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@ Normal Langevin dynamics:
brief review and cross-link to stochastic climate dynamics

® Anomalous Langevin dynamics:

anomalous diffusion, fluctuation-dissipation relations and
relation to long-range memory for modeling earth’s
temperature

@ Fluctuation relations:

motivation by 2nd law of thermodynamics and check them
for Langevin dynamics
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Theoretical modeling of Brownian motion

Brownian motion

L H
AR 1 ,,g._
"Q# < H
Sedses, i ‘EH— ‘Newton’s law of stochastic physics’:
u ﬂ"}x N iz e ‘m\'/ = —krV+k C(t)‘
b } R '\i‘I\ Langevin equation (1908)
LTI for a tracer particle of velocity v
Perrin (1913) immersed in a fluid
three colloidal particles,  force on rhs decomposed into:
positions joined by e viscous damping as Stokes friction
straight lines e random kicks of surrounding particles

modeled by Gaussian white noise
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Langevin dynamics

Langevin dynamics characterized by solutions of the Langevin
equation; here focus on (in 1dim):

@ mean square displacement (msd)
g = ((x(t) = (x(1)))?) ~t (t = o0),
where (...) denotes an ensemble average
@ position probability distribution function (pdf)
1 ( (x— <X >)2>
N =7
V27102 20%

(from solving the corresponding diffusion equation)
reflects the Gaussianity of the noise

o(x,t) =
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A stochastic energy balance equation

model the dynamics of the earth’s surface temperature T by
combining two ideas:

© use a linearized energy-balance equation derived as
: 1 :
CT = —S—T + F (e.g., Ghil, 1984)
eq
with heat capacity C, equilibrium climate sensitivity Seq
and (solar) radiative influx F

@ model randomness in forcing of ocean-land heat content

from atmosphere by adding stochasticity (Hasselmann,
1981),

cT — _SLT +F +k ¢(t) (Padilla, 2011)
eq

with Gaussian white noise ¢ of strength k
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Langevin dynamics for surface tempera

compare:

. . 1
stochastic EBeq. CT = —S—T +F +k((t)
eq

Langevin eq. with field mv = —kV +F + Kk ((t)

mathematically identical
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Generalized Langevin equation

Mori, Kubo (1965/66): generalize ordinary Langevin equation to

mv = — [5dt’ (t — t')v(t") +k ¢(t)

by using a time-dependent friction coefficient (t) ~ t=5;
applications to polymer dynamics (Panja, 2010) and biological
cell migration (Dieterich, RK et al., 2008)

solutions of this Langevin equation:

@ position pdf is Gaussian (as the noise is still Gaussian)

@ but for msd 2 ~ t*%) (t — c0) with anomalous diffusion
for a # 1; a < 1: subdiffusion; o > 1: superdiffusion

(nb: the 1st term on the rhs defines a fractional derivative)
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Fluctuation-dissipation relations

Kubo (1966): two fundamental relations characterizing
Langevin dynamics

© fluctuation-dissipation relation of the 2nd kind (FDR2),
< ()C(t) >~ w(t —t')

defines internal noise, which is correlated in the same
way as the friction; if broken: external noise

@ fluctuation-dissipation relation of the 1st kind (FDR1),
<X >~ 02

implies that current and msd have the same time
dependence (linear response)

(nb: some technical subtleties neglected)
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Implications of fluctuation-dissipation relations

@ for generalized Langevin dynamics with power-law
correlated internal (FDR2) Gaussian noise, x(t) ~ t=7,
FDR2 implies FDR1 (Chechkin, Lenz, RK, 2012)

@ Rypdal, Rypdal (2014): similar generalized Langevin
dynamics used to model long-range memory effects in the
earth’s temperature dynamics (i.e., previous stochastic
energy-balance eqg. with memory kernel); fit to data

@ but: modeling implies breaking of FDR2; meaningful?
whether or not 4 FDR1/FDR2 has crucial consequences!

last part of this talk: illustrate consequences of FDR for a
relation generalizing the 2nd law of thermodynamics

Anomalous Langevin Dynamics Rainer Klages 9



Outline Normal Lang Y nalous S ynamics Fluctuation Relations
O @000 Jele}

Motivation: Fluctuation Relations

Consider a (classical) particle system evolving from some initial
state into a nonequilibrium steady state.

Measure the probability distribution p(&;) of entropy production
& during time t: (&)

n p(=&t)

Transient Fluctuation Relation (TFR)
Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

=&

why important? of very general validity and
© generalizes the Second Law to (small) systems in nonequ.
@ connection with fluctuation-dissipation relations
© can be checked in experiments (Wang et al., 2002)
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Fluctuation relation and the Second Law

meaning of TFR in terms of the Second Law:

P(E,)

th <th<ts

(&) = p(—&) exp(&) | > p(—&) (& 20) = <& >>0
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check TFR for the overdamped Langevin equation

X =F +((t) (setallirrelevant constants to 1)
for a particle at position x with constant field F and noise (.

entropy production &; is equal to (mechanical) work W; = Fx(t)
with p(W;) = F ~1o(x,t); choose initial condition x(0) = 0
the position pdf is Gaussian which implies straightforwardly

(work) TFR holds if < x >= 02/2|

hence |[FDR1 = TFR |
see, e.g., van Zon, Cohen, PRE (2003)
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Fluctuatlon relation for anomalous Langevm dynamlcs

check TFR for overdamped generalized Langevin equation

/Ot dt’x(t)s(t —t') = F +¢(t)

both for internal and external power-law correlated Gaussian
noise x(t) ~t=A

1. internal Gaussian noise:

e as FDR2 implies FDR1 and p(W;) ~ o(x,t) is Gaussian, it
straightforwardly follows the existence of the transient
fluctuation relation

\for correlated internal Gaussian noise 3 TFR\
e diffusion and current may both be normal or anomalous
depending on the memory kernel
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Correlated external Gaussian noise

2. external Gaussian noise: break FDR2, modelled by the
overdamped generalized Langevin equation

x =F +((t)
consider two types of Gaussian noise correlated by
9(1) =< C()C(t') >rmt_v~ (A/T)P fOr 7> A, 3> 0:

glt)

g(c)

0

persistent anti-persistent
itis < x >=Ftand 02 = 2 [y d7(t — 7)g(7)
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TFRs for correlated external Gaussian noise

results in a nutshell:
(for details see Chechkin, Lenz, RK, JStat, 2012)

¢ depending on the type of correlation and 5 the Langevin
dynamics exhibits a whole (complicated) spectrum of normal
and anomalous diffusion

e the TFR is always anomalous:

p(Wt)
p(—Wr)

In = f’ﬁ (t )Wt

where f3(t) depends on the type of diffusive dynamics

= breaking of FDR vyields a different type of generalized 2nd
law-like relation
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Summary: FDR and TFR

relation between TFR and FDR 1,1l for correlated Gaussian
stochastic dynamics: (‘normal FR’= conventional TFR)

FDR2 = FDR1 = TFR|
| ATFR = A FDR2|

in particular:
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Checking TFR in experiments

RWo) = In LMD ¢ yw,

means by plotting R for different t the slope might change.

example: computer simulations for a binary Lennard-Jones
mixture below the glass transition

oot,= 10°
oot =10°
. .thm4

(2S) /P, (-0S)

R

i L L -
109 3 6 9 12 15
AS

Crisanti, Ritort, PRL (2013)
similar results for other glassy systems (Sellitto, PRE, 2009)
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Summary

@ linearized stochastic energy-balance equation for the
earth’s surface temperature corresponds to Langevin
dynamics

@ long-range memory effects for stochastic climate dynamics
suggest studying generalized Langevin equations

@ be careful of how you define your Langevin model with
respect to fluctuation-dissipation relations:

@ is the physics modelled correctly in view of internal/external
noise?

@ important consequences for (transient) fluctuation relation
and the 2nd law

open questions:

@ Langevin modeling for stochastic climate dynamics?
@ Fluctuation Relations for climate dynamics?
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