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@ Transient fluctuation relations  (TFRS):
motivation and warm-up

@ Correlated Gaussian dynamics:
check TFRs for generalized Langevin dynamics

@ Non-Gaussian dynamics:
check TFRs for time-fractional Fokker-Planck equations

@ Relations to experiments:
glassy dynamics and biological cell migration
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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial
state into a nonequilibrium steady state.

Measure the probability distribution p(&;) of entropy production
& during time t: (&)

n p(=&t)

Transient Fluctuation Relation (TFR)
Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

=&

why important? of very general validity and
© generalizes the Second Law to small systems in noneq.
@ connection with fluctuation dissipation relations
© can be checked in experiments (Wang et al., 2002)
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Fluctuation relation for Langevin dynamics

warm-up: check TFR for the overdamped Langevin equation
x =F 4+ ((t) (setallirrelevant constants to 1)
with constant field F and Gaussian white noise ((t).

entropy production & is equal to (mechanical) work W; = Fx(t)
with p(W;) = F ~1o(x,t); remains to solve the corresponding
Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,
_ 2
oot = g o (~45F)
straightforward:
(work) TFR holds if < X >= Fo?2/2
X

and ‘ 3 fluctuation-dissipation relation 1 (FDR1) = TFR ‘

see, e.g., van Zon, Cohen, PRE (2003)
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Gau35|an stochastic dynamlcs

goal: check TFR for Gaussian stochastic processes defined by
the (overdamped) generalized Langevin equation

/t dt’x(t")K(t —t') = F +¢(t)
° e.g., Kubo (1965)

with Gaussian noise ((t) and memory kernel K (t)

This dynamics can generate anomalous diffusion

02 ~t% with a # 1 (t — o0)
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TFR for correlated internal Gau53|an noise

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,
< ((B)¢(t) >~ K(t —t),
with non-Markovian (correlated) noise; e.g., K (t) ~ t=8

solving the corresponding generalized Langevin equation in
Laplace space yields

FDR2 = ‘FDRY’
and since p(W;) ~ o(x,t) is Gaussian

‘FDR1’ = TFR|

\for correlated internal Gaussian noise 3 TFR
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Correlated external Gaussian noise

2. external Gaussian noise for which there is no FDR2,
modeled by the (overdamped) generalized Langevin equation

x =F +((t)
consider two types of Gaussian noise correlated by
9(1) =< C()C(t') >rmt_v~ (A/T)P fOr 7> A, 3> 0:

\ \‘\
\\\ \
~ \
&) \\: 5
g \
0 I — ’ — — |
persistent anti-persistent
itis < x >=Ftand 02 = 2 [y d7(t — 7)g(7)

Fluctuation Relations for Anomalous Stochastic Dynamics

Rainer Klages 7



F\u tum on Relations Correlated Gaussian dynamics \ 1ssian dynamic xperiments mnnww
000®0

Results TFRs for correlated external Gau53|an noise

. . W
o2 and the fluctuation ratio R(W;) = In ﬁ( V\t/)) fort > A and
PL—VVt
9(7) =< C()C(Y) >r=t-v~ (A/7)":
persistent antipersistent *
g % RWy) |og R(Wt)
0<f<l ||[~t258 ~ g regime
=l ~tih(§) ~ e does not exist
A
1<p<?2 ~ 28 ~ tA—1w,
g=2 ~ 2Dt ~ W~ in(t/A) @Wt
A
2< B <0 =const. ~tW;

* antipersistence for [ drg(7) > 0 yields normal diffusion with
generalized TFR; above antipersistence for [;°drg(r) =0
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FDR and TFR

relation between TFR and FDR 1,11 for correlated Gaussian
stochastic dynamics : (‘normal FR’= conventional TFR)

FDR2 = FDR1 = TFR|
| ATFR = A FDR2|

in particular:
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Modellng non-Gaussian dynamics

e start again from overdamped Langevin equation x = F + ((t),
but here with non-Gaussian power law correlated noise

9(7) =< C(¢() >rmtv~ (Ka/7)P 7, 1< < 2
e ‘motivates’ the non-Markovian Fokker-Planck equation

type A: 789’*5?’0 =-2 [F KoDE 8} oa(x, 1)

with Riemann-Liouville fractional derivative Dt1 “ (Balescu, 1997)

e two formally similar types derived from CTRW theory, for
O<a<l

type B; 220 _ 0 [F KoDE™ ad}QB(X t)
type C: %cT(tXM:_% [FD}*“ K.D}™ “6] oc(x,t)

They model a very different class of stochastic process!
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Properties of non-Gaussian dynamics

Riemann-Liouville fractional derivative defined by

8m
do . {atmg , y=m
—_ = 8m 1 t g(t’)
ot atm |:r(m—'y) fo dtlw , M=—1<y<m

with m € N; power law inherited from correlation decay.
two important properties:

e FDR1.: exists for type C but not for A and B

e mean square displacement:

- type A: superdiffusive, 02 ~ 1%, 1 < a < 2

- type B: subdiffusive, 02 ~t*, 0 < a < 1

- type C: sub- or superdiffusive, 02 ~ 12, 0 < a < 1

e position pdfs: can be calculated approx. analytically for A, B,
only numerically for C
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Probability distributions and fluctuation relations

type A type B type C

. 040 : 0.40 —— : 0.40 :
e PDFs: a-14 — =1 a=0.6 — = a=0.6 — 1
03sf . 035 - 035 -
—t=2 —t=2 —t=2
030 — t=4 030 — =4 030 — t=a
0.25 — =5 0.25 — =8 0.25 — =8
% 0.20} L %020 g %0200
3 3 2
015} 01sf 01sf
010} : 010f : 0.0}
0.05} 0.05} .05}
0.00 L 0.00 0.00 i
10 5 0 5 10 15 20 10 5 0 5 10 15 20 -10 -5 0 5 10 15 20
x x x
o 100 20 20 .
e TFRs: — 1] [a=]4 — ©1] a-06 — 1] a-06
—t=2 —t=2 —t=2
| P, 15H — t=4 15 — t=4
— 8 — 8 —_ =8
— 60p — -
£ = 10f =10
& 4ol & &
5 5
20
o o 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
w w w

W;) CaWt . Wt —0
p( w) t(2a=2)/(2—a)\y Oz/(2 a)

Rainer Klages 12



Experiments
L ]

Relations to experiments: glassy dynamics

example 1: computer simulations for a binary Lennard-Jones
mixture below the glass transition

P (8S)/ PR,,(-AS)
Yo
S

N

10

| | -
100 3 6 9 12 15
AS

Crisanti, Ritort, PRL (2013)

e again: R(W;) =1In p(Wh) = f3(t)W;; cp. with TFR type B
p(—Wr)

e similar results for other glassy systems (Sellitto, PRE, 2009)
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Cell migration without and with chemotaxis

example 2: single MDCKEF cell . :
. new experiments on murine
crawling on a substrate;

. . . neutrophils under chemotaxis:
trajectory recorded with a video P
camera
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Anomalous fluctuation relation for cell migration

experim. results:  position fluctuation ratio R(W¢) is time
pdfs p(x,t) are Gaussian dependent
| = me ke
:’537— t =30 min
2 aono}
2 1
O0%%0 10 0 100 xz[o‘t’)”] 300 400 500 600 00 1‘0 2‘0 3‘0 4‘0 0
g X [um)
<x(t) >~tand o2 ~t># with0 < 8 < 1: AFDR1 and
W, W,
RWy) = In W) _ -
p(=Wy)  tH7

data matches to analytical results for persistent correlations
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Summary

@ TFR tested for two generic cases of correlated Gaussian
stochastic dynamics

© internal noise :
FDR2 implies the validity of the ‘normal’ work TFR
@ external noise :
FDR?2 is broken; sub-classes of persistent and
anti-persistent noise yield both anomalous TFRs

@ TFR tested for three cases of non-Gaussian dynamics
breaking FDR1 implies again anomalous TFRs

@ anomalous TFRs appear to be important for glassy aging
dynamics: cf. computer simulations on various glassy
models and experiments on (‘gelly’) cell migration
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