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Outline

1 Langevin dynamics:

from Brownian motion to anomalous transport

2 Fluctuation relations:

from conventional ones generalizing the 2nd law of
thermodynamics to anomalous versions

3 Non-Gaussian dynamics:

check fluctuation relations for time-fractional Fokker-Planck
equations

4 Relation to experiments:

anomalous fluctuation relations in glassy systems and in
biological cell migration
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Theoretical modeling of Brownian motion

Brownian motion

Perrin (1913)
3 colloidal particles,
positions joined by
straight lines

mv̇ = −κv+k ζ(t)

Langevin equation (1908)
‘Newton’s law of stochastic physics’
velocity v = ẋ of tracer particle in fluid

force on rhs decomposed into:
• viscous damping as Stokes friction
• random kicks of surrounding particles
modeled by Gaussian white noise

nb: Zwanzig’s derivation (1973); breaking of Galilean invariance
(Cairoli, RK, Baule, tbp)
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Langevin dynamics

Langevin dynamics characterized by solutions of the Langevin
equation; here in one dimension and focus on:

mean square displacement (msd)

σ2
x (t) = 〈(x(t) − 〈x(t)〉)2〉 ∼ t (t → ∞) ,

where 〈. . . 〉 denotes an ensemble average

position probability distribution function (pdf)

̺(x , t) =
1

√

2πσ2
x

exp
(

−(x− < x >)2

2σ2
x

)

(from solving the corresponding diffusion equation)
reflects the Gaussianity of the noise
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Generalized Langevin equation

Mori, Kubo (1965/66): generalize ordinary Langevin equation to

mv̇ = −
∫ t

0
dt ′ κ(t − t ′)v(t ′) + k ζ(t)

by using a time-dependent friction coefficient κ(t) ∼ t−β;
applications to polymer dynamics (Panja, 2010) and biological
cell migration (Dieterich, RK et al., 2008)

solutions of this Langevin equation:

position pdf is Gaussian (as the noise is still Gaussian)

but msd σ2
x ∼ tα(β) (t → ∞) shows anomalous diffusion:

α 6= 1; α < 1: subdiffusion, α > 1: superdiffusion

The 1st term on the rhs defines a fractional derivative:
∂γP
∂tγ := ∂m

∂tm

[

1
Γ(m−γ)

∫ t
0 dt ′ P(t ′)

(t−t ′)γ+1−m

]

, m − 1 ≤ γ ≤ m
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What is a fractional derivative?

letter from Leibniz to L’Hôpital (1695):
d1/2

dx1/2
=?

one way to proceed: we know that for integers n ≥ m
dm

dxm xn =
n!

(n − m)!
xn−m =

Γ(n + 1)

Γ(n − m + 1)
xn−m ;

assume that this also holds for m = 1/2 , n = 1

⇒ d1/2

dx1/2
x =

2√
π

x1/2

extension leads to the Riemann-Liouville fractional derivative,
which yields power laws in Fourier (Laplace) space:

dγ

dxγ
F (x) ↔ (ik)γF̃ (k) , γ ≥ 0

∃ well-developed mathematical theory of fractional calculus

see Sokolov, Klafter, Blumen, Phys. Tod. (2002) for a short intro
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Fluctuation-dissipation relations

Kubo (1966): two fundamental relations characterizing
Langevin dynamics mv̇ = −

∫ t
0 dt ′ κ(t − t ′)v(t ′) + k ζ(t)

1 fluctuation-dissipation relation of the 2nd kind (FDR2),

< ζ(t)ζ(t ′) >∼ κ(t − t ′)

defines internal noise, which is correlated in the same
way as the friction; if broken: external noise

2 fluctuation-dissipation relation of the 1st kind (FDR1),

< x >∼ σ2
x

implies that current and msd have the same time
dependence

result: for generalized Langevin dynamics with correlated
internal (FDR2) Gaussian noise FDR2 implies FDR1

Chechkin, Lenz, RK (2012)
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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial
state into a nonequilibrium steady state.
Measure the probability distribution ρ(ξt) of entropy production
ξt during time t :

ln
ρ(ξt)

ρ(−ξt)
= ξt

Transient Fluctuation Relation (TFR)

Evans, Cohen, Morriss, Searles, Gallavotti (1993ff)

why important? of very general validity and
1 generalizes the Second Law to small systems in noneq.
2 connection with fluctuation dissipation relations
3 can be checked in experiments (Wang et al., 2002)
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Fluctuation relation and the Second Law

meaning of TFR in terms of the Second Law:

ξ

ρ(ξ  )

t1

t2
t3

t

t
t1 < t2 < t3

ρ(ξt) = ρ(−ξt) exp(ξt) ≥ ρ(−ξt) (ξt ≥ 0) ⇒ < ξt >≥ 0

sample specifically the tails of the pdf (large deviation result)
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Fluctuation relation for normal Langevin dynamics

check TFR for the overdamped Langevin equation

ẋ = F + ζ(t) (set all irrelevant constants to 1)

with constant field F and Gaussian white noise ζ(t)

entropy production ξt is equal to (mechanical) work Wt = Fx(t)
with ρ(Wt) = F−1̺(x , t); remains to solve the corresponding
Fokker-Planck equation for initial condition x(0) = 0

the position pdf is again Gaussian, which implies
straightforwardly:

(work) TFR holds if < x >= Fσ2
x/2

hence FDR1 ⇒ TFR

see, e.g., van Zon, Cohen, PRE (2003)
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Fluctuation relation for anomalous Langevin dynamics

check TFR for overdamped generalized Langevin equation

∫ t

0
dt ′ẋ(t ′)κ(t − t ′) = F + ζ(t)

both for internal and external power-law correlated Gaussian
noise κ(t) ∼ t−β

1. internal Gaussian noise:
• as FDR2 implies FDR1 and ρ(Wt) ∼ ̺(x , t) is Gaussian, it
straightforwardly follows the existence of the transient
fluctuation relation

for correlated internal Gaussian noise ∃ TFR
• diffusion and current may both be normal or anomalous
depending on the memory kernel
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Correlated external Gaussian noise

2. external Gaussian noise: break FDR2, modelled by the
overdamped generalized Langevin equation

ẋ = F + ζ(t)

consider two types of Gaussian noise correlated by
g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β for τ > ∆ , β > 0:

persistent anti-persistent

it is < x >= Ft and σ2
x = 2

∫ t
0 dτ(t − τ)g(τ)
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Results: TFRs for correlated external Gaussian noise

σ2
x and the fluctuation ratio R(Wt) = ln

ρ(Wt)

ρ(−Wt)
for t ≫ ∆ and

g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (∆/τ)β :

persistent antipersistent ∗

β σ2
x R(Wt) σ2

x R(Wt)

0 < β < 1 ∼ t2−β ∼ Wt
t1−β regime

β = 1 ∼ t ln
( t

∆

)

∼ Wt

ln( t
∆)

does not exist

1 < β < 2 ∼ t2−β ∼ tβ−1Wt

β = 2 ∼ 2Dt ∼ Wt
D ∼ ln(t/∆) ∼ t

ln( t
∆)

Wt

2 < β < ∞ = const . ∼ tWt

* antipersistence for
∫

∞

0 dτg(τ) > 0 yields normal diffusion with
generalized TFR; above antipersistence for

∫

∞

0 dτg(τ) = 0
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Summary: FDR and TFR

relation between TFR and FDR I,II for correlated Gaussian
stochastic dynamics: (‘normal FR’= conventional TFR)

in particular:
FDR2 ⇒ FDR1 ⇒ TFR
6 ∃ TFR ⇒ 6 ∃ FDR2
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Modeling non-Gaussian dynamics

• start again from overdamped Langevin equation ẋ = F + ζ(t),
but here with non-Gaussian power law correlated noise

g(τ) =< ζ(t)ζ(t ′) >τ=t−t ′∼ (Kα/τ)2−α , 1 < α < 2

• ‘motivates’ the non-Markovian Fokker-Planck equation

type A: ∂̺A(x ,t)
∂t = − ∂

∂x

[

F − KαD1−α
t

∂
∂x

]

̺A(x , t)

with Riemann-Liouville fractional derivative D1−α
t (Balescu, 1997)

• two formally similar types derived from CTRW theory, for
0 < α < 1:

type B: ∂̺B(x ,t)
∂t = − ∂

∂x

[

F − KαD1−α
t

∂
∂x

]

̺B(x , t)

type C: ∂̺C(x ,t)
∂t = − ∂

∂x

[

FD1−α
t − KαD1−α

t
∂
∂x

]

̺C(x , t)

They model a very different class of stochastic process!

Anomalous Transport and Fluctuation Relations Rainer Klages 15



Outline Langevin dynamics Fluctuation Relations Non-Gaussian dynamics Experiments Summary

Properties of non-Gaussian dynamics

two important properties:

• FDR1: exists for type C but not for A and B

• mean square displacement:

- type A: superdiffusive, σ2
x ∼ tα , 1 < α < 2

- type B: subdiffusive, σ2
x ∼ tα , 0 < α < 1

- type C: sub- or superdiffusive, σ2
x ∼ t2α , 0 < α < 1

position pdfs: can be calculated approx. analytically for A, B,
only numerically for C
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Probability distributions and fluctuation relations

type A type B type C
• PDFs:

• TFRs:

R(Wt) = log ρ(Wt )
ρ(−Wt )

∼
{

cαWt , Wt → 0

t(2α−2)/(2−α)W α/(2−α)
t , Wt → ∞
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Anomalous TFRs in experiments: glassy dynamics

R(Wt) = ln
ρ(Wt)

ρ(−Wt)
= fβ(t)Wt

means by plotting R for different t the slope might change.
example 1: computer simulations for a binary Lennard-Jones
mixture below the glass transition
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Crisanti, Ritort, PRL (2013)
similar results for other glassy systems (Sellitto, PRE, 2009)
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Cell migration without and with chemotaxis

example 2: single MDCKF cell
crawling on a substrate;
trajectory recorded with a video
camera

Dieterich et al., PNAS (2008)

new experiments on murine
neutrophils under chemotaxis:

Dieterich et al. (tbp)
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Anomalous fluctuation relation for cell migration

experim. results: position
pdfs ρ(x , t) are Gaussian

fluctuation ratio R(Wt) is time
dependent

< x(t) >∼ t and σ2
x ∼ t2−β with 0 < β < 1: 6 ∃ FDR1 and

R(Wt) = ln
ρ(Wt)

ρ(−Wt)
=

Wt

t1−β

Dieterich et al. (tbp)
data matches to theory for persistent Gaussian correlations
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Summary

TFR tested for two generic cases of non-Markovian
correlated Gaussian stochastic dynamics:

1 internal noise:
FDR2 implies the validity of the ‘normal’ work TFR

2 external noise:
FDR2 is broken; sub-classes of persistent and
anti-persistent noise yield both anomalous TFRs

TFR tested for three cases of non-Gaussian dynamics:
breaking FDR1 implies again anomalous TFRs

anomalous TFRs appear to be important for glassy ageing
dynamics and for active biological cell migration
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