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Motivation

bumblebee foraging:
find food (nectar, pollen) in complex landscapes

What type of motion?
Study bumblebee foraging in a laboratory experiment.
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Bumblebee experiment

Ings, Chittka, Current Biology 18, 1520 (2008):
bumblebee foraging in a cube of ~ 75cm side length

N —

Ni&

y —

@ artificial yellow flowers: 4x4 grid on one wall

@ two cameras track the position (50fps) of a single
bumblebee (Bombus terrestris)

@ #bumblebees=30, #data points ~ 49000

Summary

nb: Here we only focus on one aspect of the full experiment.
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The main question

What type of motion do the bumblebees perform away from
the flower carpet in terms of stochastic dynamics ?

0602

nb: The foraging dynamics in interaction with the flowers has
been studied in Lenz et al., PRL 108, 098103 (2012).
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Data analysis
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Reorientation (or CRW) model

describe biological movements in a
plane by speed s(t) = |v(t)| and
turning angle § in comoving frame:
Correlated Random Walk model

B(t) = £(t), s(t) = const.

where (t) is typically drawn i.i.d. from a wrapped normal
distribution; model captures directional biological persistence

goal: construct a generalized CRW model from
experimental data for reproducing ‘free’ bumblebee flights by
using Langevin-type dynamics: drift terms plus noise

dg(t .

T8 s, s + &

dz(tt) — g(B(t),s(t)) +¥(t)
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Data analysis
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assume Markovianity for estimating Fokker-Planck drift
coefficients h and g normallzed drift vector fleld
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indicates that the cross-dependencies of h(4(t),s(t)) on s and
of g(5(t),s(t)) on 3 are weak; vector field splits into
dg/dt = h(g(t)) +£(t)
ds/dt = g(s(t)) +u(t)

Stochastic model of bumblebee flights Rainer Klages 6



Data analysis astic model Summary
00®00

Estimation of drift terms from data

200
g extract projection h(3) from data:
E h(B) ~ —kg with k ~ 1/At
= oo integrating d 3/dt = h(3(t)) + £(t)

200 % wrt At yields 5(t) = £(t)
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2 iecemise b2 1 1 extract projection g(s) from data:
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%o : linear approximation for g(s) in
E W ds/dt = g(s(t)) + ¢ (t) yields
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Velocity-dependent angle noise

pdf for the turning angles [ at each speed s is approximated
by a Gaussian;
however, the variance o3 is s-dependent (cf. naive reasoning):

0K hitedexy — |
50 r
:2: Bt) = &l(t)
e | &l ~ NOA(s)
j f(s) = c1e7%° +c3
0| ik
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Noise autocorrelation functions

noise of speed changes

noise &(t) of turning angles ) = skt =g _
. ) Gaussian with anti-correlations:
[ is a steep power law:
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0.1 1 Delay time t [s]
best approximated by
acfy(t) ~ ae~Mt + (1 —a)e 2!

Delay time t [s]
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ﬁ(t) = Es(t)
= = g(s() +u()

@ turning angles [ given by power law-correlated Gaussian
noise &s(t) ~ N(0,0¢(s))) with o¢(s) = c1e72° 4¢3

@ piecewise linear drift g(s) for speed s

@ ¢ Gaussian noise and anti-correlated via sum of
exponentials
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Simulation and comparison to real data
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very good agreement given the number of approximations
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Summary and Reference

@ We have constructed a generalized Langevin-type
correlated random walk model  that well reproduces
bumblebee flights in a small cube.

@ Question 1. Does it also work for bee flights in the wild ?
@ Question 2: Can we model other animal flights  with it?

Reference:
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