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PREFACE

We consider some algorithmic problems associated with matroids. These prob-
lems are computationally intractable if we insist on exact solutions, so we con-
centrate instead on producing approximate solutions within specified relative
error. Technically we shall be seeking a “fully polynomial randomised approxi-
mation scheme” or “FPRAS”. First we consider the problem of counting matroid
bases. Feder and Mihail presented a polynomial time algorithm for approximat-
ing the number of bases in “balanced” matroids. We describe their algorithm,
and present an improved analysis due to Jerrum and Son. Then we widen the dis-
cussion to the considerably more general problem of (approximately) evaluating
the Tutte polynomial. This is a two-variable polynomial T'(M;x,y) associated
with a matroid M that encodes much information about M. In particular, the
number of bases of M is equal to T'(M;1,1). We review what is known about
the complexity of approximating the Tutte polynomial, and extend the boundary
some way. (This section describes recent joint work with Leslie Goldberg.) We
conclude with some speculations.
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PRELIMINARIES

Let E be a ground set of size m and B C 2¥ a collection of subsets of E. We
say that B forms the collection of bases of a matroid M = (E, B) if the following
exchange axiom holds:

For every pair of bases X,Y € B and every element e € X \ Y, there
exists an element f € Y\ X such that X U {f}\ {e} € B.

It is an easy consequence of the exchange axiom that all bases have the same size,
and this is the rank r of M. The exchange axiom captures the notion of linear
independence. Thus if S = {ug,...,um—1} is a set of n-vectors over a field K,
then the maximal linearly independent subsets of S clearly satisfy the exchange
axiom, and hence form the bases of a matroid with ground set S. The rank of
this matroid is the dimension of the vector space spanned by S. A matroid that
arises in this way is vectorial, and is said to be representable over K. A matroid
that is representable over every field is regular.

Several other equivalent axiomatisations of matroid are possible, each shed-
ding different light on the notion of linear independence, but the above choice
turns out to be the most appropriate for our needs. For other possible axiomati-
sations, and more on matroid theory generally, consult (Oxley, 1992) or (Welsh,
1976).

The advantage of the abstract viewpoint provided by matroid theory is that
it allows us to perceive and exploit formal linear independence in a variety of
combinatorial situations. Most importantly, the spanning trees in an undirected
graph G = (V, E) form the bases of a matroid of rank r» = |V| — 1, the cycle
matroid of G, with ground set E. A matroid that arises as the cycle matroid of
some graph is called graphic. It is well known that the number of spanning trees of
a graph may be computed efficiently, specifically in time |V|?, using Kirchhoff’s
Matrix-tree Theorem. Perhaps less well know is the fact that the same basic
approach extends to counting the bases of a regular matroid. (Regular matroids
are a strict superset of graphic matroids.) It can be shown that the bases of a
regular matroid are in 1-1 correspondence with the non-singular r X r submatrices
of an r X m unimodular matrix, and that the number of these can be computed
using the Binet-Cauchy formula. Refer to (Dyer and Frieze, 1994, §3.1) for more
detail.

For reasons explained in §3.1, we do not expect to find an efficient algorithm
for computing the number of bases for much wider classes of matroids. However,
there is no reason to suppose that we cannot efficiently estimate the number
of bases in a sense we now make precise. A counting problem is a function f :
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2* — N mapping problem instances (e.g., a particular matroid M, encoded
over a finite alphabet %) to natural number solutions (e.g., the number of bases
of M). A randomised approzimation scheme for f is a randomised algorithm that
takes as input an instance w € X*, and an error tolerance £ > 0, and outputs a
number N € N (a random variable of the “coin tosses” made by the algorithm)
such that, for every instance w,

Prle™ f(w) <N < e f(w)] >

S TS

. (1.1)

We speak of a fully polynomial randomised approximation scheme, or FPRAS,
if the algorithm runs in time bounded by a polynomial in |w| and e~!. The
threshold % appearing in (1.1) could be replaced by any number in the open
interval (3,1) without material change.

A key algorithmic question is: does there exist an FPRAS for estimating
the bases of an arbitrary matroid? To make the question precise, it is necessary
to specify how matroids are to be encoded as problem instances. In the case
of vectorial matroids, a natural convention would be list the vectors forming
the ground set. More generally, one could specify a matroid M by providing
an “oracle” that, when presented with a subset of the ground set, is able to
pronounce on whether or not it is an independent set of M. (A set I C E
is independent if it is contained in some basis. There are technical reasons for
preferring an independence oracle to a basis oracle.) This is a very liberal setting
which admittedly takes us a little outside the formal definition of “counting
problem” given earlier. It is the one we shall tacitly adopt in §2, which brings
together much of what is known about the basis counting problem.

Later, in §3, we shall widen the scope considerably. The Tutte polynomial
T(M;z,y) of a matroid M is a two-variable polynomial that encodes much fas-
cinating information about M. For example, T'(M;1,1) counts bases in M, the
subject of the first part of the article. But many other points and curves in the
(z,y)-plane are also of interest: for example T'(M;2,1) counts independent sets
of M, while the hyperbola (z—1)(y—1) = 2 corresponds to the partition function
of the Ising model at varying temperatures.

Dominic Welsh and coauthors initiated the study of the computational com-
plexity of the Tutte polynomial. In a series of papers, starting with (Jaeger,
Vertigan and Welsh, 1990), they obtained almost complete information about
the computational complexity of evaluating the Tutte polynomial exactly, for
various classes of matroids. It transpires that the Tutte polynomial is computa-
tional intractable (in a precise sense that will be explained in §3.1) except at a
small number of “special points and curves” depending on the class of matroids
from which the problem instance is selected. Steven Noble’s article in this volume
describes this work.

In light of the almost everywhere hardness of the Tutte polynomial, it is nat-
ural to consider the computational complexity of approximate computation. Jer-
rum and Sinclair’s approximation algorithm (FPRAS) for the partition function
of the ferromagnetic Ising model holds out some hope for positive results (Jerrum
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and Sinclair, 1993). Indeed, Dominic Welsh had already made some first steps
in the study of the computational complexity of approximating the Tutte poly-
nomial (Welsh, 1994). The existing results are fragmentary; we describe what is
known, and make a definite advance. More remains to be done.
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COUNTING MATROID BASES

In order to estimate the number of bases in a matroid in the FPRAS sense
it is enough to be able sample bases almost u.a.r. (uniformly at random) in
polynomial time. The notion that the size of many combinatorially defined sets
may be inferred with small error from relatively few random samples is quite
standard, and in §2.3, we’ll sketch how this may be accomplished in the case of
matroid bases. For the time being, we’ll turn to the problem of sampling bases
almost u.a.r. The approach adopted is the by now quite standard one of Markov
chain simulation.

2.1 Bases-exchange graph

The exchange axiom presented at the start of this article suggests a natural
walk on the set of bases of a matroid M. The bases-exchange graph G(M) of a
matroid M has vertex set B(M) and edge set

{{X,Y}: X,Y € B(M) and | X @ Y| =2},

where @& denotes symmetric difference. Note that the edges of the bases-exchange
graph G(M) correspond to the transformations guaranteed by the exchange ax-
iom. Indeed, it is straightforward to check, using the exchange axiom, that the
graph G(M) is always connected. By simulating a random walk on G(M) it is
possible, in principle, to sample a basis (almost) u.a.r. from B(M). Although
it has been conjectured that this random walk is rapidly mixing for all ma-
troids M, the conjecture has never been proved and the circumstantial evidence
in its favour seems slight. By “rapidly mixing” we mean that its “mixing time”
(roughly, the number of steps taken to converge to near-equilibrium) is bounded
by a polynomial in m, the size of the ground set. Precise definitions will be given
presently.

Nevertheless, there is an interesting class of matroids, the “balanced” ma-
troids, for which rapid mixing has been established. The definition of balanced
matroid is due to (Feder and Mihail, 1992), as is the proof of rapid mixing. In
this article, we diverge from their analysis in order to achieve a tighter bound
on mixing time.

2.2 Balanced matroids

Two absolutely central operations on matroids are contraction and deletion. An
element e € E is said to be a loop (resp., coloop) if it occurs in no basis (resp.,
every basis). If e € E(M) is an element of the ground set of M then, provided
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e is not a coloop, the matroid M \ e obtained by deleting e has ground set
E(M\e)=E(M)\ {e} and bases B(M \e) ={X C E(M\e): X € B(M)}.
Provided e is not a loop, the matroid M /e obtained by contracting e has ground
set E(M/e) = E(M) \ {e} and bases B(M/e) = {X C E(M/e) : X U {e} €
B(M)}. Any matroid obtained from M by a series of contractions and deletions
is a minor of M.

Suppose a basis X € B(M) is chosen u.a.r. The matroid M is said to possess
the negative correlation property if the inequality Pr(e € X A f € X) < Pr(e €
X)Pr(f € X) holds for all pairs of distinct elements e, f € E. Another way of
expressing negative correlation is by writing Pr(e € X | f € X) < Pr(e € X);
in other words the knowledge that f is present in X makes the presence of e
less likely.! Further, the matroid M is said to be balanced if all minors of M
(including M itself) possess the negative correlation property. Feder and Mihail
showed that regular matroids (and hence graphic matroids), are balanced (Feder
and Mihail, 1992). So the class is not without interest, even if it does not include
all matroids.

2.3 The mixing time of the bases-exchange walk

The mixing time of the bases-exchange walk for balanced matroids was first
analysed by (Feder and Mihail, 1992). Here we shall provide a tighter analysis
of its mixing time by computing the logarithmic Sobolev (“log-Sobolev”) con-
stant. The raw materials are as follows. (Gross, 1975) introduced the log-Sobolev
constant. (Diaconis and Saloff-Coste, 1996) pioneered the application of the log-
Sobolev constant to bounding the mixing time of finite Markov chains. (Jerrum
and Son, 2002) analysed the log-Sobolev constant for the bases-exchange walk,
thus obtaining an improved bound on mixing time. All the key steps in the ar-
gument are presented here, but for a detailed account refer to (Jerrum, 2004;
Jerrum, 2005).

Before proceeding, let’s give a precise description of the walk. What we have
is a Markov chain on state space 2 = B(M) whose transition probabilities
P : 2% — [0,1] are given by the following trial, in which the initial state is
Xo € 2:

1. Choose e u.a.r. from Xy, and f uv.a.r. from E.

2. Y =XoU{f}\{e} € B then X; =Y; otherwise X; = Xj.

The new state is X;. It is a easy consequence of the exchange axiom that the
Markov chain is ergodic. Note that all non-zero transition probabilities are equal
to p = 1/rm where r is the rank of M and m = |E(M)|. Note further that the
transition probabilities are symmetric, so the (unique) stationary distribution
7 : {2 = [0,1] of the Markov chain is uniform.

Since our goal is to sample a state (basis) u.a.r., we are interested in how
quickly the Markov chain converges to stationarity. The most common measure
of rate of convergence is the (¢1-) mixing time:

1We assume here that Pr(f € X) > 0, i.e., that f is not a loop.
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7 = maxmin {¢: |P4(s,") — rllrv <™},

where P!(z,-) denotes the t-step distribution conditioned on starting in state z,
and || - ||Tv denotes total variation norm

lollry =5 3 lo(@)]

€N

We say that the Markov chain is rapidly mizing if 7 is bounded by a polynomial
in the size of some natural measure of instance size, in our case m, the size of the
ground set. Ideally, we would of course like the polynomial to be of low degree.
Tight upper bounds on mixing time can sometimes be derived through con-
sideration of the log-Sobolev constant of the Markov chain. The ingredients for
this are the Dirichlet form
Erlp.0) =5 Y w(@)Pau)e() — o),

z,YyEN

and the entropy-like quantity

Lr(p) =Ex [¢*(In¢? = In(Ex )]
A logarithmic Sobolev inequality has the form
Ep(p,0) > al.(p), forall p: 2 — R, (2.1)

where a > 0 is the logarithmic Sobolev constant.
For time-reversible Markov chains, the mixing time 7 is related to a by

7<(4+Inln7*)/4a, (2.2)

where 7* = min, 7(z) (Diaconis and Saloff-Coste, 1996, Cor. 3.11). Those au-
thors actually prove a stronger inequality, since their 7 is defined relative to the
more demanding £>-norm. In our case, Inln(1/7*) <Inln (7") <Inm.

We compute a bound on the log-Sobolev constant of the bases-exchange walk
via an inductive argument. Recall that the state space 2 = B is the set of all
bases. Let e € E be arbitrary element of the ground set that is not a loop
or a co-loop. (Loops and coloops may be eliminated by performing a deletion
or contraction, respectively.) Partition the state space into two sets 2 = () U
£y, where 2y (resp, {21) are the bases (states) that exclude (resp., include) the
element e. Denote by 7 the stationary distribution of the MC (which is just the
uniform distribution on 2) and by 7o (resp, 1) the distributions induced by 7
on (2 (resp., £21), which are themselves of course uniform.

With respect to this partition of the state space, we have the following de-
composition of the Dirichlet form:

gP((,D, 90) = 7-(('90)5130 (907 (P) + 7‘—('Ql)gP1 (907 (P) + Ca (23)
where
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Enlp @) =5 X m@Pry)e) - o)’
Y€
and
c= > w(@)P(z,y)(ex) - o))

T€R20,yE N

Likewise, for the entropy-like quantity £ (¢):

CW(QD) = 7T('QO)‘CWO ((P) + Tr(‘Ql)‘CTH ((P) + ‘Cﬂ (Qb )a (24)
where
L, (9) = B, [0 (Ing® —In(Er, °))]
and
Le(@)= > 7(2)[(Ex, ¢*) (In(Er, 9*) — In(Er ¢%))]. (2.5)
v=0,1

The use of the notation £, (@) for the expression on the right hand side of (2.5)
is justified, provided we interpret ¢ : £2 — RT as the function that is constant
VEqg, f2on 2, for b=0,1.

Our aim to exploit (2.3) and (2.4) to synthesise an inequality of the form
Ep(p,p) > aL;(p) from ones of the form

Ep,(p,p) > ap Ly, (p) and C>al.(p). (2.6)

The inequalities Ep, (¢, ¥) > ap Lr, (@), for b = 0,1, will naturally be our induc-
tive hypotheses. (Note that o and Q; can be regarded as the sets of bases of
the matroids M \ e and M/e formed by deletion and contraction of/along e.)
The derivation of C > a L;(@) is by way of algebraic manipulation, for which
we need the following.

Lemma 2.1 With L,.(@) defined as in (2.5),

‘cw((ﬁ) S (\/]Eﬂ'o 302 - \/]Eﬂ'l 802 )2'

Lemma 2.1 can be viewed as a statement about the log-Sobolev constant of a
two-point space. It is a weakening of (Diaconis and Saloff-Coste, 1996, Thm. A.2);
but since it is much easier to prove than the sharp inequality, we provide a short
derivation at the end of this section.

A key consequence of balance, observed by Feder and Mihail, is that the
transitions of the Markov chain that span (2, and {2, support a certain kind of
fractional matching. Precisely:

Lemma 2.2 Suppose P, (%, (1, mg and w1 are as above. Then there is a func-
tion w : & x 1 — RT such that (i) 32, o w(z,y) = mo(z), for all z € ;
(1) D peq,W(@y) = m(y), for all y € (h; and (iii) w(z,y) > 0 entails
P(z,y) > 0, for all (z,y) € 2y X 2.
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Proof See (Feder and Mihail, 1992, Cor. 3.3). O

Observe that »°,  w(z,y) = 1, so w(-,-) can be regarded as a probability
distribution on edges. Those familiar with coupling arguments will immediately
see that Lemma 2.2 can be interpreted as guaranteeing a coupling of certain
random variables (r.v’s) that is supported on the edges of the bases-exchange
graph. Specifically, let (Go,G1) € R? be the r.v. defined on (2y X £2;,w) as
follows: select (z,y) € £ x £2; according to the distribution w(-,-) and return
(Go,G1) = (p(x)?,0(y)?). Then, using E,, to denote expectations with respect
to the sample space just described,

Lr(p) < (\/]Efro 0% — \/]Em ¥? )2
VE, Gy — VE,G1)?
E, [(\/CT -G )2] by Jensen’s inequality
Yo wiay) (o) - o)’

(z,y)€20 % 21

() ) |
< (W%w (0] P@ — ) by Lemma 2.2()

IN

1
= (@) (z,y)ezﬂoxﬂlﬂ(m)P(m’y)((p(x) — ()

2
=p" 2.7)

where we have assumed, by symmetry, that 7(£2) > 7(£2;) and hence 7(£2) > 3.
Here, p = 1/rm is the uniform transition probability for the bases-exchange walk.

Comparing (2.7) with (2.6), we see that we may take @ = 2/p. Then, substi-
tuting (2.6) into (2.3) and (2.4) we arrive at the (trivial) recurrence

QU p > min{a,_1 p, p/2},

for the log-Sobolev constant a,,, of the bases-exchange walk of a balanced ma-
troid on a ground set of size m, and uniform transition probability p. Thus, by
a trivial induction, @, , > p/2. We have thus established.

Theorem 2.3 The logarithmic Sobolev constant of the bases-exchange walk of
a balanced matroid M is bounded below by 1/2rm, where r is the rank of M and
m the size of its ground set.

This bound is tight, up to a constant factor, as can be seen by taking the
function ¢ that is constant —1 on (2 and constant 1 on (2;.

Corollary 2.4 The mizing time of the bases-exchange walk of a balanced ma-
troid is O(rmlogm).
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Proof Apply inequality (2.2). O

We now have an efficient procedure for sampling bases of a balanced matroid
almost u.a.r: simulate the bases-exchange walk for O(rmlogm) steps and return
the current state (basis). Given this sampling procedure, the construction of an
FRPAS for counting bases of a balanced matroid is now routine. The strategy,
in brief, is the following. By collecting random samples from 2, estimate the
ratio || : |f21| to sufficient accuracy. Suppose, w.l.o.g, that |2| > |f21|. Now
recall that (2 is isomorphic to B(M \ e). Recursively, compute an estimate for
|29| = |B(M\e)| and multiply it by the previously obtained estimate for |£2|/|2|.
The result is an estimate for 2| = |B(M)|. (The reason for recursing on the larger
subset of the partition is to control the variance of the estimator for |£2|/](2|.
If the two sets are of roughly equal size it doesn’t matter which we choose.) An
analysis of the sample sizes required to achieve sufficient accuracy yields:

Corollary 2.5 There is an FPRAS for estimating the number of bases of a
balanced matroid, with running time O(rm?>logm).

In this corollary and the previous one we have suppressed the dependence of
the running time on the parameter controlling “accuracy”: closeness to unifor-
mity in the case of Corollary 2.4, and permitted relative error in the result in the
case of Corollary 2.5. A complete analysis would obviously need to track these
dependencies. See, e.g., (Jerrum, 2003, Prop. 3.4) for details. We have also tac-
itly assumed that M is presented as an “independence oracle”, so that each step
of the bases-exchange walk can be simulated in constant time. This assumption
may not always be realistic.

We close the section with the promised:

Proof of Lemma 2.1 Let r and s be positive numbers with r + s = 1. To
prove Lemma 2.1 is is enough to establish the inequality

r{%ni—}—sn%nL < (€ —n)?
r€2 + sn? r€2 +sn? — ’
for all £,p € R
Applying the inequality Ina < a — 1, which is valid for all a > 0:

2 2 2_ 2 2 _ g2
T£2 In é- + 87}2 In n 7"§2 3(5 Ui ) 8772 T(n € )
r&2 + sn? r&2 4 sn? r&2 + sn? r&2 + sn?
_rs(&® —n?)?
O r€2 4 a2
_rsEn)? o
r€2 + sn?
< (E-n
To verify the final inequality, first note that by scaling one may assume that

&+ n = 1; it is then easy to see (by calculus) that the extremal case is when
E=sandn=r. O
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2.4 Matroids in general

Not all matroids are balanced. However, it has on occasion been conjectured that
the bases-exchange graph of any matroid has edge expansion 1. If true — and it
would be a remarkable result in its generality — then the bases-exchange walk
would be rapidly mixing for all matroids, and there would be an FPRAS for
counting bases of unrestricted matroids in the independence-oracle model. On
the other hand, if there are classes of matroids that do not admit an FPRAS, then
a proof of this fact (modulo some reasonable complexity-theoretic hypothesis)
seems some way off. One thing that is known for certain is that any efficient
approximation algorithm based on an independence oracle must necessarily be
randomised (Azar, Broder and Frieze, 1994).
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THE TUTTE POLYNOMIAL

The Tutte polynomial of a matroid M = (E, B) is a two-variable polynomial T
defined by
T(M;z,y) = Y (x— 1)) Wy — )4, 3.1)
ACE

where r(A) denotes the rank of A, i.e., the size of the largest independent set
contained in A. Evaluations of the Tutte polynomial at various points and along
various curves in R? yield much interesting information about M .2 For example,
T(M;1,1) is equal to the number of bases of M and T(M;2,1) to the number of
independent sets. In the case when M is the cycle matroid of a graph G, and ¢ a
positive integer, T'(M; 1—g, 0) is the number of g-colourings of G. More generally,
along the hyperbola H, = {(z,y) : (x — 1)(y — 1) = ¢}, the Tutte polynomial
T(M;zx,y) specialises to the partition function of the g-state Potts model, up to
some easily computable normalising factor. The positive branch of the hyperbola
H, corresponds to the ferromagnetic Potts model, and the negative branch (at
least the part above the z-axis) to the antiferromagnetic Potts model. For much
more on this fascinating subject, refer to (Welsh, 1993).

3.1 Rudiments of computational complexity

Recall our view of counting problems as functions f : X* — N. We have already
seen one formalisation of the notion of tractability of a counting problem, namely
the FPRAS. A more a direct and demanding notion is simple polynomial-time
computability. A function f is said to belong to the class FP if there is an
algorithm for computing f(w) that runs in time polynomial in the length |w| of
the instance w.?

Of course, we don’t expect every counting problem to admit an FPRAS, let
alone be a member of FP. Just as with decision problems, we can gain evidence
that a counting problem is intractable by showing it to be complete (or at least
hard) for an appropriate complexity class. The appropriate class in this instance
is #P (Valiant, 1979). Briefly, #P contains those functions f : X* — N that can
be expressed in the form

Fw) = [{z € 5* : 2| < pllwl]) and T(w,z)}

)

2In contrast to the notation used in the previous section, x and y will used to denote
coordinates in R2. This change in notation is unlikely to cause any confusion.

3The “F” in FP stands for “Function”. The complexity class P is formally restricted to
decision problems (predicates on X*).

11
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where p is a polynomial and I C X* x X* a polynomial-time-computable two-
place predicate. We can think of IT(w, z) as being a “witness-checking predicate”:
if w encodes a graph G, and z a subset A C E(G) of the edges of G, then II (w, 2)
might decide whether A is a spanning tree of G. In that instance, f(w) counts
spanning trees in the graph encoded by w. Informally, then, #P contains counting
problems associated with easily recognised combinatorial structures. A problem
is #P-hard (resp., #P-complete) if it is hard (resp., complete) for #P with
respect to polynomial-time Turing reducibility. Counting perfect matchings in a
bipartite graph is the archetypal #P-complete problem.

Computing the Tutte polynomial at positive integer lattice points falls pre-
cisely into the above setting. At rational points, one has to bend the framework a
little, but this is a technical point. For much more on computational complexity
in general, and #P in particular, consult (Papadimitriou, 1994).

3.2 What is known

The computational complexity of exact evaluation of T(M; z,y) has been exten-
sively studied by Welsh and other authors, beginning with (Jaeger, Vertigan and
Welsh, 1990). The situation for matroids in general is not very interesting. The
hyperbola H; is trivial, the Tutte polynomial evaluating to (z — 1)"y!®! there.
Elsewhere, evaluation of the Tutte polynomial is #P-hard. In particular, eval-
uating T'(M;1,1) is #P-hard for the class of transversal matroids (Colbourn,
Provan and Vertigan, 1995).

For restricted classes of matroids the picture is more complex and more in-
teresting. For graphical matroids, in addition to the hyperbola H;, the Tutte
polynomial may be computed in polynomial time at the special points (1,1),
(-1,0), (—=1,-1) and (0,—1). (We consider here only evaluations at points in
R?: some other special points emerge if the scope is widened to C2.) For example,
T(G,—-1,0) counts 2-colourings of G, and hence is 0 if G is non-bipartite and
2%(G) otherwise, where x(G) denotes the number of connected components of G.
Aside from H; and the special points, evaluating Tutte polynomial of a general
graph is #P-hard (Jaeger, Vertigan and Welsh, 1990).

Restricting further to planar graphs, the hyperbola Hs must be added to the
set of polynomial-time evaluations. As we noted earlier, along this hyperbola the
Tutte polynomial is, up to an easily computable normalising factor, equal to the
partition function of the Ising model, which is the special case ¢ = 2 of the Potts
model. In contrast to the hyperbola H;, and the special points, Hs is tractable
for a distinctly non-trivial reason. From classical work of Fisher, Kasteleyn and
Temperley it is known that the partition function of a Ising system with n sites
or vertices may be expressed as an n X n determinant, which may be evaluated
in polynomial time.

In the other direction, if we generalise from graphic to regular matroids,
the special point (1,1) survives (Dyer and Frieze, 1994), but the others do not.
For transversal matroids we even lose the point (1,1) (Colbourn, Provan and
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2 T

Fi1G. 3.1. The Tutte plane

Vertigan, 1995). See Noble’s article in this volume for more on the complexity
of exact evaluation of the Tutte polynomial on graphs.

So much for exact evaluation; what about the possibilities for an FPRAS? For
general matroids, we know of no points that aren’t already exactly computable
in polynomial time. For graphic matroids we know that an FPRAS exists for the
hyperbola H> in the positive quadrant, i.e., for the ferromagnetic Ising model
with no applied field (Jerrum and Sinclair, 1993). Despite our best efforts, noth-
ing more is known for sure, except for restricted classes of graphs.

On the negative direction, there are isolated points (z,y) € R*® at which
T(G;z,y) is hard to approximate owing to a specific combinatorial interpreta-
tion. Take, for example, the point (—2,0) at which the Tutte polynomial of a
graph G counts (proper) 3-colourings of G. An FPRAS for T'(G; —2,0) would, in
particular, have to decide whether G has some 3-colourings or none. But deter-
mining whether a graph is 3-colourable is an NP-complete decision problem, so
no FRPAS can exist unless every problem in NP admits a polynomial-time ran-
domised algorithm. (Technically, we have shown that no FPRAS for T'(G; —2,0)
exists, under the assumption for RP # NP, a slight strengthening of the cele-
brated P # NP conjecture.)

Welsh has taken this further and shown that, for all positive integers ¢ > 2,
there is no FPRAS for the Tutte polynomial along the segments of the negative
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branches of the hyperbolas Hy, lying in the infinite strip y € (—1,1) (Welsh,
1994). This result again is modulo the complexity theoretic assumption RP #
NP. These segments correspond to the antiferromagnetic g-state Potts model.

As far as T am aware, there is no subset of R? of positive measure that has
been shown to be immune to an FPRAS.* This state of affairs can be corrected,
and we now do so.

3.3 Regions of the plane that do not admit an FPRAS

The tensor product of matroids was introduced by (Brylawski, 1982). We define
it here in the special case of graphs. Let G be a graph, and K another graph
with a distinguished edge f with endpoints u and u’. The tensor product G ® K
is obtained from G by performing a “2-sum” operation on each edge e of G in
turn: Let the endpoints of e be v and v'. Take a copy of K and identify vertex u
(resp. u') of K with v (resp. v') of G, and then delete edges e and f. (Since G and
K are undirected graphs, there are two ways of performing the 2-sum. This lack of
uniqueness is a artefact of viewing a matroid operation in terms of graphs, which
have additional structure. In particular, the Tutte polynomial is insensitive to
which of the two possible identifications is made.) We are particularly interested
in the case where K is a cycle on k + 1 vertices (this is known as a k-stretch in
the literature) or a two-vertex graph with k + 1 parallel edges (a k-thickening).
Informally, a k-stretch of G replaces each edge of G by a path of length &, while
a k-thickening replaces each edge by a bundle of k parallel edges.
A key fact about the tensor product (Welsh, 1993, eq. (6.2.7)) is:

T(G®K;z,y) = aT(G;2',y'), (3:2)

where a is an easily computable number and z’ and y' depend only on =z, y
and K (and are easily computable from them). Specifically,

@',y) = {(iﬁk,l]/(wk —1)+1) for a k-stretch;

3.3
(q/(y* —1)+1,4*) for a k-thickening, (3:3)

where ¢ = (z — 1)(y — 1). We'll say that the point (z,y) € R* may be shifted
to (z',y") if there is a graph K such that (z,y) and (z',y') are in relation (3.2).
Some explicit shifts are provided by (3.3). Observe that ¢ = (z —1)(y — 1) is an
invariant for these particular shifts and, in fact, for shifts in general. It is this
limitation that gives the hyperbolas H, a special place in the complexity theory
of the Tutte polynomial.

Proposition 3.1. (Goldberg and Jerrum) Suppose (z,y) € Q® satisfies ¢ =
(z—1)(y—1) ¢ {0,1,2}. Suppose also that it is possible to shift the point (z,y)
to the point (z',y') with y' € (=1,1), and to (z",y") with y" ¢ [-1,1]. Then
there is no FPRAS for the function G — T(G;x,y) unless RP = NP.

4Since it is not possible to represent arbitrary real numbers, we should really restrict atten-

tion to rational points. So, technically, we are looking for a set of rational points whose closure
has positive measure.
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Proof See (Goldberg and Jerrum, 2006). Note that we restrict attention to
rational z and y to avoid representational issues. |

Since the notion of “shift” is defined for any class of matroids closed under
tensor product, it should be possible to frame statements similar to Proposi-
tion 3.1 for classes of matroids other than graphic.

Corollary 3.2 Suppose (z,y) is a point lying in the open half-plane © < —1 but
not on the hyperbolas Hy or Hy. Under the assumption RP # NP there can be
no FPRAS for the function G — T(G;z,y).

Proof Let (z,y) € R? be a point not on Hy or H; that satisfies z < —1.
At the outset, we’ll assume further that (z,y) ¢ H, and that y # —1. There
are three cases, depending on y. First assume y > 1, and observe that ¢ =
(x = 1)(y — 1) < 0. Using a k-stretch, we may shift the point (z,y) to the the
point (z",y") = (z*,q/(z* — 1) + 1). Now y" € (—1,1) for all sufficiently large
even k so Proposition 3.1 applies. (The trivial shift, taking (z,y) to itself, provides
the point (2',y') ¢ [—1,1].) A similar argument, but setting k to be large and
odd deals with the situation y < —1. Finally, when y € (—1, 1), a 2-stretch shifts
(z,y) to the point (z’,y') = (22,¢/(2> = 1) +1) = (22, (y—1)/(z + 1) + 1), with
y > 1.

The additional condition y # —1 may be removed by noting that a 3-stretch
shifts (z,—1) to a point (z',y') = (2%,1 — 2/(2* + = + 1)) with 2’ < —1 and
y' € (—1,+1), and we have already seen how to deal with such a point. Finally,
the hyperbola Hs was treated by (Welsh, 1994). O

Various other non-FPRASable regions of the Tutte plane may be mapped using
the basic proof technique of Corollary 3.2. Refer to (Goldberg and Jerrum, 2006)
for recent results.

3.4 Speculations (optimistic)

First, matroids in general. If we were very optimistic, we might speculate that
there is an FPRAS for T(M;1,1), for a general matroid M specified by an
independence oracle. If that were the case, then we would have an FPRAS for
the whole of the positive branch of the (degenerate) hyperbola Hy. The reasoning
is simple. Assume that y = 1 and « > 1. (The symmetric case follows by duality.)
The Tutte polynomial in this case simplifies to

T(M;z,1)= > (z—1)"E- 4
AeT(M)
r(B)
=Y T(M¥;1,1),
k=0

where we have used Z(M) to denote the independent sets of M, and M* the
truncation of M to rank k (Welsh, 1976, §4.1). In particular, we would have
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FPRASes for the number of forests in a graph, and for the reliability polynomial
of a graph.
When z,y > 1, the weight function w : £ — R

w(A) = (z — 1)T(E)—T(A)(y _ 1)\A\—T(A)

is non-negative, and hence determines a probability distribution 7 on E. The
normalisation factor is of course )~ , w(4) = T(M;z,y), so, explicitly, m(A) =
w(A)/T(M;z,y). Specialising to a graph G = (V, E), this probability distribu-
tion is the one arising from the random cluster model, which may be written

n(4) = pH(1 - p) Pl 7, (3.4)

where k(A) denotes the number of connected components of (V, A), and Z is nor-
malising factor (partition function of the random cluster model). The translation
between parameters is

p="—— and g¢=(@-1F-1).

The random cluster model generalises the g-state Potts model to non-integer q.
Consider a Markov chain on state space £2 = 2F with transition probabilities
defined by the following trial, where A denotes the current state.

1. Select e € E uniformly at random.
2. Let wo = w(A \ {e}) and w; = w(A U {e}). Then set

, A\ {e}, with probability wg/(wo + w1);
AU {e}, with complementary probability w1 /(we + wy).
The new state is A'. (This is the single-site heat-bath dynamics applied to the
terms of the Tutte polynomial.) Provided z,y > 1 (equivalently, ¢ > 0 and
p € (0,1)) this Markov chain is irreducible and aperiodic, and is time-reversible
with stationary distribution m, given by (3.4). If z > 1 and y = 1 then the
Markov chain is still ergodic, but on a subset of 2F, namely the independent sets
of M; a dual statement covers z = 1 and y > 1. When z = y = 1 the single-
site dynamics is frozen, which is why we must use the slightly more complex
dynamics provided by the bases-exchange walk in that case.
Consider the region

R={(z,y):x>1y>landg=(z-1)(y — 1) <2} \ (1,1).

This is the closed region bounded by the branches of the hyperbolas Hy and Hs in
the positive quadrant. There is no known obstacle to rapid mixing of the single-
site heat-bath dynamics for (z,y) € R in the graphical case, so it is reasonable
to conjecture that this dynamics provides an FPRAS covering the whole of R.
Although I know of no barrier to rapid mixing for matroids in general, it seems



SPECULATIONS (PESSIMISTIC) 17

a little rash to conjecture an FPRAS for general matroids over R, since we do
not even know the status of the point (1,1). (I assume here that the matroid is
presented in terms of an independence oracle.)

(Gore and Jerrum, 1999) exhibit a counterexample to mixing which applies to
a variety of dynamics in the case ¢ = 3. Indeed the first-order phase transition on
which the counterexample is based exists for all ¢ > 2 (Bollobas, Grimmett and
Janson, 1996). So the region beyond the hyperbola H» in the positive quadrant
(i-e., the points with (z — 1)(y — 1) > 2) provides somewhat less scope for
optimism, though there is no particular reason to doubt that an FPRAS exists.
The somewhat daring conjecture of Welsh is that there is an FPRAS covering the
region in the upper quadrant bounded by Hy, at least in the graphic case (Welsh,
1993). Again, the conjecture can be strengthened even further, by widening the
class of matroids.

Although there is no space to go into the matter here, a number of authors
have presented FPRASes for “dense” instances, particularly dense graphs. Refer
to (Alon, Frieze and Welsh, 1995; Annan, 1994; Karger, 1999).

3.5 Speculations (pessimistic)

When z < 1 or y < 1 the terms in expression (3.1) for the Tutte polynomial will
vary in sign, which does not auger well the existence of an FPRAS. However, this
concern may be illusory, at least in the graphical case, as (Tutte, 1984) has shown
that all monomials in the expansion of T'(G;z,y) have positive coefficients. In
the light of this surprising fact, it would be rash to speculate on non-FPRASable
regions in the positive quadrant ,y > 0. Thus the status of points such as (2, 0),
where the Tutte polynomial of G counts the number of acyclic orientations of G,
seems wide open.

When either z < 0 or y < 0, “real” cancellation occurs, and in this region
there seems to be no plausible general approach to constructing an FPRAS. Even
here, the combinatorial interpretation of the Tutte polynomial at certain points
provides hope for an FPRAS tailored to those points. For example, T'(G; 0, —5)
may be interpreted as the number of nowhere-zero 6-flows in G, and Seymour
has shown that every bridgeless graph has at least one 6-flow (Seymour, 1981).
So not only is T(G; 0, —5) non-negative; it is even the case that deciding whether
T(G;0,—5) # 0 is trivially polynomial-time solvable. In other words, the task
of approximating T'(G; 0, —5) does not contain within it some NP-hard decision
problem. Even so, it has recently been shown that that no FPRAS exists for
T(G;0,—5), unless RP = NP. (This is a consequence of a more general result
of (Goldberg and Jerrum, 2006).)

Perhaps it is not too ridiculous to conjecture that no FPRAS exists in the
union of open halfspaces z < 0 and y < 0 except for the hyperbola H; and a
countable number of “special points”.
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