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Outline

1 Motivation: chaos, diffusion and polygonal billiards

2 Model: mimick diffusion in polygonal billiards by a simple
non-chaotic map

3 Results: non-trivial diffusive properties matching to
different known stochastic processes
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Microscopic chaos in a glass of water?

water molecules
droplet of ink

• dispersion of a droplet of ink
by diffusion

• chaotic collisions between
billiard balls

• chaotic hypothesis:

microscopic chaos
⇓

macroscopic diffusion

Gallavotti, Cohen (1995)

P.Gaspard et al. (1998): experiment on small colloidal particle
in water; diffusion due to microscopic chaos based on positive
pattern entropy per unit time h(ǫ, τ) ≤ hKS =

∑
λi>0 λi
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The random wind tree model

counterexample:

Ehrenfest, Ehrenfest (1959)

no positive Lyapunov exponent, hence non-chaotic dynamics

Dettmann et al. (1999): generates trajectories and h(ǫ, τ)
indistinguishable from the colloidal particle dynamics
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Polygonal billiards

examples:

γ

βα

(a)

α

(b)

(c)

Artuso et al. (1997,2000); Casati et al. (1999)

rational billiards: all angles are rational multiples of π
irrational billiards: otherwise

non-trivial ergodic properties: rational billiards are not ergodic;
phase space splits into invariant manifolds wrt initial angle of
trajectory (e.g., Gutkin, 1996)
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Pseudointegrability

joining all identical edges yields compact invariant surfaces:
(a) (b) (c)

genus g = 1: billiard is integrable
g > 1: pseudointegrable (Richens, Berry, 1981); ∃ isolated
saddles resembling hyperbolic fixed points imposing a ‘chaotic
character’ onto the flow

asymptotic growth of displacement of two trajectories ∆(t) ∼ t
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Diffusion in polygonal billiard channels
(a) (b)

(c) (d)

ψ

φ

Zwanzig (1983), Zaslavsky et al. (2001), Li et al. (2002)

• mean square displacement < x2 >:=
∫

dx x2ρ(x , t) ∼ tγ

• from simulations: sub- (γ < 1), super- (γ > 1) or normal
(γ = 1) diffusion depending on parameters with partially
conflicting results

Alonso et al. (2002), Jepps et al. (2006), Sanders et al. (2006)
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Non-chaotic dynamics in polygonal billiards

zero Lyapunov exponent: different points separate
linearly but not exponentially in time, hence non-chaotic
dynamics
instead, edges of scatterers slice a beam: non-trivial
diffusion in these channels generated by this mechanism
slicing is captured by interval exchange transformations

Hannay, McCraw (1990)
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The slicer map: basic idea

a 1-dim spatially dependent interval exchange transformation;
diffusion of a density of points from uniform initial density in
space-time diagram:

-3 -2 -1 0 1 2 3

 0

 3

 2

 1

m

n

again zero Lyapunov exponent: slicer points of Lebesgue
measure zero split the density; no stretching
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Definition of the slicer model

• consider a chain of intervals M̂ := M × Z, M := [0, 1]

with point X̂ = (x , m) in M̂, where M̂m := M × {m} is the
m-th cell of M̂

• subdivide each M̂m in subintervals, separated by points called
slicers: {1/2} × {m} , {ℓm} × {m} , {1 − ℓm} × {m}, where
0 < ℓm < 1/2 for every m ∈ Z with

ℓm(α) = 1
(|m|+21/α)

α , α > 0

• slicer map: S : M̂ → M̂ , X̂n+1 = S(X̂n) , n ∈ N with

S(x , m) =

{
(x , m − 1) if 0 ≤ x < ℓm or 1

2 < x ≤ 1 − ℓm,

(x , m + 1) if ℓm ≤ x ≤ 1
2 or 1 − ℓm < x ≤ 1.
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Main result: Diffusion in the slicer map

Proposition (Salari et al., 2015)

Given α ≥ 0 and a uniform initial distribution in M̂0, we have

1 α = 0: ballistic motion with MSD 〈X̂ 2
n 〉 ∼ n2

2 0 < α < 1: superdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

3 α = 1: normal diffusion with linear MSD 〈X̂ 2
n 〉 ∼ n

non-chaotic normal diffusion with non-Gaussian density

4 1 < α < 2: subdiffusion with MSD 〈X̂ 2
n 〉 ∼ n2−α

subdiffusion with ballistic peaks

5 α = 2: logarithmic subdiffusion with MSD 〈X̂ 2
n 〉 ∼ log n

6 α > 2: localisation in the MSD with 〈X̂ 2
n 〉 ∼ const .

non-trivial phenomenon
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The higher order moments in the slicer

Theorem (Salari et al., 2015)

For α ∈ (0, 2] the moments 〈X̂ p
n 〉 with p > 2 even and uniform

initial distribution in M̂0 have the asymptotic behavior

〈X̂ p
n 〉 ∼ np−α

while the odd moments (p = 1, 3, ...) vanish.
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Example: α = 1/3

We have 〈X̂ p
n 〉 ∼ np−1/3 with superdiffusion 〈X̂ 2

n 〉 ∼ n5/3;
plot of probability to find a particle in the m-th cell:
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blue line: simulations; red circles: asymptotics

ρα
n (m) =


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Cα

(m + 21/α)α+1 , m < n

0 , m > n

with normalisation Cα; note peak in the traveling area
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Matching to stochastic dynamics?

• one-dimensional stochastic Lévy Lorentz gas:

point particle moves ballistically between static point scatterers
on a line from which it is transmitted / reflected with probability
1/2
distance r between two scatterers is a random variable iid from
the Lévy distribution

λ(r) ≡ βrβ
0

1
rβ+1 , r ∈ [r0, +∞) , β > 0

with cutoff r0

→ model exhibits only superdiffusion

→ all moments scale with the slicer moments for α ∈ (0, 1]
(piecewise linearly depending on parameters)
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Matching to stochastic dynamics?

• Lévy walk modeled by CTRW theory:

→ moments calculated to ∼ tp+1−β for p > β , 1 < β < 2:
match to slicer superdiffusion with β = 1 + α

→ but conceptually a totally different process

• correlated Gaussian stochastic processes:

modeled by a generalized Langevin equation with a power law
memory kernel

→ formal analogy in the subdiffusive regime

→ but Gaussian distribution and a conceptual mismatch
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Summary

central theme:
diffusion generated by non-chaotic dynamics

main result:
slicer model generates 6 different types of diffusion
covering the whole spectrum of anomalous diffusion

slicer might help to explain a controversy about different
stochastic models for diffusion in polygonal billiards
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