Anomalous diffusion generated by randomly perturbed deterministic dynamics

C.S. Rodrigues¹ A.V. Chechkin² A.P.S. de Moura³ C. Grebogi³ R. Klages^{4,5}

¹Max Planck Institute for Mathematics in the Sciences, Leipzig
²Institute for Theoretical Physics NSC KIPT, Kharkov, Ukraine

³Institute for Complex Systems and Mathematical Biology, University of Aberdeen

⁴Queen Mary University of London, School of Mathematical Sciences

⁵Max Planck Institute for the Physics of Complex Systems, Dresden

Bad Wildbad, 05 October 2015

Outline

Motivation

huge progress by stochastic theory of anomalous transport

but: *microscopic origin* of anomalous dynamics from deterministic equations of motion?

here in-between: randomly perturbed deterministic dynamics

- **Motivation:** standard map, diffusion, and dissipation
- Randomly perturbed dynamical systems
- Noise-induced diffusion in the dissipative standard map
- Compare with stochastic theory: CTRW

The kicked rotor and the standard map

rotating bar kicked periodically:

equations of motion:

$$\dot{ heta} = \omega$$
 , $\dot{\omega} = k \sin \theta \sum_{m=0}^{\infty} \delta(t - m\tau)$; $k = K/I$

integration $\int_{n+0^+}^{(n+1)+0^+} dt \dots, \tau = 1$ yields the (Chirikov-Taylor) standard map $\theta_{n+1} = \theta_n + \omega_n$

$$\omega_{n+1} = \omega_n + k \sin \theta_{n+1}$$

The standard map and diffusion

paradigmatic Hamiltonian dynamical system

in the following:

$$x_{n+1} = x_n + y_n \mod 2\pi$$

 $y_{n+1} = y_n + K \sin x_{n+1}$

define (momentum) diffusion coefficient as

$$D(K) = \lim_{n \to \infty} \frac{1}{n} < (y_n - y_0)^2 >$$

with ensemble average over the initial density

$$<...>=\int dx \ dy \ \varrho(x,y)..., x \in [0,2\pi), \ y=y_0 \in [0,2\pi)$$

Diffusion in the standard map

analytical (Rechester, White, 1980) and numerical studies of parameter-dependent diffusion $D_{eff}(K)$:

Manos, Robnik, PRE (2014)

- D(K) is highly irregular
- for some K superdiffusion with mean square displacement $< v_n^2 > \sim n^{\gamma}$, $\gamma > 1$ due to accelerator modes

kicked rotor / standard map with damping:

$$x_{n+1} = x_n + y_n \mod 2\pi$$

 $y_{n+1} = (1 - \nu)y_n + f_0 \sin x_{n+1}$

with $\nu \in [0, 1]$:

Outline

Feudel, Grebogi, Hunt, Yorke, PRE (1996)

- islands in phase space for $\nu = 0$ (left) become coexisting periodic attractors (right): 150 found for $\nu = 0.02$, $f_0 = 4$
- simple argument yields $|y_n| < y_{max}$: quick trapping

Randomly perturbed deterministic dynamics

Question: What happens to deterministic dynamics $\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n)$ under random perturbations?

Consider the dissipative standard map with additive noise:

$$x_{n+1} = x_n + y_n + \epsilon_{x,n} \mod 2\pi$$

 $y_{n+1} = (1 - \nu)y_n + f_0 \sin x_{n+1} + \epsilon_{y,n}$

with iid random variables $\epsilon_n = (\epsilon_{x,n}, \epsilon_{y,n})$ drawn from uniform distribution bounded by $||\epsilon_n|| < \xi$ of noise amplitude ξ perturbed dynamics $F(x_i) = f(x_i) + \epsilon_i$:

Outline

Motivation

Consequences of the random perturbations:

• howard a noise threshold $\xi > \xi$, the attracting set

• beyond a noise threshold $\xi \geq \xi_0$ the attracting sets $W^S(\Lambda_i)$ lose their stability due to holes

- the (invariant) attractors become (quasi-invariant) pseudo attractors from which there is noise-induced escape
- the noise induces a hopping process between all coexisting pseudo attractors

the resulting perturbed dissipative dynamics is intermittent:

$$f_0 = 4$$
, $\xi = 0.06$, $\nu = 0.002$

 stickiness to pseudo attractors measured by criterion that maximal eigenvalue of the Jacobian matrix along orbit < 1

probability distributions P(t) of escape times t from pseudo attractors computed by using eigenvalue criterion (plus a Markov assumption and averaging over all non-uniform pseudo attractors):

dissipation $\nu = 0.002$ with different noise strength ξ

- transition from power law (stickiness) to exponential
- transition takes longer when $\xi \to 0$

probability distribution function $P_n(y)$ for position y at different time steps n:

- there is Gaussian-like diffusive spreading up to n < 1000
- localization trivially due to boundedness of pseudo attractors

Noise-induced diffusion

mean square displacement $< y^2(n) >$ for position y and different noise amplitudes ξ at $\nu = 0.002$:

- transient subdiffusion $< y^2(n) > \sim n^{\gamma}$ up to n < 1000
- only small variation of the subdiffusive exponent $0.85 < \gamma < 0.95$ for different ξ

Continuous time random walk theory

reproduce simulation results by CTRW theory (Montroll, Weiss, Scher, 1973): define stochastic process by master equation with waiting time distribution w(t) and jump distribution $\lambda(x)$

$$\varrho(\mathbf{x},t) = \int_{-\infty}^{\infty} d\mathbf{x}' \lambda(\mathbf{x} - \mathbf{x}') \int_{0}^{t} dt' \ w(t - t') \ \varrho(\mathbf{x}',t') +$$
$$+ (1 - \int_{0}^{t} dt' \ w(t')) \delta(\mathbf{x})$$

structure: jump + no jump for points starting at (x, t) = (0, 0)Fourier-Laplace transform yields Montroll-Weiss eqn (1965)

$$\hat{\varrho}(k,s) = \frac{1 - \tilde{w}(s)}{s} \frac{1}{1 - \hat{\lambda}(k)\tilde{w}(s)}$$

with mean square displacement $\langle x^2(s) \rangle = -\frac{\partial^2 \tilde{\varrho}(k,s)}{\partial k^2}$

Motivation

CTRW theory and mean square displacement

CTRW theory predicts that solving the MW eqn. for a power law waiting time distribution $w(t) \sim t^{-(\gamma+1)}$ with jump distribution $\lambda(x) = \delta(|x| - const.)$ yields $\langle x^2(t) \rangle \sim t^{\gamma}$

for $\nu = 0.002$, $\xi = 0.06$ we have $\langle y_n^2 \rangle \sim n^{\gamma}$ with $\gamma \simeq 0.95$

Motivation

CTRW theory and escape time distribution

the dashed red line represents the CTRW theory prediction of $P(t) \sim t^{-1.95}$ corresponding to $\langle y^2(n) \rangle \sim n^{0.95}$

CTRW theory

CTRW theory also predicts a stretched exponential position pdf, here: $P_n(y) \sim \exp(-cx^{2/(2-\gamma)})$

green lines represent the CTRW theory pdf for $\gamma = 0.95$: corrects the mismatch to Gaussian in the tails

- **central theme:** *diffusion* generated by *randomly perturbed deterministic dynamics*
- main result: for the dissipative standard map stickiness to pseudo attractors under random perturbations generates
 - power law escape time distributions and
 - stretched exponential position distributions leading to
 - subdiffusion

simulation results consistently explained by CTRW theory

reference:

C.S.Rodrigues A.V.Chechkin, A.P.S. de Moura, C.Grebogi, RK, Europhys.Lett. **108**, 40002 (2014)

outlook: ∃ *generic mechanism* generating novel types of anomalous diffusion in randomly perturbed dynamical systems (Sato, RK, in prep.)

Wild and bad I

Outline

the slicer map:

non-chaotic interval exchange transformation generating subdiffusive, diffusive and superdiffusive dynamics:

- $\alpha = 0$: ballistic motion with $\langle x_n^2 \rangle \sim n^2$
- 2 $0 < \alpha < 1$: superdiffusion with MSD $\langle x_n^2 \rangle \sim n^{2-\alpha}$
- **3** $\alpha = 1$: normal diffusion with linear MSD $\langle x_n^2 \rangle \sim n$
- 1 < α < 2: subdiffusion with MSD $\langle x_n^2 \rangle \sim n^{2-\alpha}$
- \circ $\alpha = 2$: logarithmic subdiffusion with MSD $\langle x_n^2 \rangle \sim \log n$
- **1** $\alpha > 2$: localisation in the MSD with $\langle x_n^2 \rangle \sim const.$
- L. Salari, L. Rondoni, C. Giberti, R. Klages, Chaos 25, 073113 (2015)

Wild and bad II

Outline

Advanced Study Group on
Statistical physics and anomalous dynamics of foraging
MPIPKS Dresden, July - Dec. 2015

F.Bartumeus (Blanes, Spain), D.Boyer (UNAM, Mexico), A.V.Chechkin (Kharkov, Ukraine), L.Giuggioli (Bristol, UK), convenor: RK (London, UK), J.Pitchford (York, UK)

ASG webpage: http://www.mpipks-dresden.mpg.de/~asg_2015