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Outline

Transient fluctuation relations (TFRs):

motivation and warm-up

Correlated Gaussian dynamics:

check TFRs for generalized Langevin dynamics

Non-Gaussian dynamics:

check TFRs for time-fractional Fokker-Planck equations

Relations to experiments:

glassy dynamics and biological cell migration
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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial
state into a nonequilibrium steady state.
Measure the probability distribution ρ(ξt) of entropy production
ξt during time t :

ln
ρ(ξt)

ρ(−ξt)
= ξt

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

why important? of very general validity and
1 generalizes the Second Law to small systems in noneq.
2 connection with fluctuation dissipation relations
3 can be checked in experiments (Wang et al., 2002)
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Fluctuation relation for Langevin dynamics

warm-up: check TFR for the overdamped Langevin equation

ẋ = F + ζ(t) (set all irrelevant constants to 1)

with constant field F and Gaussian white noise ζ(t).

entropy production ξt is equal to (mechanical) work Wt = Fx(t)
with ρ(Wt) = F−1̺(x , t); remains to solve the corresponding
Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

̺(x , t) = 1√
2πσ2

x

exp
(

− (x−<x>)2

2σ2
x

)

straightforward:

(work) TFR holds if < x >= Fσ2
x/2

and ∃ fluctuation-dissipation relation 1 (FDR1) ⇒ TFR

see, e.g., van Zon, Cohen, PRE (2003)

Fluctuation Relations for Anomalous Stochastic Dynamics Rainer Klages 4



Fluctuation Relations Correlated Gaussian dynamics Non-Gaussian dynamics Experiments Summary

Gaussian stochastic dynamics

goal: check TFR for Gaussian stochastic processes defined by
the (overdamped) generalized Langevin equation

∫ t

0
dt ′ẋ(t ′)K (t − t ′) = F + ζ(t)

e.g., Kubo (1965)

with Gaussian noise ζ(t) and memory kernel K (t)

This dynamics can generate anomalous diffusion :

σ2
x ∼ tα with α 6= 1 (t → ∞)
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TFR for correlated internal Gaussian noise

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,

< ζ(t)ζ(t ′) >∼ K (t − t ′) ,

with non-Markovian (correlated) noise; e.g., K (t) ∼ t−β

solving the corresponding generalized Langevin equation in
Laplace space yields

FDR2 ⇒ ‘FDR1’

and since ρ(Wt) ∼ ̺(x , t) is Gaussian

‘FDR1’ ⇒ TFR

for correlated internal Gaussian noise ∃ TFR
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Correlated external Gaussian noise

2. external Gaussian noise for which there is no FDR2 ,
modeled by the (overdamped) generalized Langevin equation

ẋ = F + ζ(t)

consider two types of Gaussian noise correlated by
g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β for τ > ∆ , β > 0:

persistent anti-persistent

it is < x >= Ft and σ2
x = 2

∫ t
0 dτ(t − τ)g(τ)
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Results: TFRs for correlated external Gaussian noise

σ2
x and the fluctuation ratio R(Wt) = ln

ρ(Wt)

ρ(−Wt)
for t ≫ ∆ and

g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β :

persistent antipersistent ∗

β σ2
x R(Wt) σ2

x R(Wt)

0 < β < 1 ∼ t2−β ∼ Wt
t1−β regime

β = 1 ∼ t ln
( t

∆

)

∼ Wt

ln( t
∆)

does not exist

1 < β < 2 ∼ t2−β ∼ tβ−1Wt

β = 2 ∼ 2Dt ∼ Wt
D ∼ ln(t/∆) ∼ t

ln( t
∆)

Wt

2 < β < ∞ = const . ∼ tWt

* antipersistence for
∫

∞

0 dτg(τ) > 0 yields normal diffusion with
generalized TFR; above antipersistence for

∫

∞

0 dτg(τ) = 0
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FDR and TFR

relation between TFR and FDR I,II for correlated Gaussian
stochastic dynamics : (‘normal FR’= conventional TFR)

in particular:
FDR2 ⇒ FDR1 ⇒ TFR
6 ∃ TFR ⇒ 6 ∃ FDR2

Fluctuation Relations for Anomalous Stochastic Dynamics Rainer Klages 9



Fluctuation Relations Correlated Gaussian dynamics Non-Gaussian dynamics Experiments Summary

Modeling non-Gaussian dynamics

• start again from overdamped Langevin equation ẋ = F + ζ(t),
but here with non-Gaussian power law correlated noise

g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (Kα/τ)2−α , 1 < α < 2

• ‘motivates’ the non-Markovian Fokker-Planck equation

type A: ∂̺A(x ,t)
∂t = − ∂

∂x

[

F − KαD1−α
t

∂
∂x

]

̺A(x , t)

with Riemann-Liouville fractional derivative D1−α
t (Balescu, 1997)

• two formally similar types derived from CTRW theory, for
0 < α < 1:

type B: ∂̺B(x ,t)
∂t = − ∂

∂x

[

F − KαD1−α
t

∂
∂x

]

̺B(x , t)

type C: ∂̺C(x ,t)
∂t = − ∂

∂x

[

FD1−α
t − KαD1−α

t
∂
∂x

]

̺C(x , t)

They model a very different class of stochastic process!
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Properties of non-Gaussian dynamics

Riemann-Liouville fractional derivative defined by

∂γ̺

∂tγ
:=

{

∂m̺
∂tm , γ = m
∂m

∂tm

[

1
Γ(m−γ)

∫ t
0 dt ′ ̺(t ′)

(t−t ′)γ+1−m

]

, m − 1 < γ < m

with m ∈ N; power law inherited from correlation decay.

two important properties:

• FDR1: exists for type C but not for A and B

• mean square displacement:

- type A: superdiffusive, σ2
x ∼ tα , 1 < α < 2

- type B: subdiffusive, σ2
x ∼ tα , 0 < α < 1

- type C: sub- or superdiffusive, σ2
x ∼ t2α , 0 < α < 1

• position pdfs: can be calculated approx. analytically for A, B,
only numerically for C
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Probability distributions and fluctuation relations

type A type B type C
• PDFs:

• TFRs:

R(Wt) = log ρ(Wt )
ρ(−Wt )

∼
{

cαWt , Wt → 0

t(2α−2)/(2−α)W α/(2−α)
t , Wt → ∞
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Relations to experiments: glassy dynamics

example 1: computer simulations for a binary Lennard-Jones
mixture below the glass transition
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Crisanti, Ritort, PRL (2013)

• again: R(Wt) = ln
ρ(Wt)

ρ(−Wt)
= fβ(t)Wt ; cp. with TFR type B

• similar results for other glassy systems (Sellitto, PRE, 2009)
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Cell migration without and with chemotaxis

example 2: single MDCKF cell
crawling on a substrate;
trajectory recorded with a video
camera

Dieterich et al., PNAS, 2008

new experiments on murine
neutrophils under chemotaxis:

Dieterich et al. (2013)
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Anomalous fluctuation relation for cell migration

experim. results: position
pdfs ρ(x , t) are Gaussian

fluctuation ratio R(Wt) is time
dependent

< x(t) >∼ t and σ2
x ∼ t2−β with 0 < β < 1: 6 ∃ FDR1 and

R(Wt) = ln
ρ(Wt)

ρ(−Wt)
=

Wt

t1−β

data matches to analytical results for persistent correlations
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Summary

TFR tested for two generic cases of correlated Gaussian
stochastic dynamics :

1 internal noise :
FDR2 implies the validity of the ‘normal’ work TFR

2 external noise :
FDR2 is broken; sub-classes of persistent and
anti-persistent noise yield both anomalous TFRs

TFR tested for three cases of non-Gaussian dynamics :
breaking FDR1 implies again anomalous TFRs

anomalous TFRs appear to be important for glassy aging
dynamics: cf. computer simulations on various glassy
models and experiments on (‘gelly’) cell migration

Fluctuation Relations for Anomalous Stochastic Dynamics Rainer Klages 16



Fluctuation Relations Correlated Gaussian dynamics Non-Gaussian dynamics Experiments Summary

References

P.Dieterich, RK, A.V. Chechkin, NJP 17, 075004 (2015)
A.V. Chechkin, F.Lenz, RK, J. Stat. Mech. L11001 (2012)
A.V. Chechkin, RK, J. Stat. Mech. L03002 (2009)

Fluctuation Relations for Anomalous Stochastic Dynamics Rainer Klages 17


	Fluctuation Relations
	Outline
	Motivation

	Correlated Gaussian dynamics
	case 1

	Non-Gaussian dynamics
	Fractional Fokker-Planck equations

	Experiments
	Lattice gas
	Cell migration

	Summary
	Summary


