subset S of states define

Cs= Y my the capacity of S,
MeS

Fs= Y mmPmme  the ergodic flow out of S.
MeSM'eS

(pmae is the transition probability from M to M’.) Note that the conductance ®(H)
is just the minimum value of the ratio Fgs/Cs over subsets S with 0 < Cg=3. For any
such S, the aggregated weight of all paths crossing the cut from S to its complement
Sin N is
(10) Z B T = C5C§=£g.

IeS,Fe§ 2
Now let ¢ be a transition from a state M to a state M'# M, and denote by P(t) the
set of all ordered pairs (I, F) whose canonical path contains t. Suppose it is known
that, for any such transition ¢, the aggregated weight of paths containing ¢ satisfies
(11) Y  mme=bw,

(LF)eP(t)

where W, = 7y Pane = TarParsm 1S the weight of the edge in H corresponding to t.
Taking (10) and (11) together, we have the following bound on the ergodic flow out
of S, where cut(S) denotes the set of transitions crossing the cut from S to S:

Fs= ¥ W'gb“‘ ) > TITF

tecut(S) tecut(S) (ILF)e P(t)
= b—l Z mTITE
IeS,FeS
=S5
2b
By definition, the conductance of H therefore satisfies
1
12 d(H)y=z—.
(12) (H) b

Our aim is thus to define a set of paths obeying a suitable bound b in (11).
To do this we generalise the proof of Theorem 3.2. Suppose there is an underlying
order on all simple paths in G and designate in each of them a start vertex, which must
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be an endpoint if the path is not a cycle but is arbitrary otherwise. For distinct I, Fe W,
we can write the symmetric difference I® F as a sequence Q;, - -, Q, of disjoint
paths that respects the ordering. The canonical path from I to F involves unwinding
each of the Q; in turn as follows. There are two cases to consider:

Case i. Q;is not a cycle. Let Q; consist of the sequence (v,, vy, * * *, v;) of vertices,
with v, the start vertex. If (vy, v;) € F, perform a sequence of Type 0 transitions replacing
(V3j415 V2j42) bY (0y), 13j41) for j=0,1,- -, and finish with a single Type 2 transition
if I is odd. If on the other hand (v,, v,) € I, begin with a Type 1 transition removing
(vo, v;) and proceed as before for the reduced path (v, - - -, v;).

Case ii. Q; is a cycle. Let Q; consist of the sequence (v, vy, * * *, y4,) Of vertices,
where v, is the start vertex, /=1 and (v, v3;+1) € I for 0=j =1, the remaining edges
belonging to F. Then the unwinding begins with a Type 1 transition to remove (v, v;).
We are left with an open path O with endpoints v,, v,, one of which must be the start
vertex of O. Suppose v, k€{0, 1}, is not the start vertex. Then we unwind O as in
Case (i) above but treating v, as the start vertex. This trick serves to distinguish cycles
from open paths, as will prove convenient shortly.

Now let ¢t be a transition from M to M'# M. The next step is to define our
injective mapping o, : P(t) > /. As in the proof of Theorem 3.2, we set o,(I, F) equal
to I® F®(M U M’), and remove the edge e;, of I adjacent to the start vertex of the
path currently being unwound if necessary: this is so if and only if the path is a cycle
and t is Type 0. It is now easily seen that o,(I, F) consists of independent edges, and
so is an element of . The difference I® F can be recovered from o,(I, F) using the
relation

(o(I, FY®(MUM'))+e;, iftis Type 0 and the current path is a cycle;
o(l, FY(MUM’) otherwise.

Note that we can tell whether the current path is a cycle from the sense of unwinding.
Recovery of I and F themselves now follows as before from the path ordering. Hence
o, is injective.

Moreover, it should be clear that o,(I, F) is very nearly the complement of M in
the union of I and F viewed as a multiset, so that the product 77 is approximately
equal to 7y, (1 F), giving us a handle on b in (11). We now make this precise.

CramM. For any (I, F)e P(t), we have

(13) 7TI7TF§4|E|c£naxW17To',(I,F)~
The claim will be proved in a moment. First note that it immediately yields the
desired bound b in (11), since for any transition ¢ we have

Z 7TI7TF§4|E|C§1aXW, Z ﬂo'(]’p)§4|E|Cﬁme,
(I,F)e P(t) (I,F)e P(t)

I(—BF={

where the second inequality follows from the fact that o, is injective. We may therefore
take b =4|E|c}.,, which in light of (12) gives the conductance bound stated in the
theorem.

It remains only for us to prove the claim. We distinguish three cases:

Case i. tis a Type 1 transition. Suppose M'=M —e. Then o,(I, F)=I®F® M,
so, viewed as multisets, M U o,(I, F) and I U F are equal. Hence we have

T = 7TM7TU,(I,F)
= (Wr/PMM')Wa,(l,F)
= 2‘E|(1 + C(e))WﬂTa,(l,F),
from which (13) follows.
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Case ii. t is a Type 2 transition. This is handled by a symmetrical argument to
Case (i) above, with M replaced by M'.

Case iii. t is a Type 0 transition. Suppose M'=(M +e)—¢e’, and consider the
multiset o,(I, F) U M. This is equal to the multiset I U F except that the edge e, and
possibly also the edge e;, are absent from it. Assuming e;, is absent, which happens
precisely when the current path is a cycle, we have

TITE = C(el,r)c(e)WMWcr,(z,F)
= C(el,r)c(e)(wr/PMM‘)Tfa,(1,F)
= 2|E|C(el,t)(c(e) + c(e,))wt'”cr‘(l,F)a

again satisfying (13). If e;, is not absent, the argument is identical with the factor
c(e;,) omitted.

This concludes the proof of the claim and the theorem. 0

CoOROLLARY 4.3. There exists an f.p. almost W-generator for matchings in arbitrary
weighted graphs provided the edge weights are positive and presented in unary.

Proof. Define ¢, = min {1, min..gc(e)}. Then the minimum stationary state prob-
ability in MEnq(G) is at least ch,2 'Flenn,, where n=|V|. The logarithm of this
quantity is at least —p(|G|), where |G| is the size of the description of G and p is a
polynomial. Hence by Theorems 2.2 and 4.2, the Markov chains are rapidly mixing.
Simulation of #%€,,4(G) is a simple matter, starting from the empty matching. O

In view of Theorem 4.1, we may now state the main result of this section.

COROLLARY 4.4. There exists an fpras for the monomer-dimer partition function of
arbitrary weighted graphs with edge weights presented in unary. 0

CoRrOLLARY 4.5. There exists an fpras for the number of matchings in arbitrary
graphs. 0

5. Some applications: The permanent revisited. As we have already mentioned, our
analysis of the monomer-dimer Markov chain #%,,4(G) sheds new light on the results
of § 3. In this section we will demonstrate that it yields a more natural approximation
algorithm for counting perfect matchings in 2n-vertex graphs G for which the ratio
IM, _,(G)|/|M,(G)| is polynomially bounded, and in addition allows this condition
to be probabilistically tested for an arbitrary graph in polynomial time. We will also
discuss an application of the chain to finding a maximum matching in a graph by
simulated annealing. The key to all these algorithms is the introduction of carefully
chosen edge weights.

The results of this section (and indeed Corollary 3.7 of § 3) depend crucially on
the following property of matchings. As usual, let M, (G) denote the set of k-matchings
in a graph G.

THEOREM 5.1. For any graph G, the sequence {|M,(G)|: keN} is log-concave, i.e.,

IMi+1(G)| IM_1(G)| =M (G)]? VkeN™ .

Proof. A proof that relies on machinery from complex analysis can be found in
Theorem 7.1 of [14] (see also [23, Exercise 8.5.10]). We present an elementary com-
binatorial proof that uses ideas seen elsewhere in this paper. Since log-concavity results
in combinatorics tend to be rather hard to come by, we believe the simpler proof to
be of independent interest.
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Let keN'. We may assume that |M,,,(G)|>0, since the inequality is trivially
true otherwise. Define the sets A = M, ,(G) X M;_,(G) and B = M, (G) X M;(G). Our
aim is to show that |A|=|B|.

As in the proof of Theorem 4.2, the symmetric difference M@ M’ of any two
matchings M, M’ in G consists of a set of disjoint simple paths (possibly closed) in
G. Let us call such a path an M-path if it contains one more edge of M than of M’;
an M'-path is defined similarly. Clearly, all other paths in M@® M’ contain equal
numbers of edges from M and M'. Now for any pair (M, M')€ A, the number of
M-paths in M@ M’ must exceed the number of M'-paths by precisely two. We may
therefore partition A into disjoint classes {A,:0<r=k}, where

A, ={(M,M')e A: M® M’ contains r+1 M-paths and r—1 M’-paths}.
Similarly, the sets {B,:0= r =k} with
B,={(M, M'ye B: M@® M’ contains r M-paths and r M'-paths}

partition B. The lemma will follow from the fact that |A,|=|B,| for each r>0.

Let us call a pair (L, L') € B, reachable from (M, M) A, ifandonlyif LOL' =M ®
M’ and L is obtained from M by taking some M-path of M@ M' and flipping the
parity of all its edges with respect to M and M. (This is analogous to unwinding the
path in the proof of Theorem 4.2.) Clearly, the number of elements of B, reachable
from a given (M, M')€ A, is just the number of M-paths in M@ M’, namely r+1.
Conversely, any given element of B, is reachable from precisely r elements of A,.
Hence if |A,|> 0 we have

@_r+l
Al 7

completing the proof of the lemma. 0
Remark. In [14] the tight inequality

(k+1)(m—-k+1)
k(m—k)

is proved, where m = [n/2] and n is the number of vertices in G. The bound in our
proof can also be improved, but we will not labour this point here as simple log-
concavity is quite adequate for our purposes. 0

Note that Theorem 5.1 immediately implies the following:

COROLLARY 5.2. For a 2n-vertex graph G =(V, E) with |M,(G)|>0, the ratio
|M,._,(G)|/|Mi(G)| increases monotonically with k in the range 0 < k = n; the maximum
value of the ratio is |M,_,(G)|/|M,(G)| and the minimum value is |E|™". a

Armed with log-concavity, let us sketch how an algorithm that generates matchings
from the weighted distribution of § 4 may be used to estimate the number of perfect
matchings in a given unweighted 2n-vertex graph G =(V, E). Write m, in place of
|M(G)|, and assume that m, > 0. The idea is to estimate the ratios my,/m, in turn
in a sequence of n stages for k=0, -+, n—1. Since my=1, an approximation to m,
is then obtained as the product of the estimated ratios.

In stage k we could in principle estimate my.,,/ m, using an algorithm that generates
matchings in G uniformly: just observe the relative numbers of (k + 1)- and k-matchings
in an independent sample produced by the generator. However, a very large sample
may be necessary since these matchings might constitute only a tiny fraction of all
matchings in G. This difficulty can be overcome by adding to every edge of G a weight
¢ that is chosen so as to make the aggregated weight mcy of k-matchings maximal,

>1,

M (G)|=

IMi1(G)] [My—1 (G
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i.e., at least as large as that of matchings of any other size. That such a weight exists
is a direct consequence of the log-concavity of the m;. To see this, take ¢, = my_,;/ m;
and let G(c,) denote the graph G augmented with weight ¢, on every edge. (We will
not have available the exact value of m,_,/m,, but it will suffice to substitute the
estimate of this quantity obtained in the previous stage.) Then if p; is the probability
of being at an i-matching in the stationary distribution of the Markov chain
MEa(G(cr)), we have for iz k

(14 Bl o g (o) ()

P mMCy j=k Mjyq my my

where the inequality comes from Corollary 5.2. An identical bound holds for i<k.
Since ¥ p; =1, we conclude that p, =(n+1)"". Moreover, the probability of being at
a (k+1)-matching satisfies

My 41 Cx M1 Y[ M- 1 my
15 =\——)p= — | P =T :
(15) Picn ( my )pk ( my )( my )pk |E| (mn—l)pk

Hence a lower bound of the form 1/poly(n) holds for p,., also, provided the ratio
m,_,/ m, is polynomially bounded. These observations allow the ratio my.,/m, to be
estimated efficiently by sampling from the weighted distribution.

For the sampling itself we appeal to the Markov chain technique of § 4. (The
algorithm is robust enough to cope with a small bias.) In view of Corollary 4.3, the
generator will be efficient provided the various edge weights used in the algorithm are
polynomially bounded. But each weight will be close to m,_,/m, for some k that by
Corollary 5.2 lies in the range [|E|™', m,_,/ m,]. This ensures rapid convergence of the
Markov chain at all stages, provided again that m,_,/m, is polynomially bounded.

Notice how a polynomial bound on the ratio m,_;/ m, plays a central role in the
efficient operation of this algorithm. For an arbitrary function ¢q of the natural number
n, let us call a 2n-vertex graph G g-amenable if either

(i) IM,(G)[=0, or
(i) |[M.(G)|>0 and |M,_,(G)|/|M,(G)| = q(n).

From the above discussion, we might expect to get an fpras for counting perfect
matchings in g-amenable graphs for any fixed polynomial g.

The new approximation scheme for counting perfect matchings in g-amenable
graphs G is spelled out in detail in Fig. 2. In line (4), ¢ denotes the almost W-generator
for matchings described in § 4, i.e., the call 9(G(c), -) invokes a simulation of the
Markov chain #%,,4(G(c)). The values of the sample size T and bias ¢ will depend
on n and the accuracy 0<e =1 specified for the final estimate, as described below.
The test in line (1) for the existence of a perfect matching may be implemented using
any standard polynomial time algorithm.

THEOREM 5.3. For an arbitrary polynomial q, the algorithm of Fig. 2 is an fpras for
IM, (G)| in all g-amenable 2n-vertex graphs G.

Proof. In view of line (1), we need only consider graphs for which m, > 0. Line
(2) and the iterations of the for-loop correspond to the n stages of the computation
mentioned above. Let ¢, be the value of the weight parameter ¢ at the end of stage
k. We claim that, by making T a polynomial function of n and £ ' and setting £ = ¢/ an
for a suitable constant « > 1, the following may be guaranteed:

1 k
(16) Vk Pr(ck+1 approximates m,/m,., within ratio 1+§1-> = (1 —W) .
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(1) if [M,(G)|=0 then halt with output 0
else begin
(@) e=|E[ T=|E];
for k=1 to n—1 do begin

(3) if ¢>2q(n) or ¢<(2|E])™" then halt with output 0

else begin
(4) make T calls of the form 4(G(c), &)

and let Y be the set of outputs;

(5) =T YN M(G); prar=T YN M (G)l;
(6) if p, =0 or p,,,; =0 then halt with output 0
(7) else begin ¢ = cp,/py,; [I'=1IT/c end

end

end;
(8) halt with output I7
end

F1G. 2. Approximation scheme for counting perfect matchings.

This will imply that the product IT output in line (8) approximates m, within ratio
(1+¢&/2n)"=1+¢ with probability (1- 1/4n2)"2§ 3/4, as required. Moreover, the
runtime of the procedure is bounded by a polynomial in n and £ ~'. (Note in particular
that, by Corollary 4.3, the bounds on edge weights in line (3) ensure that each call to
% is bounded in this way.) Hence the procedure is indeed an fpras.

The proof of (16) is a straightforward induction on k, the technical details of
which are left to the reader. The important points to note are the following, assuming
that ¢, is a good estimate of my_,/m;:

(i) In line (3), ¢ will not violate the prescribed bounds because m,_,/ my lies in
the range [|E|™", q(n)].

(ii) From (14) and (15), the probabilities py, pi+; of being at a k- and (k+1)-
matching in the stationary distribution of the Markov chain #%,,4(G(¢c)) used in
stage k+1 are bounded below by a function of the form 1/poly(n). Hence the modest
sample size T in line (4) is enough to make the estimates p,, p.+, of these quantities
in line (5) good with high probability. (Note that the pathological cases of line (6) are
therefore very unlikely to occur.)

The assignment to c in line (7) therefore makes ¢, a good estimate of m,/ my.,
with high probability. 0

The algorithm of Theorem 5.3 is preferable to those described in § 3 in several
respects. For a given input graph G, it makes use of a single Markov chain structure,
the only manipulations being simple scaling of transition probabilities. It avoids any
discussion of ad hoc processes with state space M, (G)U M, _,(G), whose transition
structure is not uniform over states. Moreover, the condition that the ratio
|M,,_,(G)|/|M,(G)| should be polynomially bounded (if |M,,(G)|> 0) is seen to arise
directly from the log-concavity of the matching sequence.

Indeed, this condition seems to be a true characterisation of those graphs that
can be handled by the algorithm, or equivalently of those matrices whose permanent
we can efficiently approximate by this method. Since the condition is rather unfamiliar,
it deserves further investigation. One worthwhile activity is to come up with simpler
deterministic criteria that guarantee the condition holds. We have already seen one
such criterion in § 3, namely that the graph is dense. Another criterion, due to Dagum
et al. [9], is that the graph is bipartite and contains an an-regular subgraph for some
real a > 0. However, as we will see in the next section, it turns out that the condition
is a rather weak one and is, in fact, satisfied by almost all (bipartite) graphs. In other
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words, there exists a fixed polynomial g such that almost every graph is g-amenable.
Thus of more practical interest is the problem of testing efficiently for any given graph
whether the condition holds. Such a test would enable us not only to approximate the
permanent in almost all cases, but also to reliably identify difficult instances.

We now present an efficient randomised algorithm that tests the condition in the
following strong probabilistic sense. Let g be a polynomial. When given as input a
2n-vertex graph G containing a perfect matching and a positive real § > 0, the algorithm

(i) Accepts with probability at least 1 -8 if |[M,_,(G)|/|M,(G)|= q(n);

(ii) Rejects with probability at least 1— 8§ if |[M,_,(G)|/|M,.(G)|> 6¢(n).

For intermediate values of the ratio, we do not care whether the algorithm accepts or
rejects. (The value 6 here is used for illustrative purposes only and may be replaced
by any fixed constant greater than 1.) Furthermore, the runtime of the algorithm will
be bounded by a polynomial in n and 1g 6"

Before presenting the algorithm we make precise its implications for counting
perfect matchings. Consider the following combined procedure, whose input is an
arbitrary 2n-vertex graph G:

(1) Using a standard polynomial time algorithm, test whether G contains a perfect
matching. If not, output 0 and halt.

(2) Apply the above randomised test for the condition |M,,_,(G)|/|M,(G)| = q(n),
having set an error probability § =27". If the algorithm rejects, output “Graph is not
g-amenable” and halt.

(3) Using the approximation scheme of Fig. 2 with g(n) replaced by 6g(n) (and
the test of line (1) omitted), estimate |M, (G)| and output the result.

This procedure will run in polynomial time for any desired polynomial g. There
are two ways in which it may produce a misleading result. With probability at most &
it may falsely claim that the input graph G is not g-amenable. Or, again with probability
at most §, it may output an unreliable approximation to |M, (G)| obtained under the
false assumption that |M,_,(G)|/|M,(G)|=6q(n). Since & decreases exponentially
with n, the procedure will, with very high probability, produce a result that is not
misleading. This will either be a statement that G is not g-amenable, or a reliable
approximation of | M, (G)|.

We now show how to construct the testing algorithm advertised above. It again
makes use of the weighted Markov chain generator ¢ for matchings and is extremely
simple to describe:

(1) Make T calls of the form 4(G(2q(n)), 1/16), and let p be the proportion of
perfect matchings among the outputs. ( T will depend on the input 8 as specified below.)

(2) If p=3/8 accept, otherwise reject.

To see that this algorithm works, consider the stationary distribution of the Markov
chain M %,,4(G(2q(n))), and let p denote the probability of being at a perfect matching.
Writing as usual m, in place of |[M,(G)|, Corollary 5.2 implies that

for 0= k = n. Hence in the case that m,_,/m, = q(n) we have

m(2q(n)" 2"

1
7 =y =on =
) i mi2q(m)F - 2F 2




Downloaded 04/07/14 to 128.32.45.116. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

APPROXIMATING THE PERMANENT 1171

On the other hand, if m,_,/m, > 6q(n) we have

m,(2q(n))" m, 1
m,(2q(n))"+m,_,2q(n))""" " m,+3m, 4

IA

p

An elementary statistical argument now shows that, by taking T = « 1g 6 ' for a suitable
constant «, we can arrange for

=z1-6 ifm,_y/m,=q(n),

~2_3_
Pr (p—s){éﬁ if m,_,/m,>6q(n).

The runtime of the algorithm is therefore bounded as required.

Remark. 1t is often desirable to be able to count matchings of any specified
cardinality in a given graph. In the context of the monomer-dimer systems of the
previous section, these correspond to configurations with a given number of dimers.
Obviously, the procedure of Fig. 2 may be modified so as to yield an fpras for | M, (G)|
in graphs G for which the ratio |M,_,(G)|/|M\(G)| is polynomially bounded. Such
graphs may again be identified efficiently using a minor variant of the above randomised
test. Note also that, under the same condition on G, we can easily adapt the algorithm
of Fig. 2 to produce an f.p. almost uniform generator for M, (G) for any desired k. o

We close this section with a slight digression. In recent years, a stochastic search
heuristic for combinatorial optimisation known as simulated annealing [21] has received
much attention. The basic idea is that a Markov chain explores a space of configurations
(feasible solutions), each of which has an associated cost or “energy.” In the stationary
distribution of the chain, low cost solutions have large weight so the chain tends to
favour them asymptotically. By progressively reducing a “temperature” parameter, the
weights are scaled so as to accentuate the depths of the energy wells. (Thus the process
is not in general time-homogeneous.) While such a process is known to converge
asymptotically under fairly general conditions (see, e.g., [13], [24]), virtually nothing
useful is known about its rate of convergence when applied to nontrivial problems.

Consider the problem of finding a maximum cardinality matching in a graph G,
which is nontrivial in the sense that all known polynomial time algorithms for solving
it are far from simple. For any ¢=1 we may take the Markov chain #(%,,4(G(c)) as
the basis for a simulated annealing algorithm for this problem: maximum cardinality
matchings will certainly have maximum weight, and “temperature” may be reduced
by increasing the edge weight c.

In [27], Sasaki and Hajek study the performance of algorithms of this kind. In
particular, they prove a positive result of the following form.

THEOREM 5.4. Let € >0 be any constant, G =(V, E) be an input graph, and k, the
maximum cardinality of a matching in G. Then a simulated annealing algorithm of the
above type, operated at a fixed temperature (which depends on G and ¢), finds a matching
in G of cardinality at least (1— &)k, with high probability in polynomial time.

(In the same paper they also prove a strong negative result that says that no
simulated annealing algorithm in this or a fairly large related class can be relied on
to find a maximum cardinality matching in polynomial time with high probability.)

Sasaki and Hajek’s proof'is lengthy and complex. In contrast, we offer the following
argument which rests directly on our earlier results.

Proof. Define ¢, =2|E|"'"**. We claim that, in the stationary distribution of the
Markov chain #%€,,4(G(c.)), the probability of being at a matching of size k=
[(1—¢)ko] or more is greater than ;. Note that the theorem then follows at once: by
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Corollary 4.3 a polynomially bounded simulation of #%,,4(G(c,)) suffices to ensure
that we visit a matching of size k or more with probability at least (say) j. This can
be boosted to 1— 8 by repeating the entire experiment O(lg ') times. (However, in
common with [27], our time bound increases exponentially with ¢7'.)

To justify the claim, note from Corollary 5.2 that

ky—k+1
0 m;_ Mp_1\°
(18) My = My, . 1§<—k_l) .
+ mk

(Here we are using the fact that m, =1.) But since j-matchings in G are subsets of E
of size j, there is also the crude upper bound m,_,=|E|*"'. Hence from (18) we
conclude that

(19) _"_'i<:_1_§|E|(1—s)/e=&.
my 2

A further application of Corollary 5.2 now shows that m;/ m, = (c,/2)* "' for 0=i=k,
so the aggregated weight of matchings of size less than k is

k—1 k-1

Y mgcl= < ¥ 2“") myck < myck.

i=0 i=0
It is now immediate that the probability of being at a matching of size k or more is
at least 3, completing the proof. 0O

Remark. Inequality (19) provides a polynomial upper bound on the ratio my_,/ my,

so from our earlier observations we are able to count and generate matchings of any
cardinality up to (1—¢)k, in arbitrary graphs which contain a k,-matching. 0

6. Random permanents. For any polynomial g, the algorithm presented in Fig. 2
of the previous section is an fpras for the number of perfect matchings in a g-amenable
graph G. For a bipartite graph G with 2n vertices, and q(n) = n*, we have observed
a sufficient condition for g-amenability, namely that the minimum vertex degree of G
should be at least n/2. We have also observed that this result is the best possible, in
the sense that, for any & > 0, there exists a family of graphs of minimum vertex degree
at least n/(2+8) for which [M,_,(G)|/|M,(G)|=exp{Q(n)}.

The aim of this section is to demonstrate that these counterexamples are patho-
logical, and that a randomly selected bipartite graph with given edge density—even
when that density is small—will almost surely be g-amenable for some suitably chosen
(fixed) polynomial gq.

Let n be a positive integer, and p a real number in the interval (0,1). We will
work with the probability space of bipartite graphs G, , constructed according to the
following random graph model. The vertex set of G,, is U+ V where U=V =
{0, - - -, n—1}, and each potential edge (i.e., element of U x V) is included in the edge
set of G,,, independently and with probability p. (In the sequel, G,,, will always denote
a graph randomly selected according to this model.) We say that an event A in this
model occurs with overwhelming probability if 1—Pr (A)= 0O(n~*) for all integer k.
(The O-expression here is a function of n only, and is independent of p.)

The main result of the section (Theorem 6.4) is that for most values of p, and for
a suitably chosen (fixed) polynomial g, the graph G, , is g-amenable with overwhelming
probability. Thus, in probabilistic terms, the approximation scheme of Fig. 2 has very
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wide applicability. Recall also that the rare examples that the scheme cannot handle
reliably may be identified using the randomised test of the previous section. We
approach Theorem 6.4 via a sequence of three technical lemmas, the proofs of which
are deferred.

LEMMA 6.1. Let £ >0 be a fixed constant, and let p=(1—¢)n~"In n. Then, with
overwhelming probability, G, , has no perfect matching.

Call a graph (k, m)-expanding [7, p. 327] if every k-subset of U is adjacent to at
least m vertices of V, and vice versa.

LEMMA 6.2. Let € >0 be a fixed constant, p=(1+¢e)n 'Inn, and a =pn/Inin n.
Then, with overwhelming probability, G, , is (k, m+1)-expanding for all integers k and
m that satisfy the inequalities k=1n n/In pn, m = ak, and m=n/2.

LEMMA 6.3. Let p=n~"1In n. Then, with overwhelming probability, the maximum
vertex degree of G, , does not exceed pn In n.

THEOREM 6.4. Let £ >0 be a fixed constant, and let p lie outside the interval

((1—=e)n'Inn,(1+€)n""Inn).

Then, with overwhelming probability, the graph G, , is g-amenable for q(n) = n'’.
Proof. Let A, denote the event |M,(G,,)| =0, and A, the event

IM.(G,,)|>0 and  [M,_(G,,)l/IM,(G,,)|=n".

The event that the graph G, , is g-amenable is the disjunction of the events A, and
A,. If p=(1—¢)n"Inn then, by Lemma 6.1, event A, occurs with overwhelming
probability. So from now on we assume that p=(1+¢)n~"Inn.

Let B be the event that G,, is (k, m+1)-expanding for all k, m in the ranges
allowed in the statement of Lemma 6.2; let C be the event that the maximum degree
of G,, does not exceed pnIn n. Suppose, as we will prove, that the event A, is a
logical consequence of the events B, C, and A, (the complement of A,), that is to say,
A,2BNCNA,. Then, by elementary set theory, A,UA,2A,U(BNCNA,2
(BN C). Thus, Pr(A;UA,)=Pr (BN C)=1-Pr(B)—Pr(C). The theorem follows
from the estimates for Pr (B) and Pr (C) provided by Lemmas 6.2 and 6.3.

To complete the proof, we need to show that any graph G = G, ,, that satisfies B,
C, and A, must also satisfy A,. Our strategy is to demonstrate that every (n—1)-
matching M in G can be extended to a perfect matching of G by augmentation along
a short alternating path. (An alternating path is a path in G whose edges lie alternately
inside and outside the matching M.) Since every (n —1)-matching is “close to” some
perfect matching, the ratio of (n—1)-matchings to perfect matchings cannot be very
large. (A similar technique was used in the proof of Theorem 3.2.)

So let M be any (n—1)-matching in G. For se U+ V, Tc U+ V and i a positive
integer, denote by I',,,(s, T) the set of vertices in T that can be reached from vertex s
by an alternating path of length at most i. Set L= (1+¢,(n)) In n/In pn, where ¢, is a
positive real function that tends to zero (and that will be defined implicitly later in
the proof). We will prove that M can be extended to a perfect matching via a path of
length at most 8L.

Let ue U, ve V be the vertices of G that are left uncovered by M. Consider the
set 25 Y(u, V). If veT'2i7'(u, V) then we are done, so assume the contrary. For any
i in the range 1=i< L, we have the inequality |T'2{(u, U)|>[T'2; ' (u, V)|. To see this,
note that [ '(u, V)| vertices in U can be reached from vertices in I'Z}; '(u, V) via a
single edge in M, and that these vertices do not include u, which can be reached by
the null alternating path. Moreover, |T'2i;"' (4, V)| Z|T3(u, U)| since G is assumed to
contain a perfect matching. (This is the trivial direction of Hall’s Theorem.) Putting
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the inequalities together we obtain |I'Z;"'(u, V)|>|I'Z'(u, V)|, and, by iteration,
ITa ' (w, V)| = L.

We continue the process of computing lower bounds on |I',,,(u, V)| for increasing
i, but now using the improved expansion factor provided by Lemma 6.2. (Note that
k=|2:""(u, V)|= L>1n n/In pn, the threshold stipulated in the lemma.) For i=L
we have |IZ"'(u, V)|Zmin{a|l% (4, V)|, [n/2]}, where a=pn/Inlnn. Thus,
[Tax""(u, V)| Zmin {|T2; " (u, V)|a®, [n/2]}. Since

nn

aL=exp{(1+£,(n)) (Inpn—Ininln n)}gn

1
In pn

for suitably chosen &,(n)-0, we deduce that [Ta; (4, V)|=[n/2]. A symmetrical
argument gives |45 '(v, U)|= [n/2]. Since some pair of vertices in 'y '(u, V) and
4L (v, U) must be connected by an edge of M, there must exist an augmenting path
for M of length not greater than 8L —1.

Finally, associate with each (n —1)-matching M of G a perfect matching M that
is reachable from M via an augmenting path of length at most 8L — 1. For each perfect
matching Pe M,(G), let #(P)={MeM,_,(G): M=P} be the set of (n—1)-
matchings associated with P; clearly, {%(P): P M,(G)} is a partition of the set
M, _,(G). To complete the proof, it is sufficient to show that the cardinality of J#(P)
is bounded above by n'°, for sufficiently large n.

Let M be an element of % (P). By definition, M can be reached from P by
unwinding an alternating path of length less than 8 L. We can view the construction
of such an alternating path as a sequence of choices. First select one of the n vertices
of U as a starting point. Then, at each of at most 4L points during the tracing of the
path, namely, each time the path visits a vertex v in V, select one of at most pn In n
possible next moves: either terminate the path at v, or extend it along one of the
pnln n—1 free edges incident at v. (Recall that G has maximum degree pn In n, and
note that moves from U to V are forced.) Thus the number of possible augmenting
paths, and hence the cardinality of J(P), is bounded above by

)41_ 1+8(1+¢,(n))

n(pninn)**=nexp{4L(Inpn+inlnn)}=nexp{8LInpn}=n
Since &,(n) >0 as n— o, the cardinality of % (P) is bounded by n'® for sufficiently
large n. |

Remark. Neither event A, nor A, need, in isolation, occur with overwhelming
probability, only their disjunction. This can be demonstrated by setting p=gn""In n,
where B is any constant greater than 1. O

The condition on p in Theorem 6.4 is an unfortunate blemish. Alan Frieze [34]
has indicated that the condition can be dropped at the expense of a slight weakening
of the conclusion: g-amenability would now hold with probability tending to 1 as n
tends to infinity, rather than with overwhelming probability.

We close the section by providing proofs of the three technical lemmas, using
standard techniques from the theory of random graphs.

Proof of Lemma 6.1. The probability that G, , has a perfect matching is certainly
less than the probability that no vertex in U is isolated (has degree zero) so it is enough
to bound the latter probability. Our calculations will make free use of the inequalities
1—t=exp (—t—1°) and 1 —t = exp (—1), the first of which is valid for 0=¢<0.69, and
the second valid unconditionally [7, p. 5]. First consider the probability that a particular
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vertex u e U is isolated:

Pr (u is isolated) = (1—p)”
zexp {n(-p-p*)}
zexp{—-(1—¢)Inn—n""In?n}
=n"""4o(n).
Thus, the probability that no vertex in U is isolated is {1—-(1—p)"}"'=
exp{—n(1—-p)"}=exp{—n‘+o(1)}. 0
Proof of Lemma 6.2. Denote by Ay, the event that G, , is (k, m+1)-expanding.
It is clearly enough to show that, for arbitrary k, m satisfying the given inequalities,
the event Ay, occurs with overwhelming probability. Furthermore, since Pr (Ay,,)
increases monotonically with k, it is sufficient to show that the event A, occurs with
overwhelming probability for k and m satisfying In n/Ilnpn=k = [n/2a], and m = ak.
Let U’ be an arbitrary k-subset of U. The set of vertices in V which are adjacent
to U' in G,, may be modelled as a sequence of n Bernoulli trials with success

probability g = 1— (1 — p)* Thus the probability that U’ is adjacent to at most m vertices
in Vis

m n e

£ (M-

=0 \ [

and the probability Pr(A,,) that G, , fails to be (k, m+1)-expanding is bounded
above by

(20) 2(,’2) T (?)q'(l—q)"".

By Chernoff’s bound [12, p. 18] and using the inequality

(0= (D) =3(5)
k) “V2#xk\k) ~2\k

the failure probability (20) may be bounded as follows:

(1-g)n

_ 1-
(21) Pr(Akm)éexp{(n~m)ln
n—m k
Since ¢=1-(1-p)*, we have the relations 1— g =exp (—pk) and g = pk; employing

these in inequality (21), we obtain

+m1nﬂ'~’+k1nﬂ}.
m

n

Pr(Akm)éexp{—pk(n—m)+(n—m)1n +mlnp—kn+klngr—1}.

n—m m k

Further simplification, using the fact that In (n/(n—m)) =m/(n—m), yields
_ k
(22) Pr (Axm)=f(p, k, m)=exp {-—pk(n —m)+m<1 _an?n) +k ln%}.

Our goal is to bound Pr (A,,,) by maximising f(p, k, m) (viewed as a function of three
real variables) over the ranges p= (1+¢)n ' Inn,In n/In pn = k= [n/2a],and m = ak.

By differentiating (22) with respect to m we discover that, with p, k fixed and n
sufficiently large, f(p, k, m) is an increasing function of m. (Indeed it is sufficient for
n to be greater than 15, guaranteeing m = pkn/Inln n < pkn.) Thus, in attempting to
bound f(p, k, m), it is enough to consider those triples ( p, k, m) for which the inequality
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that governs m, namely m=ak, is actually an equality. Substituting k=m/a =
mInln n/pn in (22), our task is now to bound

2
fi(p, m)=exp{—m Inln n(l—m>+m(ln]n Innt1)mininm, _ epn }
n pn minlnn

over feasible p, m. Now, for fixed m, the function f; decreases with p. (For this we
need the inequality m = pkn/In In n.) So making the substitution p=(1+¢)n""'In n we
are further reduced to bounding the function

+ 1
fz(m)=exp{—m1nln n(l—%)-l—m(lnlnln n+1)+ mlInlnn e(ite)n nn}

n
(1+&)Inn mlinlnn
over feasible m. The argument to the exponential is a convex function of m, so we can

bound f,(m) by considering its values at the extremes of m’s range. A lower bound
for m is given by the chain of inequalities

2
= ak = pkn . pninn z( Inn \*_ .
Inlnn Inlnnlnpn \Inlnn

and an upper bound by

n 3n
m=ak=a E é—Z:mmax
where we have used the known bounds on k and p, and assumed n sufficiently large.
Substituting these extreme values in the expression for f,(m), we obtain

£ In®n
o =0 { (55000 155
So(mp.) =exp { —(%—o(l)) ninln n}.

The former bound is the weaker and hence is the one that determines the overall bound
on f(p,k,m). O

Proof of Lemma 6.3. ltis clearly enough to show that, with overwhelming probabil-
ity, the degree of an arbitrary vertex u € U is bounded by pn In n. The set of vertices
adjacent to u may be modelled as a sequence of n Bernoulli trials with success
probability p. The probability that §(u), the degree of u, exceeds m can be estimated
from Chernofl’s bound, using manipulations similar to those in the proof of Lemma 6.2:

(1-p)n

Pr(8(u)>m)=exp [(n—-m) In———+m lnﬂl}
n—m m

éexp{—p(n—m)+m+mln%}

conf o)

(Clearly we may assume m < n.) Now, substituting pn In n for m and notingp=n~"'In n,
we obtain

Pr(8(u)>pninn)=exp{—(1-o(1))In’nlnln n},

which decays faster than the reciprocal of any polynomial in n. ]
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7. Miscellaneous remarks and open problems. (i) The existence of an fpras for the
unrestricted permanent remains an intriguing open question. Whereas the requirement
that the ratio |M, _,(G)|/|M,(G)| be polynomially bounded arises very naturally from
our methods, there seems to be no a priori reason to suspect that graphs that violate
this condition are particularly hard to handle. Perhaps an fpras of a different kind can
be found for graphs in which the ratio is large. Alternatively, it is conceivable that
counting perfect matchings approximately in general graphs is hard, in the sense that
the existence of an fpras for this problem would imply that NP = RP. (Hardness results
of this kind for other structures appear in [16], [28].)

(ii) It would be interesting to know whether the ratio |M,_,(G)|/|M,(G)]| is
polynomially bounded for other natural classes of graphs, immediately yielding an
fpras for the number of perfect matchings. For example, this question is pertinent for
families of regular lattices encountered in statistical physics. Much effort has been
expended on counting perfect matchings in such graphs, and an elegant exact solution
obtained for planar lattices (or indeed arbitrary planar graphs [19]). The three-
dimensional case, however, remains open even in approximate form.

(iii) From a practical point of view, it would be interesting to know whether the
conductance bounds we have derived can be significantly improved. We make no claim
of optimality here, preferring to concentrate on giving a clear exposition of the rapid
mixing property. The practical utility of our algorithms, however, is likely to depend
on rather tighter bounds being available.

Similar considerations apply to our methods for estimating the expectation of a
0-1 random variable under the stationary distribution of a Markov chain. We have
chosen to view the chain as a generator of independent samples, partly to simplify the
statistical concepts involved and partly because the random generation problems are
of interest in their own right. In contrast, Aldous [2] considers estimates derived by
observing a Markov chain continuously and formulates the definition of rapid mixing
directly in terms of the variance of such an estimate. This approach may lead to
increased efficiency.

(iv) A wider issue is the extent to which the techniques of this paper can be
applied to the analysis of natural Markov chains whose states are combinatorial
structures other than matchings. Since these chains are usually time-reversible, the
conductance characterisation of rapid mixing presented in § 2 can in principle be
applied. We conjecture that this is possible in practice for other interesting chains,
and that the path counting technique developed in this paper is a promising general
approach for obtaining positive results. It is to be hoped that this will yield efficient
random generation and approximate counting procedures for further structures.
Moreover, it may lead to rigorous performance guarantees for Monte Carlo experiments
in statistical physics, and a demystification of currently fashionable stochastic optimisa-
tion techniques such as simulated annealing.
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