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Stochastic thermodynamics of small systems

Defining a path-dependent entropy production
Simple demonstrations of fluctuation relations

Measurement, information and entropy



Thermodynamic process driven by changes
In Hamiltonian and external temperature




Jarzynski equality

(exp (=AW /kpT)) = exp (—AF/kpT)

AW / Op(x 8)\0 0(t)) dXo(t) ,

dt

eg.  o(X1)= E o (1)X?

External work performed by a change to the Hamiltonian.
Start in canonical equilibrium; average over paths.



Bochkov-Kuzovlev work relation

(exp (=AW /kpT)) =1

AWy — /0 " F@(t), M (1) o de

Work performed by externally imposed force: not part of H
again start in equilibrium, average over paths.



Crooks relation

P (AWp)
PR (—AW)y)

Must start in equilibrium

= exp

kgl

« Compress system and do work
« Expand and receive work back
* Probabilities of same work in and out are

typically not equal

AWy — AF




Equivalent for Bochkov-Kuzovlev case

Pr(AWy) _[AW,
PR(—AW,) P | kgT

e for non-Hamiltonian work
* must start in equilibrium



Consequence of Jarzynski/Bochkov & Kuzovlev
(exp(—(AW, —AF)/kgT)) =1 (exp(—AW, /kgT)) =1

ereere 1=(ep(X))=ep(X) = (X)<0

Hamiltoni
D AW, =(AW,)-AF >0 e

Non-Hamiltoni
and AW, =(AW,)>0 i,

Average dissipative work AW, , starting from
canonical equilibrium, is never negative.



Integral fluctuation theorem: introducing AS

<exp (_Astot / kB)> =1

Detailed fluctuation theorem

tot

P " (AStOt) — exp (AS’[O'[ / kB) PR (_AS'[O’[)

Holds for particular circumstances

(AS,) =0

Any initial condition: average AS,,; never negative.
We claim <Astot> Is the thermodynamic entropy production in the process.



Thermodynamic entropy change
AS oy = ASq s+ AS g

« Relaxation
— towards a stationary state AS
— transient
 Driving
— Due to ‘nonequilibrium constraint’
— could be stationary

ASy,=(ASy,)  ASpey =(ASyy) =




Other fluctuation relations

 Gallavotti-Cohen

I:)(As’med ) =~ EXP (Asmed / kB ) I:)(_Asmed )
« Speck-Seifert (exp [_AQhk/kBTD =1

« Hatano-Sasa
(exp(~AQ,, / kg T —ASy, /K )

1



Derivation of fluctuation relations?

« Deterministic mechanics
— Jarzynski, Evans,Gallavotti-Cohen, etc

« Stochastic dynamics
— Sekimoto, Seifert, Crooks, etc



Deterministic thermodynamics (Evans)

* Non-linear dynamics of a thermally open system

 |dentify a quantity that increases with time when
averaged over Initial state

dissipation
function Q

A

time

/\v muﬂ position R



Evans-Searles fluctuation theorem

Phase-space contracting dynamics under a ‘deterministic
thermostat’

P(F ,O) —> P(Ft,t) by Liouville

Define Qt(FU)t = In (P(Ft} t) )

> P(Q) = exp (Qtt) P(—Q)

Average dissipation function over time t is never negative <Qt> >0




Loschmidt’s reversibility paradox

— mechanics Is time-
reversal invariant

— average dissipation
function increases
both ways in time

— So what is this
entropy function that
always increases in
forward time?




Stochastic thermodynamics provides such

« Breaks time-reversal invariance in the model dynamics

« Entropy change is evidence of the failure to respect
time reversal invariance during a process

4 I
Loschmidt,
I’ve derived

the H-theorem!

\f!

(not stochastic thermodynamics,
but nevertheless a model that
breaks time reversal symmetry)




Stochastic thermodynamics (Sekimoto,Seifert)

« Centrepiece: total microscopic entropy
production As,, linked to irreversibility

AS’[O’[

time

/\v muj\ position R



Entropy production in stochastic dynamics

The relative likelihood of observing the reversed behaviour

position

o

position

N
7

Vv

time time

under forward protocol A(t) under reversed protocol A(t-t)

/ \



Entropy production in stochastic dynamics 2

state probabilities

* Define total entropy change /
Astotzln£ P(X) ]zln(TF(Xf |Xi)P(xi,O))

R/soR R
P (X") T70% [ x¢)P(X¢,1)
/ initial P(x,0)
i conditional path probabilities P 1
—~R -
c X X :
= - final
2 FULL\ X; 2 o | P(x1)
2 X
> | N
0 t X. X,

time position



Entropy production in stochastic dynamics 3

(P(xf,t)j [Tfo |xi)]
AS,, =—In +1n| —

P(Xi’o) T (Xi |Xf)
= AS s+ AS

/ ™

path-dependent change In
medium entropy

path-dependent change in system entropy, and

(8,e) =~ [ dXPO,1) N P(X,1) = Sy



Average AS.; ?

P(X) \_ [T " (X | %)P(x;,0)
PR(XF) ) L TR X )P (X, 1)

AS,., = In[

Would be nice if <Astot> =AS,, Q

« Really the change in thermodynamic entropy?
— Test 1. Never negative?
— Test 2. Related to heat transfers?



Integral fluctuation relation proves Test 1

For any two dynamical schemes that generate paths X and X
In a 1.1 correspondence with given probabilities we define

Alz] = In [P[f}/P*[f*}]

Such that (exp [— / dZ Plx]exp |—A|Z]]

= [z Pl PE}

- /ds?:‘* PHE"] = 1.
AS,; has this form:
Jensen’s inequality then implies (As,,) >0




Test 2: connection with heat transfer
- for overdamped Brownian motion:

F(x kT (x
i — (*)CJH\/ BT(r) v

mry moy

T(X'| X) cexp| — my (x'— —mdtj

ASmed T(X | X) F(X) o dX . dQ
kT T(x| X) | kT k,T



Furthermore: dAStot = Xdt +YdW

A AStot /

/ S\ m [\ position
U7 ] e

#\I/ \/V .
time




Example: cyclically compressed/expamded isothermal
harmonic oscillator

3.5

2.5

1.5

0.5

— In[P(As,,)/ P(-As,)]

AS

tot

1

ASyy

1.5




th

Cyclically compressed adiabatic oscillator

P(AE

) =

P(AE)

A

P(AE) =exp (SAE)P(—AE)

-3 -2

BAE

B exp ﬁAE/2)

/2B (AE

(mm\/ AE)



Discrete phase spaces:
particle motion on 1-d lattice with two velocities

velocity

+ %)—)(1)-)(})-»(?»(1)»0—)0—)0—)0—)
—eOeO«O«@«O«%«%«%«%
X, X, - . X

> position

L

Stochastic dynamics generates a path of residence
and transitions between points



. | [ o] NN

A string of entropy increments for a path

velocity

+ %)—)(fd(})ﬂ%—)?—)@—)@—)%}—)?—)
BB BB bebebeded
... X

X, X,

position

L

AS'[Ot = AStOt(X;- — X;)_I_Astot(X;’At,) +Ast0t(X; — XZ)
+AS (X4, AL") + As (X4 = X)) + A5, (X, AtY)



Discrete version of:

ASyq;

time

/\%v muj\ position R



Simple model of thermal conduction

Slow and fast
velocity states in
each direction

hot side
9pISs P|Od

Ford and Spinney, submitted



Simple model of thermal conduction

Slow and fast
velocity states in
each direction

hot side
9pISs P|Od

Cold side preferentially
slows down fast
particles




Simple model of thermal conduction

Slow and fast
velocity states in
each direction

hot side
9pISs P|Od

Cold side preferentially
slows down fast
particles




Simple model of thermal conduction

Slow and fast
velocity states in
each direction

hot side
9pISs P|Od

Cold side preferentially
slows down fast
particles

Hot side preferentially
speeds up slow
particles




Mean entropy production rates for a time-
dependent temperature difference X

Positive mean by
Speck-Seifert
relation

0.15F

housekeeping
heat/T

0.10F

_ oosf

time 1 2 ~3 G 5
time

Positive mean value by

_ excess heat/T+d(system entropy)/dt
Hatano-Sasa relation



Thermal conduction in the continuum:
trapped particle in a temperature gradient

trap potential:
force F(X)

N
7

T(x)

~

position X

temperature

A\



Thermal conduction in the continuum:
trapped particle in a temperature gradient

trap potential:
force F(X)
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Thermal conduction in the continuum:
trapped particle in a temperature gradient

trap potential:

g force F(X)

N
7

T(x)

~

position X

temperature

A\



Dynamics of thermal conduction:

« Stochastic differential equations for position and
velocity:

dx = vdt

dv = —~vdt 4 F(x) dt + \/ 2kgT ()Y AW

T m




Entropy production in thermal conduction:

 Determine the transition probabilities T(X+dXx|X)
and get

1 mu? F
dAStot = dAssys_ 55T () d( ) + - dx
/ /
dE,. dE,. dAQ

. med __

KT KT kT ™

Spinney and Ford PRES85, 051113 (2012)



Distributions of total path-dependent entropy
production for stationary thermal conduction
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As,, satisfies a detailed fluctuation relation

| | | | | . .

L+ In[P(as,)/P(-As,,)]

2 T M | ]
| _

0.8 | | ]

0.6 -

] P(AS,) ]

= exp(AS
| P(_AS.. ) X(AS)

O | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

AS'[O'[




Jarzynski-Sagawa-Ueda equality

(eXp(—(AW, —AF) / kT —|1,))) =1

Xy

« Jarzynski holds for initial equilibrium state

* Make measurement Yy of system variable X to gain
iInformation: distribution of X is changed

P(x) = P(x]y)
I, =In[P(x] y)/P(x)]



Dissipative work and mutual information

AW, = <AWO> —AF > kT IW by Jensen

« Acquisition of information allows
breakage of Kelvin's statement of the
second law

— cyclic extraction of work from a single
heat bath

m

[, =1, =[xy Px yP()In| =2 Y5 0
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Experimental demonstratlon of

free energy

information-to-energy conversion and validation
of the generalized Jarzynski equality

Shoichi Toyabe'!, Takahiro Sagawa?, Masahito Ueda?3, Eiro Muneyuki'™ and Masaki Sano?*

In 1929, Leé Szilard invented a feedback protocol’ in which a a b
hypothetical intelligence—dubbed Maxwell's demon—pumps
heat from an isothermal environment and transforms it
into work. After a long-lasting and intense controversy
it was finally clarified that the demon's role does not
contradict the second law of thermodynamics, implying that
we can, in principle, convert information to free energy®™®
An experimental demonstration of this information-to-energy
conversion, however, has been elusive. Here we demonstrate
that a non-equilibrium feedback manipulation of a Brownian
particle on the basis of information about its location achieves
a Szilard-type information-to-energy conversion. Using real-
time feedback control, the particle is made to climb up a
spiral-staircase-like potential exerted by an electric field and
gains free energy larger than the amount of work done
on it. This enables us to verify the generalized Jarzynski
equality’, and suggests a new fundamental principle of an
‘information-to-heat engine' that converts information into
energy by feedback control.

To illustrate the basic idea of our feedback protocol, let us




A rough summary

* A plethora of fluctuation relations

— integral, detailed, Jarzynski, Crooks, Evans-Searles, Bochkov-Kuzovlev,
Gallavotti-Cohen, Speck-Seifert, Hatano-Sasa, Jarzynski-Sagawa-Ueda, etc

— Statements about the likely thermodynamic behaviour of a small system
« Stochastic thermodynamics is (arguably) the simplest framework
« Key quantity: AS,,; - a measure of path irreversibility

— when path-averaged equals thermodynamic entropy production AS

« Components of total entropy production:
— system, medium, excess, housekeeping heat(s) ...
— mutual information of measurement and Maxwell’s demon ...

« Examples for discrete and continuous stochastic dynamics
e Thanks for listening!

tot




