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@ ‘Normal’ fluctuation relations:
motivation with some history

@ Anomalous fluctuation relations:

check transient fluctuation relations for three fundamental
classes of anomalous stochastic processes

@ Biological cell migration:

brief outline and outlook towards checking these relations
in experiments
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A pioneering papetr...

VOLUME 71, NUMBER s PHYSICAL REVIEW LETTERS 11 OcToBER 1993

Pr itity of ELaw Vi i in Shearing Steady States

two-dimensional fluid of soft particles under shear: measure
the probability distribution p(7;) of the entropy production rate
1t ~ Pxyt during time t in a nonequilibrium steady state
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e ratio of the tails — Second Law for small nonequ. systems
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;..With a groundbreaking idea

analytical argument (for p(7;) in terms of the SRB measure)
yielded the steady state fluctuation relation

in P _ n
p(—1)
confirmed by computer simulations (for long enough t):
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proof on basis of chaotic hypothesis by Gallavotti, Cohen (1995)
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A second pioneering paper

PHYSICAL REVIEW E VOLUME 50, NUMBER 2 AUGUST 1994

Equilibrium microstates which generate second law violating steady states

Denis J. Evans and Debra 1. Searles
Research School of Chemistry, The Australian National University, Canberra, Australion Capital Territory 0200, Australia
(Received & November 1993)

For reversible deterministic N-particle thermostatted systems, we ¢xamine the question of why it is so
difficult to find initial microstates that will, at long times under the influence of an external dissipative
field and a thermostat, lead to second law violating nonequilibrium steady states. We prove that the
measure of those phases that generate second law violating phase space trajectories vanishes exponential-
Iy with time.

Consider a particle system evolving from some initial state into
a nonequilibrium steady state.

Measure the probability distribution p(&;) of entropy production
& during time t:

in &) _

p(=&t)

transient (Evans-Searles) fluctuation relation (TFR)
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Yet a third one...

VOLURTE B9, NUMBER 5 PHYSICAL REVIEW LETTERS 20 Jury 2002

Experimental Demonstration of Vielations of the Second Law of Thermodynamics
for Small Systems and Short Time Scales

Brownian particle in a harmonic trap dragged with constant
velocity v, through a fluid:

A\

e FRs can be checked in experiments!

work on related concepts: Jarzynski (1997), Crooks (1999),
Seifert (2005); experiments by Ciliberto (1998), Ritort (2002).
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Fluctuation relation for Langevin dynamics

warmup: check TFR for the overdamped Langevin equation
x =F +((t) (setallirrelevant constants to 1)
with constant field F and Gaussian white noise ((t).

entropy production & is equal to (mechanical) work W; = Fx(t)
with p(W;) = F ~1o(x,t); remains to solve corresponding
Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

o00,0) = s e (- 02T
straightforward:
(work) TFR holds if < Wy >= 0§, /2

and | 3 fluctuation-dissipation relation 1 (FDR1) = TFR|

see, e.g., van Zon, Cohen, PRE (2003)



Outline \ Anomalous TFRs
o 000000

TFRs for anomalous dynamics

goal: check TFR for three fundamental types of anomalous
diffusion

First type: Gaussian stochastic processes defined by the
(overdamped) generalized Langevin equation (Kubo, 1965)

t
/ AUX(E)K (t — 1) = F + (1)
0
with Gaussian noise ¢(t) and a suitable memory kernel K (t)

examples of applications: polymer dynamics (Panja, 2010);
biological cell migration (Dieterich et al., 2008)

Fluctuation relations for anomalous dynamics Rainer Klages 8



Hut\mw Normal FRs Anomalous TFRs C HH HWIV ation Summary

O@00C

TFR for correlated mternal Gau55|an noise

split this class into two cases:

1. internal Gaussian noise defined by the FDR2
< C(C(t) >~ K(t—t),

which is correlated by K(t) ~t=% , 0 < 3 < 1

p(Wi) ~ o(x,t) is Gaussian; solving the generalized Langevin
equation in Laplace space yields subdiffusion

o2 ~tP
by preserving FDR1 which implies
< W >= O'\%Vt/z

\for correlated internal Gaussian noise 3 TFR\
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TFR for correlated external Gaussian noise

2. consider overdamped generalized Langevin equation
x =F +((t)
with correlated Gaussian noise defined by
<)) >~ -t 0< <1,
which is external, because there is no FDR2

p(Wi) ~ o(x,t) is again Gaussian but here with superdiffusion
by breaking FDRL1 :

<Wy>~t o, of, ~ 2P
yields the anomalous TFR
p(Wh) 51
In———— =Cgt" "Wy 0<pg<l1
FETAR t (0<p<I)

note: pre-factor on rhs not equal to one and time dependent
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Relations to experiments

p(Wi) Cs
In = Wy O<p<l1
experiments on slime mold: computer simulation on

glassy lattice gas:
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Hayashi, Takagi, @ T TmT 7T
J.Phys.Soc.Jap. (2007) Sellitto, PRE (2009)

= anomalous fluctuation relation important for glassy dynamics
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TER for Lévy flights

Second type of anomalous dynamics: consider the Langevin
equation x =F +((t)
with white Lévy noise p(¢) ~ [¢|717% (¢ - ), 0<a <2
examples of applications: fluid dynamics (Solomon et al.,
1993); Lévy flights for light (Barthelemy, 2008)
by solving the corresponding Fokker-Planck equation

I _ oo O

ot ox  OIx|«
with Riesz fractional derivative
A = T(1+0) 2 1 dy (p(x +y) —2p(x) +p(x —y)) y1+e
and using the scaled variable w; = W, /(F?t) we recover

p(Wi)

wi—oo p(—Wt)
i.e., large fluctuations are equally possible
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TFR for time- fractlonal klnetlcs

Third type of anomalous dynamics: via subordinated Langevin
i d d
equation >(<j(UU) =F +¢(u) , t(u = 7(u)
with Gaussian white noise ¢(u) and whlte Levy stable noise
7(u) > 0; leads to the time-fractional Fokker-Planck equation
op Ot [ OF 02
ot otl-e | ox = 9x?
with Riemann-Liouville fractional derivative
d m t
%:gt_m [r(m 5 fodt/t t/)(w)l m} form—-1<~y<m,meN
and 212 = 922 for v = m, which preserves a generalized FDR1

examples of applications:  photo current in copy machines
(Scher et al., 1975) and related systems modeled by
Continuous Time Random Walk theory (Metzler, Klafter, 2004)

for this dynamics we recover the conventional TFR
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Outlook: Anomalous dynamics of cell migration

single biological cell crawling on a substrate; trajectory
recorded with a video camera (Dieterich et al., 2008)

movie: ‘ MDCKF: t=210min, dt=3min‘
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Position distribution function

e two types: wildtype and
deficient one

e P(x,t) — Gaussian
(t — oo) and kurtosis

4t
’i(t) = <<):(2((t))>>2
for Brownian motion (green
lines, in 1d)
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= crossover from peaked to broad non-Gaussian distributions
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new experiments on murine - ARpldonent
neutrophils under chemotaxis ° 2

Schwab, Dieterich et al. (unpub.)
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e linear drift in the direction of the gradient, < y(t) >~ t

e msd(t)— < y(t) >2~ t? with same exponent § > 1 as in
equilibrium =- A fluctuation dissipation relation 1

e data suggest an anomalous fluctuation relation of the type as
obtained for generalized Langevin dynamics
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The model

cell data fit by a fractional Klein-Kramers equation  with
external force F(x) (Metzler, Sokolov, 2002):

) o (9 F o, d

— = W] +—-—k|—V——— 4V P
ot = ox Plt o=t |ovY “emav T

th avz

with probability distribution P = P(x,v,t), damping term &,
thermal velocity vy, and Riemann-Liouville fractional derivative
of order 1 — o

for o = 1 ordinary Klein-Kramers equation recovered

analytical solutions yield correctly drift, msd, VACF and (for
large enough « and t) the pdf's
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Anomalous quctuatlon relatlons summary

@ TFR tested for three fundamental types of anomalous
stochastic dynamics

© Gaussian stochastic processes with correlated noise:

|FDR2 = FDR1 = TFR|
TFR holds for internal noise, mild violation for external one

@ strong violation of TFR for space-fractional (Lévy) dynamics
© TFR holds for time-fractional dynamics

@ same results obtained for a particle confined in a harmonic
potential dragged by a constant velocity (cf. experiment by
Wang et al., 2002)

@ outlook: work in progress on more generalized Gaussian
processes and cell migration
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Happy Birthday Denis!
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