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Setting the scene

nonequilibrium conditions

equilibrium nonequilibrium nonequilibrium
steady states non-steady states
. ) q ergodic microscopic chaos
microscopic dynamical systems hypothesis strong weak
Gibbs complexity

statistical mechanics ensembles fractal SRB measures infinite measures

v

thermodynamic deter ministic transport

macr oscopic thermodynamics - P rETElaUS

approach should be particularly useful for
small nonlinear systems
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three parts:

@ Normal deterministic diffusion:
some basics of dynamical systems theory for maps and
escape rate theory of deterministic diffusion

@ From normal to anomalous deterministic diffusion:
normal diffusion in particle billiards and anomalous
diffusion in intermittent maps

© Anomalous (deterministic) diffusion:
generalized diffusion and Langevin equations, fluctuation
relations and biological cell migration
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The drunken sallor at a Iamppost

random walk in one dimension (K. Pearson, 1905):
- e steps of length s with probability
v p(xs) = 1/2 to the left/right

&
—
// e single steps uncorrelated: Markov

AAA~AAS position ) ;
T o process (coin tossing)

o define diffusion coefficient as

1 2
D._nlmm2—<( n—Xo)“ >

with discrete time step n € N and
average over the initial density

< ...>= [dx o(x)... of positions
X=Xy, XER

o for sailor: D = s?/2
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Bernoulli shift and dynamical instability

‘ idea: study diffusion on the basis of deterministic chaos

Bernoulli shift M(x) = 2x mod 1 with X, 11 = M(Xy):
1 ; ; -

——

0 0.5 1
Xy x0+Ax X

apply small perturbation Axg := Xp — X < 1 and iterate:
AXy = 2A%n_1 = 2"Axg = e""2Ax,

= exponential dynamical instability with Ljapunov exponent
A:=1In2 > 0: Ljapunov chaos
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Ljapunov exponent

local definition for one-dimensional maps via time average:

if map is ergodic: time average = ensemble average,
A = (In|M’(x)|) Birkhoff's theorem

with average over an invariant probability density o(x) that is
related to the map’s SRB measure via p(x) = 5 dyo(y)

Bernoulli shift is expanding: ¥x|M’(x)| > 1, hence ‘hyperbolic’

normalizable pdf exists, here simply o(x) =1 = A =1In2
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Kolmogorov-Sinai entropy

@ define a partition {W,"} of the phase
space and refine it by iterating the critical
point n times backwards

1@ let u(w) be the SRB measure of a
partition elementw < {W,"}

M 0.5 n
o define Hy:=— Y p(w)inpu(w),
| we{wn}
o where n denotes the level of refinement
0 0.5 1

- .1
@ the limit hys :== lim —H,
. n—oo N . . .
defines the Kolmogorov-Sinai (metric)
entropy (if the partition is generating)

for Bernoulli shift with uniform measure refinement yields
Hh, = nIn2, hence hys = In2 > 0: measure-theoretic chaos
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Pesin theorem

note: for Bernoulli shift A =In2 and hyg =In2

For closed C? Anosov systems the KS-entropy is equal to the
sum of positive Lyapunov exponents.
Pesin (1976), Ledrappier, Young (1984)

believed to hold for a wider class of systems

for one-dimensional hyperbolic maps:
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Escape from a fractal repeller

piecewise linear map, slope a = 3, with escape:

;
I/ escape
/
3/
i 3
. T .

v

@ take a uniform ensemble of Ny points;
calculate the number N,, of points that
survive after n iterations:

M os}- Np = (2/3)Np_1 = Noe~"N(3/2) = Nye ="
@ for hyperbolic maps N, decreases
oL ‘ ‘ exponentially with escape rate ~;
"’ o ‘1 repeller forms a fractal Cantor set
!

/
escape e’,’

/
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Escape rate formula

note: for open systems X, hys must be computed with respect
to the invariant measure on the fractal repeller R

for our example:

AMR)=In3, hs(R) =In2 (as before), v =1In(3/2)

=7 =AR) —hs(R)|

no coincidence: this is the escape rate formula of Kantz,
Grassberger (1985)

e proven for Anosov diffeomorphisms with ‘holes’ by Chernoy,
Markarian (1997)

e 1 position dependence of escape rates, cf. Bunimovich,
Yurchenko (2008) and ff
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A simple deterministic diffusive map

continue the previous map on the unit interval by a lift of degree
one, Ma(x + 1) = Ma(X) + 1, where a denotes the slope:
Grossmann/Geisel/Kapral et al. (1982)

My(x)

3 " three questions:

@ Does this map exhibit
diffusion?

@ If so, can one calculate the
diffusion coefficient?

X

2 @ And if so, is there any relation
: between this coefficient and
A dynamical systems quantities?
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Escape rate formalism, Step 1: diffusion equation

solve the ordinary one-dimensional diffusion equation

on _ 0°n

o ox2
with n = n(x, t) distribution function at point x and time t; D
defines the diffusion coefficient

solution for absorbing boundaries, n(0,t) = n(L,t) = 0:
= my 2 .mm
n(x,t) = Z exp <— (T) Dt> am sm(Tx)
m=1
with a, determined by the initial density n(x, 0)

Q: do we get the same for our deterministic chaotic model?
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solve the Frobenius-Perron (Liouville) equation

ons1(y) = /dX on(X) 6(y — Ma(x))
for the probability density o, (x) of Ma(x)

e basic idea: construct FP-operator as transition matrix T (a)
applied to column vector o of the probability density ¢n (x):

1
Qn—l—l - a T(a) 2,
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example: construction of T fora =4

M 5(x) .

O Nk -
PN PP O -

/]

topological transition matrix

Markov partition
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e solve the FP-equation: let T (4) [¢m(X) >= xm(4) |¢m(X) > be
the eigenvalue problem of T (4) with eigenvalues xn(4) and
eigenvectors |¢m(x) >

lpns1(X) >= 9,4 by spectral decomposition:

L
orea(x) > = %mem)wm(x) >< m(X)lpn(x) >

= Z exp ( nin (4)> |dm(X) >< dm(X)[po(X) >

for initial probability density vector |pg(x) >

e solve the eigenvalue problem for absorbing boundaries,
on(0) = on(L): analytical solution only available in special
cases, as fora =4
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Escape rate formalism, Step 3: match the solutions

match the largest eigenmodes in the limit of chain length
L — oo and time n — oo

e diffusion equation: n(x,t) ~ exp (— (%)2 Dt)Asin (%x)

e FP-equation: Pns1(X) =~ exp (—y(4)n)Asin <ﬁk>
k=1,....L , k—-1<x<k,

where ~(4) = In —2 is the escape rate with

Xmax (4)
Xmax (4) = 2 + 2 cos 77 as the largest eigenvalue of T (4)

2
e match: D(4) = (%) v(4) — % (L — o00)

exact method to calculate D(4); value is identical to random
walk solution
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Escape rate formula for diffusion

establish relation between diffusion coefficient and dynamical
systems quantities: it was

L 2
D=l —
Ll—>moo <7T> v
v =In|M’'(X)| — In xmax
cp. with escape rate formula derived previously:
7= A(Re) — hks(Ru)

with

general result:

2
D= im. <E> A(RL) — hys(RL)]

s

escape rate formula for diffusion
Gaspard, Nicolis, Dorfman (1990ff)
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Determlnlstlc diffusion

Parameter dependent deterministic diffusion

result for the parameter dependent diffusion coefficient D(a):

‘ D(a) exists and is a fractal function of a control parameter ‘

diffusion coefficient D(a)

slope a

compare diffusion of drunken sailor with chaotic model:
3 fine structure beyond simple random walk solution
R.K., Dorfman (1995)
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blowup of the initial region of D(a):
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local extrema are generated by specific sequences of
correlated microscopic scattering processes
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