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© Motivation: standard map, diffusion, and dissipation
© Randomly perturbed dissipative dynamics
© Randomly perturbed dissipative standard map

© Continuous Time Random Walk theory
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The standard map and diffusion

e paradigmatic Hamiltonian dynamical system:
standard map
Xni1 = Xn+Yn mod 27
Yni1 = Yn+KsinXpig
derived from kicked rot(at)or where x, € R is an angle, y, € R
the angular velocity with n € N and K > 0 the kick strength

e define diffusion coefficient as
. 1
D(K) = lim = < (yn —Yo)? >
n—oo N

with ensemble average over the initial density
<...>= [dxdy o(x,y)... ,x €[0,27) , y =Y € [0, 27)
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Diffusion in the standard map

analytical (Rechester, White, 1980) and numerical studies of
parameter-dependent diffusion Dgg (K):
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Manos, Robnik, PRE (2014)
e D(K) is highly irregular
e for some K there is superdiffusion with mean square
displacement < y2 >~ n7 | v > 1 due to accelerator modes

Summary

Diffusion in randomly perturbed dissipative dynamics

Rainer Klages 4



Motivation

ooe

The dissipative standard map

model damping in the standard map by
Xny1 = Xn+Yn mod 27

Yn+1 = (L —v)¥n+fosinXnis
with v € [0, 1]:

Feudel, Grebogi, Hunt, Yorke, PRE (1996)
e islands in phase space for v = 0 (left) become coexisting
periodic attractors (right): 150 found for » = 0.02 , fg = 4
e simple argument yields |yn| < Ymax: quick trapping
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Dissipative dynamics and random perturbations

Question: What happens to dissipative deterministic dynamics
Xn+1 = f(Xn) under random perturbations?

Consider the dissipative standard map with additive noise:
Xn+1 = Xn+Yn+ €en mod 2w

Yni1 = (L—v)yn+Tosinxni1 +€yn

with iid random variables e, = (ex n, €y,n) drawn from uniform
distribution bounded by ||en|| < £ of noise amplitude &

perturbed dynamics  F(x;j) = f(xj) + ¢;:

LT Qf (xje1)
Yoo fw) e
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From attractors to hopping on pseudo attractors

Consequences of the random perturbations:
e beyond a noise threshold ¢ > & the attracting sets WS(A;)
lose their stability due to holes

S

W (A,)

e the (invariant) attractors become (quasi-invariant) pseudo
attractors from which there is noise-induced escape

¢ the noise induces a hopping process between all coexisting
pseudo attractors
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Intermittency and stickiness

the resulting perturbed dissipative dynamics is intermittent:

time series
Pseudo attractor| criteria
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fo=4, ¢ =006, v=0.002

e stickiness to pseudo attractors measured by criterion that
maximal eigenvalue of the Jacobian matrix along orbit < 1
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Escape time distribution

probability distributions ~ P(t) of escape times t from pseudo
attractors computed by using eigenvalue criterion (plus a Markov
assumption and averaging over all non-uniform pseudo attractors):

dissipation » = 0.002 with different noise strength ¢
e transition from power law (stickiness) to exponential
e transition takes longer when £ — 0
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Diffusion

probability distribution function Pn(y) for position y at
different time steps n:
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¢=0.06, v =0.002
e there is Gaussian-like diffusive spreading up to n < 1000
e |ocalization trivially due to boundedness of pseudo attractors
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Mean square displacement

mean square displacement < y2(n) > for position y and
different noise amplitudes ¢ at v = 0.002:

IS =
105 - E!

| Co el M| ol
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e transient subdiffusion < y?(n) >~ n” up to n < 1000
e only small variation of the subdiffusive exponent
0.85 < v < 0.95 for different £
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Continuous time random walk theory

reproduce simulation results by CTRW theory (Montroll, Weiss,
Scher, 1973): define stochastic process by master equation
with waiting time distribution w(t) and jump distribution A(x)
o] t
o(x,t) = / dx/A(x — x’)/ dt’ w(t —t') o(x’,t")+
—00 0
H(1 — [y dt'w(t'))s(x)

structure: jump + no jump for points starting at (x,t) = (0,0)
Fourier-Laplace transform yields Montroll-Weiss eqn (1965)

A 1—w(s 1
o(k,s) = ) IS
S 1-XMk)w(s)
with mean square displacement (x2(s)) = —8%(kk2’8)
k=0
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CTRW theory and mean square displacement

CTRW theory predicts that solving the MW eqn. for a power law
waiting time distribution w(t) ~ t=0+1 with jump distribution
A(Xx) = §(]x| — const.) yields < x2(t) >~ t7
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for » = 0.002 , ¢ = 0.06 we have < y2 >~ n" with v ~ 0.95
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CTRW theory and escape time distribution

the dashed red line represents the CTRW theory prediction of
P(t) ~ t~19 corresponding to < y?(n) >~ n%%
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CTRW theory and position pdf

CTRW theory also predicts a stretched exponential position
pdf, here: Py(y) ~ exp (—cxz/(Z*v))

L L S S B S o v 0
»— n=10" iterations It ) \
n=10" iterations
=2 =10 iterations
= 1=10" iterations
Gaussian
— stretched exponential

0.1

0.01

P(ny)
g

o

001

0.0001

‘-1‘00‘ “—50"“0“ ‘50“‘100“
y

green lines represent the CTRW theory pdf for v = 0.95:

corrects the mismatch to Gaussian in the tails
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Summary

@ central theme: study of diffusion generated by randomly
perturbing dissipative deterministic dynamics

@ main result: for the dissipative standard map
non-hyperbolic stickiness to pseudo attractors under
random perturbations generates

@ power law escape time distributions and
@ stretched exponential position distributions leading to
@ subdiffusion

simulation results consistently explained by CTRW theory

@ outlook: similar phenomena in other randomly perturbed
deterministic dynamical systems?

reference:
C.S.Rodrigues A.V.Chechkin, A.P.S. de Moura, C.Greboqgi,
R.Klages, Europhys.Lett. 108, 40002 (2014)
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