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Summary 

• What are fluctuation relations? 

 

• Stochastic thermodynamics of small systems 

 

• Defining a path-dependent entropy production 

 

• Simple demonstrations of fluctuation relations 

 

• Measurement, information and entropy 



Thermodynamic process driven by changes 

in Hamiltonian and external temperature 



Jarzynski equality 

External work performed by a change to the Hamiltonian. 

Start in canonical equilibrium; average over paths. 
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Bochkov-Kuzovlev work relation 

Work performed by externally imposed force: not part of H        

again start in equilibrium, average over paths. 



Crooks relation 

• Compress system and do work 

• Expand and receive work back 

• Probabilities of same work in and out are 

typically not equal 

Must start in equilibrium 



Equivalent for Bochkov-Kuzovlev case 

• for non-Hamiltonian work 

• must start in equilibrium 



Consequence of Jarzynski/Bochkov & Kuzovlev 
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canonical equilibrium, is never negative. 
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Detailed fluctuation theorem 

Holds for particular circumstances  
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Integral fluctuation theorem: introducing  
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Any initial condition: average stot never negative.  

We claim             is the thermodynamic entropy production in the process. 
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Thermodynamic entropy change 

• Relaxation 

– towards a stationary state 

– transient 

• Driving 

– Due to ‘nonequilibrium constraint’ 

– could be stationary  
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Other fluctuation relations 

• Gallavotti-Cohen 

 

 

• Speck-Seifert 

 

• Hatano-Sasa 
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Derivation of fluctuation relations? 

• Deterministic mechanics 

– Jarzynski, Evans,Gallavotti-Cohen, etc 

• Stochastic dynamics 

– Sekimoto, Seifert, Crooks, etc  

 



Deterministic thermodynamics (Evans) 

• Non-linear dynamics of a thermally open system 

• Identify a quantity that increases with time when 

averaged over initial state 
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Evans-Searles fluctuation theorem 

Average dissipation function over time t is never negative 

Phase-space contracting dynamics under a ‘deterministic 

thermostat’ 
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Loschmidt’s reversibility paradox 

 

– mechanics is time-

reversal invariant 

– average dissipation 

function increases 

both ways in time 

– So what is this 

entropy function that 

always increases in 

forward time? 



Stochastic thermodynamics provides such 

• Breaks time-reversal invariance in the model dynamics 

• Entropy change is evidence of the failure to respect 

time reversal invariance during a process 

 

 
Loschmidt,   

I’ve derived 

the H-theorem! 

Not 

happy 

(not stochastic thermodynamics, 

but nevertheless a model that 

breaks time reversal symmetry) 



Stochastic thermodynamics (Sekimoto,Seifert) 

• Centrepiece: total microscopic entropy 

production     is  linked to irreversibility 
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Entropy production in stochastic dynamics 

The relative likelihood of observing the reversed behaviour 
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Entropy production in stochastic dynamics 2 

• Define total entropy change 
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Entropy production in stochastic dynamics 3 

path-dependent change in 

medium entropy 
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Average           ? 

• Really the change in thermodynamic entropy? 

– Test 1. Never negative?  

– Test 2. Related to heat transfers? 
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Integral fluctuation relation proves Test 1 

stot has this form:            

Jensen’s inequality then implies 

For any two dynamical schemes that generate paths    and   

in a 1:1 correspondence with given probabilities we define 
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Test 2: connection with heat transfer 

 - for overdamped Brownian motion: 
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YdWXdtsd  totFurthermore: 

time 

position 

entropy stot 



Example: cyclically compressed/expamded isothermal 

harmonic oscillator 
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Cyclically compressed adiabatic oscillator 
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Discrete phase spaces: 

particle motion on 1-d lattice with two velocities  

Stochastic dynamics generates a path of residence 

and transitions between points 
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A string of entropy increments for a path 
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velocity 
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Simple model of thermal conduction 
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Slow and fast 

velocity states in 

each direction 

Ford and Spinney, submitted 



Simple model of thermal conduction 
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Simple model of thermal conduction 
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Simple model of thermal conduction 
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Mean entropy production rates for a time-

dependent temperature difference x 

T 

housekeeping 

heat/T 

excess heat/T+d(system entropy)/dt 

x 

time 

time 

total  

Positive mean value by 

Hatano-Sasa relation 

Positive mean by 

Speck-Seifert 

relation 
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trap potential: 

force F(x) 

Thermal conduction in the continuum: 

trapped particle in a temperature gradient 

position x 
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Thermal conduction in the continuum: 

trapped particle in a temperature gradient 

trap potential: 

force F(x) 

position x 
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position x 

Thermal conduction in the continuum: 

trapped particle in a temperature gradient 

trap potential: 

force F(x) 
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Dynamics of thermal conduction: 

 

• Stochastic differential equations for position and 

velocity:  

 

 

 

 



Entropy production in thermal conduction: 

• Determine the transition probabilities T(x+dx|x) 
and get 
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Distributions of total path-dependent entropy 

production for stationary thermal conduction 

Increasing 

elapsed 

time 
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stot  satisfies a detailed fluctuation relation 
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Jarzynski-Sagawa-Ueda equality 

• Jarzynski holds for initial equilibrium state 

• Make measurement y of system variable x to gain 

information: distribution of x is changed 
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Dissipative work and mutual information  

• Acquisition of information allows 

breakage of Kelvin’s statement of the 

second law 

– cyclic extraction of work from a single 

heat bath 
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A rough summary 

• A plethora of fluctuation relations 

– integral, detailed, Jarzynski, Crooks, Evans-Searles, Bochkov-Kuzovlev, 

Gallavotti-Cohen, Speck-Seifert, Hatano-Sasa, Jarzynski-Sagawa-Ueda, etc 

– Statements about the likely thermodynamic behaviour of a small system 

• Stochastic thermodynamics is (arguably) the simplest framework  

• Key quantity: stot  - a measure of path irreversibility 

– when path-averaged equals thermodynamic entropy production  

• Components of total entropy production:  

– system, medium, excess, housekeeping heat(s) ... 

– mutual information of measurement and Maxwell’s demon ... 

• Examples for discrete and continuous stochastic dynamics  

• Thanks for listening! 
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