\Q Queen Mary

University of London

Exact relations in Non-Equilibrium Statistical
Mechanics

Adrian Baule

June 2012

A. Baule (QMUL) Exact relations June 2012

1/33



Equilibrium vs non-equilibrium

Equilibrium
@ Thermodynamics: minimum of free energy

@ Statistical mechanics
— Ensembletheory
— Fluctuations
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Equilibrium vs non-equilibrium

Equilibrium
@ Thermodynamics: minimum of free energy

@ Statistical mechanics
— Ensembletheory
— Fluctuations

Non-equilibrium
@ Transient or steady state
@ Athermal systems

@ Depends on driving/dissipation mechanisms

Universal statistical mechanical approach?
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Exact relations in non-equilibrium statistical mechanics

@ Fluctuation theorems for heat, work, currents (“X-Y"-FTs)
Transient: Jarzynski, Crooks, Evans-Searles

Steady state: Gallavotti-Cohen

Generalizations

Quantum FTs

v

v vy

lim i In HT—(p) =p
r—oo ¢t [:(—p)

o Fluctuation-dissipation relations for steady states

o Additivity principle

@ Ensembletheories

» Ensemble of phase space trajectories — non-equilibrium counterpart to
detailed balance
» Edward’s statistical mechanics for granular matter: energy — volume

How universal? How useful?
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Fluctuations in non-equilibrium steady states

@ Next simplest generalization of equilibrium is a nonequilibrium steady
state (NESS)

@ Physically a NESS is maintained by a balance between

Driving forces Dissipative forces
Temperature gradient Friction
Shear Viscosity

o Characteristics of a NESS depend on the particular driving/dissipation
(thermostatting) mechanisms

@ Use large deviation formalism

p= /OT A(x(t))dt, lim 1 InM-(p) = 1(p)

T—00 T

@ Rate function characterizes fluctuations in the NESS
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A nonequilibrium particle model

@ Particle in a moving harmonic potential

mx(t) + ax(t) = —k(x(t) — vt) + £(t)

Comoving frame

@ Mechanical work done on the particle

Ty 0, y

W, = —/@v/o (x(t) — vt)dt

0 x(t) () X
Laboratory frame

@ Stationary process in the comoving frame y = x — vt:

my(t) +ay(t) = —ky(t)—av+E(t) . W= v /OTy(r)dt
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A nonequilibrium particle model

@ Particle in a moving harmonic potential

mx(t) + ax(t) = —k(x(t) — vt) + £(t)

Comoving frame

@ Mechanical work done on the particle

Ty 0, y

W, = —nv/o (x(t) — vt)dt

0 x(t) () X
Laboratory frame

@ Stationary process in the comoving frame y = x — vt:

M) +ay() = (O —ave() . Wo= v [yl

External noise
@ Noise and friction originate from physically independent mechanisms

@ Investigate role of time scales and singularities in the context of FTs
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A general type of noise

Poissonian shot noise (PSN)

@ n; Poisson distributed with mean \

z(t) = Z Fo(t — ti) @ [, exponentially distributed with mean g
k=1

@ White noise

@ Characteristic functional

o Consider zero mean noise: z(t)
§(t) = z(t) — Alo

o Gaussian noise in the limits I .l l l |t
A—o00, [g—0, )\r% = const.
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Time scales

@ Time scales of the harmonic oscillator

Inertial time Relaxation time
m
«

o
Tm = Tr = —
K

o Additional time scales due to PSN

Mean waiting time between
pulses

‘Poisson’ time
)

P Ay

T—l
AT

o Qualitative transition behavior due to interplay of these time scales
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Symmetries and singularities

Zero mean noise

(t) = 2(t) - AT

|

@ Mean position in NESS: (y) = —v7,
@ Mean work in NESS: (W,) = av?r
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Symmetries and singularities

Zero mean noise
£(t) = 2(t) — ATo J

@ Mean position in NESS: (y) = —v7, ;
@ Mean work in NESS: (W,) = av?r M ’

u(y)

@ Distinguish v >0and v <0
@ Singular features due to noise: ,

» Effective velocity: ve = v + A/«
> Force balance: ve = —2y*
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Symmetries and singularities

Zero mean noise

(t) = 2(t) - AT

@ Mean position in NESS: (y) = —v7, ;
@ Mean work in NESS: (W,) = av?r A ’
Uty)

@ Distinguish v >0and v <0
@ Singular features due to noise: ,

» Effective velocity: ve = v + A/«

» Force balance: v, = —Tiy* 5

' v 0 y

Effective nonlinearity
@ Position cut-off y* = —ve7,

@ Infinite barrier in harmonic potential
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Symmetries and singularities

o Negative v

Tp > T
U(y)
E v
i -
y o <P
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Symmetries and singularities

o Negative v
Tp > T Tp < T

U(y) U(y)

y* o <y> y 0

o Work given by: W, = —kv [J y(t)dt
» v > 0: WX maximal work in time 7

Work cut-off }

W = —krvy*r » v <0: W} minimal work in time 7

e If v <0 and 7, < 7x: minimal work W > 0 and no negative work
fluctuations can occur.

A. Baule (QMUL) Exact relations June 2012 9 /33



Generalized Ornstein-Uhlenbeck process

@ Overdamped regime 7, < 7,

7(B) =~ y(8) — ve + 2(2)

r

@ Obtain characteristic functional:
Gy(o)[h(8)] = e™eromie k™ KL G, k(1))
where k(t) = [ e(t=5)/7 h(s)ds.
@ Characteristic function of particle position: h(t) = h1d(t — t1)
@ Characteristic function of the work: h(t) = —qvk©(T — t)

Gy ()] = (e T YO — (giaw
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Stationary distribution

@ Particle position in the NESS:

Qa Tr/TA_l . r
P(y) o (r—o(y—y*)) e~ rmyeflo

@ Transition behavior for 7, < 7,
P(y)
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Work distribution
o Distribution of rescaled work p = W,/ (W;) for large T

o (f523) T e ()

pr—1

@ Rescaled work cut-off: p* =1+ a(v):—i

. 2
e Rate function: /(p) = % (@/ﬁ - 1)
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Work distribution

o Distribution of rescaled work p = W,/ (W;) for large T

-

p* — p) _%(\/ﬁ_l)_%

pr—1

M-(p) o (

@ Rescaled work cut-off: p* =1+ o(v)-2

. 2
e Rate function: /(p) = ~ ( E—f _ 1)

—p'=05

------ p'=-05

T p*—1
v>0 v<0
1(p) — =25 1(p)
20
15
110
\
\
.05
.\
N
P i
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Fluctuation theorem

@ Define dimensionless fluctuation function using a

_ 1 . M-(p)
a(Wr)  N-(-p)

= o
A2
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Fluctuation theorem

o Define dimensionless fluctuation function using a = 3%
0

1 N-(p)
"= S w ")

@ In the asymptotic regime 7 — oo, v > 0:

f(p) s
3 p*:z'o SSFT
2;25 » f(p) defined on [—p*, p*]
A =30 and only depends on p, p*
—p'=60

» SSFT for p* — ¢

S (Gaussian limit)
20 25 30 P .
05 1o 1 : Y » Vertical slope for p — p*
-1 SO . .
S » Negative fluctuation
5 ) function for p* > 2 (i.e.

Tp > Ty)
Baule and Cohen, PRE (2009)
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Fluctuation theorem

o Define dimensionless fluctuation function using a = 1%

1 N-(p)
"= S )

@ In the asymptotic regime 7 — oo, v < 0 and 7, > 7y:

f(p) ,
12} | —p=-10 Paa)
e p'=-15 e
10F |0 o
g e pt==25 i
—p=t0 » f(p) always > 0 for p > 0
6 » SSFT for p* — o0
4 (Gaussian limit)
2 SSET » Vertical slope for p — p*

8.0 0.5 1.0 15 20 25 30P

Baule and Cohen, PRE (2009)
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Additional thermal Gaussian noise
@ Add Gaussian noise 7(t) with (n(t)) =0, (n(t)n(t')) = 250(t — ')
mx(t) + ax(t) = —r(x(t) — vt) + £(t) + n(t)
@ Product of characteristic functionals

Gy(o)lh(2)] = ¥ o™ KOG [k(£)] Gy [K(1)]
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Additional thermal Gaussian noise
@ Add Gaussian noise 7(t) with (n(t)) =0, (n(t)n(t')) = 250(t — ')
mx(t) + ax(t) = —k(x(t) — vt) + &(t) + n(t)
@ Product of characteristic functionals

Gy(o)lh(2)] = ¥ o™ KOG [k(£)] Gy [K(1)]

e Stationary distribution given by convolution of P(y) and Pg(y)

Tr > T Tr < T
—B=001
-----B=0.1
B=1
---B=10
"""""""""""" ! .___,_A_.----"",/ e
o 3 ) 1 2y

@ B = ratio of noise powers Gauss/PSN
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Work fluctuations

@ Rate function

—B=0.1 1)
rrrrr B=1 25
B=10 20|
15
10]
5
0
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Work fluctuations

@ Rate function

1(p)

10 0 5 ToP

@ Fluctuation function

1) )
10 /
/
/
2 s f(p) ’

0.5 6,
-2 ~—B=001 f(p) 4

rrrrr B=0.1
-4 —B=1 2

_B=5

-6 0.0
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Equilibrium ensembles

Equilibrium
@ Thermodynamics: minimum of free energy
@ Statistical mechanics

— Ensembletheory
— Fluctuations

e Ergodicity: system samples entire phase space over time
— equivalence of time averages and ensemble averages over
stationary probability distributions p(x)

e Microcanonical ensemble: p(x) is uniform at constant energy E

e Entropy: S = —kgInQ(E)

o Canonical ensemble: energy exchange with heat bath p(x) oc e #H()
— thermal equilibrium fluctuations

@ Rules for transition rates: detailed balance
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Biased ensemble of trajectories

o Consider time-integrated
observable of equilibrium shear,
dynamics x(t) Yo

= [ Ao

o Construct biased ensemble:

» Microcanonical
» Canonical: {(vr) =

@ Distribution of uncorrelated objects I' is given by maximizing
S=- Z prInpr
=

for equilibrium paths I subject to constraint ) pryr = 7o
Result:

dr eq v
pr o< pre’ "
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Biased ensemble of trajectories

Probability of non-equilibrium @ Shear flows of complex fluids
trajectories (R.M.L. Evans): shear
@ Models for glass formers
dr eq v
procpre (Garrahan et al): activity

o Calculate dynamical partition

function
N LT T T ——0.08
“°I"\lactive | inactive | [\ active  inactive -{06
Z(l/, t) = <el/’yr> Z 04 - L ,0,045
Z o2l 1 L Jooz &
o Consider dynamical free energy: J e B T s e T L
. 1 G h. t al, PRL (2007
P(v) =— lim =log Z(v,t) arraan et 2l PRL (2007)
t—oo t
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Fluid in shear flow

A sheared NESS has much in common with equilibrium:

Sheared NESS

@ same Hamiltonian, only
boundaries differ

e ergodic

@ reproducible phase behavior

@ spatial and temporal fluctuations
@ ubiquitous

y

...yet not solved by equilibrium statistical mechanics!

In general, 7 influential, if relaxation times 7, are long: 47, > 1
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Phenomena in shear flows of complex fluids

@ Amphiphiles:
m Emuﬁi
<3 A
fro - 11 mmi
LRALLLLL
—_— :
equilibrium continuous shear Micrograph courtesy of Mark

Buchanan

A. Baule (QMUL) Exact relations June 2012 21 /33



Phenomena in shear flows of complex fluids

@ Amphiphiles:

. [
LRl ﬁ"iz&
Micrographv courtesy of Mark

equilibrium continuous shear
Buchanan

_—

@ Shear banding:

(a (b)

Phase transition
controlled by shear rate in
addition to temperature,
concentration, etc.

stress .~
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Nonequilibrium statistical mechanics of shear flow
@ A model fluid

seoe 2e%
o (o
is defined by a set of n rates {w.p} & .&q

for jumping between microstates a, b -‘.',.'

Can the transition rates be chosen arbitrarily ?
Balance equation for the probability distribution p,:
pa = Z [wbapb - wabpa] =0
b
Satisfied by (equilibrium condition): wpapp — wapps = 0
— Equilibrium heat bath:

Wab/wba = e_(Eb_Ea)/kBT

Condition of detailed balance
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Nonequilibrium statistical mechanics of shear flow

@ A model fluid
L 1
s .
is defined by a set of n rates {w,p} & :&
for jumping between microstates a, b D ‘-

— Do similar constraints apply in a sheared NESS 7
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Nonequilibrium statistical mechanics of shear flow

@ A model fluid
w1
o X
is defined by a set of n rates {w,p} & ..‘&
for jJumping between microstates a, b 0 a8 0'
.

— Do similar constraints apply in a sheared NESS 7

@ A fluid volume in the bulk feels shear only intermediated through
surrounding fluid

Postulate; statistics of sheared NESS

MALEYs et s
i ."& obtained from a biased ensemble of

e~0a ) equilibrium trajectories
%ﬂ‘ﬂ
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Nonequilibrium counterpart to detailed balance

shear 4

— Unnormalized probability of a Yo
path: pd" oc pf7er
— Want: probability of a transition

wap = Pr(a — bla)/At al”

By counting all trajectories that contain transition a — b obtain exact
relations for the transition rates:

dr _ , €eq
Wap = wabe

VAYpat+Agp,

@ Local contribution: A~p, is the immediate shear contribution of the
transition a — b

@ Global contribution: Agqp, measures the propensity for future shear
given a — b
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Predictions
@ Invariant quantities in the sheared NESS

dr, dr eq eq Va. b
b

Product constraint
wabwba = wabwba J

Total exit rate constraint _
dr dr eq eq Za - Zj
Za —Z2.b — Za — Zup Va, b
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Predictions
@ Invariant quantities in the sheared NESS

dr, dr eq, eq

Product constraint
wabwba = wabwba Va, b J

Total exit rate constraint _
dr dr eq eq Za - Zj Yaj
Za —Z2.b — Za — Zup Va, b

@ Introduce shear current (rate) J = ~/7 of a trajectory

Current fluctuations

Fluctuation theorem
S it e

Baule and Evans, PRL (2008); JSTAT (2010)
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Testing the theory: a fluid of rotors

Numerically time-stepping
Newtonian egs of motion

1© = Fiy1i— Fii

Conserves angular momentum

H . .. __ [conserv dissip random
Inter-neighbour torque: Fj; = Fij + Fij + Fl-j

O o -6
Fijqonserv — _Ul(e’_ _ eJ)

random __ random
Fi = —Ffj
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Testing the theory: a fluid of rotors
At equilibrium
@ Boltzmann statistics in
Uu(A®)
@ Transitions between wells
satisfy detailed balance
Impose shear at the
boundaries...

If

@ Dynamics is ergodic

@ Correlations are small

@ Potential wells=microstates

In order to expedite data collection

@ Take overdamped (low mass) limit

@ Treat each gap (A©) as “system”
June 2012 27 /33



Testing the product constraint

Use equilibrium symmetries
eq eq
Wap = Wad
eq eq
Wha = Wy
Product constraint
_ 69 eq
WapWha = W pWpo Ya, b
- WabWpa = WdaWad

and similarly for transitions ¢ — b
and ¢ — d

Evans, Simha, Baule, Olmsted, PRE 2010
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Testing the product constraint

Use equilibrium symmetries

eq eq

Wap = Wad
eq eq
Wha = Wy

Product constraint

_ ,eq, eq
WapWha = W pWpo Ya, b

- WabWpa = WdaWad

and similarly for transitions ¢ — b

and ¢ — d

Evans, Simha, Baule, Olmsted, PRE 2010

(wabwba)/(wdamzld)

0.5

05 . 1
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Testing the product constraint

Use equilibrium symmetries

eq eq
Wap = Wuy

eq eq
Wha = Wy

Product constraint J

_ ,eq, eq
WapWha = W pWpo Ya, b

- WabWpa = WdaWad

and similarly for transitions ¢ — b
and ¢ — d

Evans, Simha, Baule, Olmsted, PRE 2010
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Testing the total exit rate constraint

Use equilibrium symmetries

eq eq
Wap = Wad
eq eq
Wha = Wya

Total exit rate constraint
Va, b J

d d
S T = e - 3

- Wha + Whe = Wda + Wdc

Evans, Simha, Baule, Olmsted, PRE (2010)
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Testing the total exit rate constraint

Use equilibrium symmetries

eq
Wab

eq
Wha

_ . eq
= Wy

_ . eq
= Wyqa

Total exit rate constraint

dr dr eq eq
Za T Zub — Za T Zub Va, b
- Wha + Whe = Wda + Wdc

Evans, Simha, Baule, Olmsted, PRE (2010)

4

%
g

L 0
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Testing the total exit rate constraint

Use equilibrium symmetries
eq eq
Wap = Wad
eq __ eq
Wpa = W,
I
. . or Wga"°
Total exit rate constraint i e
dr dr eq eq | 7w
Za T Lub Za T Lub Va,b 15 e be
e
101 o
L%
- Wha T Whe = Wda + Wdc 32 (et Maa) /(Wpz+ W)
9 T N Py Py Py 'Y ell
R SRRV
X
I Wge 7 Foo ‘-?ba
Evans, Simha, Baule, Olmsted, PRE (2010) 0 L ]'0 ‘Y 2'0 L 310
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Testing the total exit rate constraint

@ Measured ratio close to unity for
all parameter values

@ Discrepancies in lower left corner

@ In low noise regime ergodicity
might break down

@ Discrepancies do not increase
with ¥
— theory is not a
near-equilibrium approximation

60»‘Y

A. Baule (QMUL) Exact relations June 2012 32/33



Outlook

@ Deviations from SSFT for non-Gaussian fluctuations
» Paradigmatic non-equilibrium particle model
» PSN as generalization of Gaussion noise (mechanical random force)
@ Statistical mechanics of some non-equilibrium systems might be
treated using ensemble approaches as in equilibrium
@ Connect non-equilibrium trajectory ensemble with thermodynamics of
phase transitions under shear

» Shear thickening in Brownian and non-Brownian colloidal suspensions
» Needs suitable lattice model where shear can be identified
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