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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial
state into a nonequilibrium steady state.

Measure the probability distribution p(&;) of entropy production
& during time t: (&)

n p(=&t)

Transient Fluctuation Relation (TFR)
Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

=&

why important? of very general validity and
© generalizes the Second Law to (small) systems in nonequ.
@ connection with fluctuation dissipation relations
© can be checked in experiments (Wang et al., 2002)
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Fluctuation relation for Langevin dynamics

warmup: check TFR for the overdamped Langevin equation
x =F 4+ ((t) (setallirrelevant constants to 1)
for a particle at position x with constant field F and noise (.

entropy production & is equal to (mechanical) work W; = Fx(t)
with p(W;) = F ~1p(x,t); remains to solve corresponding
Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

_ 2
o8 = e (~E5T)

straightforward:

(work) TFR holds if < x >= 02/2|

and ‘ 3 fluctuation-dissipation relation 1 (FDR1) = TFR ‘
see, e.g., van Zon, Cohen, PRE (2003)
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Gaussian stochastic dynamics

goal: check TFR for Gaussian stochastic processes defined by
the (overdamped) generalized Langevin equation

/t AUX(E)K (t — 1) = F + (1)
° e.g. Kubo (1965)

with Gaussian noise ¢(t) and memory kernel K (t)
such dynamics can generate anomalous diffusion:

02 ~t* with a # 1 (t — o0)
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TFR for correlated internal Gau53|an noise

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,
< ((B)¢(t) >~ K(t —t),
with non-Markovian (correlated) noise; e.g., K (t) ~t=8

solving the corresponding generalized Langevin equation in
Laplace space yields

FDR2 = ‘FDRY’
and since p(W;) ~ o(x,t) is Gaussian

‘FDR1’ = TFR|

\for correlated internal Gaussian noise 3 TFR
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Anomalous TFRs
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Correlated external Gaussian noise

2. external Gaussian noise for which there is no FDR2,
modeled by the (overdamped) generalized Langevin equation
x =F +((t)
consider two types of Gaussian noise correlated by
9(7) =< C()C(t) >rmt_v~ (A/T)P fOr 7> A, B> 0

\ \‘\
\\\ \
~ \
&) \\: 5
g \
0 I — ’ — — |
persistent antipersistent
itis < x >=Ftand 02 = 2 [y d7(t — 7)g(7)
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Results: Anomalous TFRs

o2 and the fluctuation ratio R(W;) = In

9(7) =< (t)C(t) >rmt—v~ (A/7)P:

EXx per iments Summar y

P(Wt) fort > A and

p(—Wh)

persistent antipersistent *
g ox RW:) |of R(Wt)
0<f<l ||[~t2h ~ T regime

— t H
B =il ~tin(x) ~ |n(§) does not exist
1<p<?2 ~ 28 ~ tA— 1w,
W,

B=2 ~ 2Dt ~ o ~In(t/A) m(})wt
2< <o =const. ~tW;

* antipersistence for [ drg(7) > 0 yields normal diffusion with
generalized TFR; above antipersistence for [;°drg(r) =0
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Relatlons to experlments glassy dynamics

p(Wr)
p(—Wr)

R(Wt) =1n = fﬁ(t)Wt

means by plotting R for different t the slope might change.

example 1: computer simulations for a binary Lennard-Jones
mixture below the glass transition
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Crisanti, Ritort, PRL (2013)
e similar results for other glassy systems (Sellitto, PRE, 2009)

Fluctuation Relations for Gaussian Stochastic Dynamics Rainer Klages 8



Experiments
o0

Biological cell migration

example 2: single biological cell crawling on a substrate;
trajectory recorded with a video camera

Dieterich, RK et al., PNAS, 2008
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Cell migration under chemical gradients

experiments on murine neutrophils under chemotaxis:
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Dieterich et al. (2013)
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Summary

e relation between TFR and FDR |,ll for correlated Gaussian
stochastic dynamics: (‘normal FR’= conventional TFR)

|FDR2 = FDR1 = TFR|| A TFR = A FDR2|

e anomalous TFRs likely to be important for glassy dynamics
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