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Setting the scene

ergodic
hypothesis

Gibbs
ensembles

dynamical systems

statistical mechanics
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microscopic chaos

complexity

nonequilibrium conditions

thermodynamic
properties

microscopic

macroscopic

theory of nonequilibrium statistical physics
starting from microscopic chaos?

infinite measures

deterministic transport

weakstrong

fractal SRB measures

normal anomalous

nonequilibrium
non-steady states

approach should be particularly useful for
small nonlinear systems
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Outline

three parts:

1 Normal deterministic diffusion:
some basics of dynamical systems theory for maps and
escape rate theory of deterministic diffusion

2 From normal to anomalous deterministic diffusion:
normal diffusion in particle billiards and anomalous
diffusion in intermittent maps

3 Anomalous (deterministic) diffusion:
generalized diffusion and Langevin equations, fluctuation
relations and biological cell migration
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The drunken sailor at a lamppost

random walk in one dimension (K. Pearson, 1905):

time steps

position

10

20

5

15

• steps of length s with probability
p(±s) = 1/2 to the left/right

• single steps uncorrelated: Markov
process (coin tossing)

• define diffusion coefficient as

D := lim
n→∞

1
2n

< (xn − x0)
2 >

with discrete time step n ∈ N and
average over the initial density
< . . . >:=

∫

dx ̺(x) . . . of positions
x = x0 , x ∈ R

• for sailor: D = s2/2
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Bernoulli shift and dynamical instability

idea: study diffusion on the basis of deterministic chaos

Bernoulli shift M(x) = 2x mod 1 with xn+1 = M(xn):
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apply small perturbation ∆x0 := x̃0 − x0 ≪ 1 and iterate:

∆xn = 2∆xn−1 = 2n∆x0 = enln 2∆x0

⇒ exponential dynamical instability with Ljapunov exponent
λ := ln 2 > 0: Ljapunov chaos
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Ljapunov exponent

local definition for one-dimensional maps via time average:

λ(x) := lim
n→∞

1
n

n−1
∑

i=0

ln
∣

∣M ′(xi)
∣

∣ , x = x0

if map is ergodic: time average = ensemble average,

λ = 〈ln |M ′(x)|〉 Birkhoff’s theorem

with average over an invariant probability density ̺(x) that is
related to the map’s SRB measure via µ(x) =

∫ x
0 dy̺(y)

Bernoulli shift is expanding: ∀x |M ′(x)| > 1, hence ‘hyperbolic’

normalizable pdf exists, here simply ̺(x) = 1 ⇒ λ = ln 2
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Kolmogorov-Sinai entropy
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define a partition {W n
i } of the phase

space and refine it by iterating the critical
point n times backwards

let µ(w) be the SRB measure of a
partition element w ∈ {W n

i }

define Hn := −
∑

w∈{W n
i }

µ(w) ln µ(w) ,

where n denotes the level of refinement

the limit hks := lim
n→∞

1
n

Hn

defines the Kolmogorov-Sinai (metric)
entropy (if the partition is generating)

for Bernoulli shift with uniform measure refinement yields
Hn = n ln 2, hence hks = ln 2 > 0: measure-theoretic chaos
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Pesin theorem

note: for Bernoulli shift λ = ln 2 and hks = ln 2

Theorem

For closed C2 Anosov systems the KS-entropy is equal to the
sum of positive Lyapunov exponents.
Pesin (1976), Ledrappier, Young (1984)

believed to hold for a wider class of systems

for one-dimensional hyperbolic maps: hks = λ
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Escape from a fractal repeller

piecewise linear map, slope a = 3, with escape :
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escape

escape

1/3 1/3

take a uniform ensemble of N0 points;
calculate the number Nn of points that
survive after n iterations:
Nn = (2/3)Nn−1 = N0e−n ln(3/2) =: N0e−γn

for hyperbolic maps Nn decreases
exponentially with escape rate γ;
repeller forms a fractal Cantor set
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Escape rate formula

note: for open systems λ , hks must be computed with respect
to the invariant measure on the fractal repeller R

for our example:

λ(R) = ln 3 , hks(R) = ln 2 (as before) , γ = ln(3/2)

⇒ γ = λ(R) − hks(R)

no coincidence: this is the escape rate formula of Kantz,
Grassberger (1985)

• proven for Anosov diffeomorphisms with ‘holes’ by Chernov,
Markarian (1997)
• ∃ position dependence of escape rates, cf. Bunimovich,
Yurchenko (2008) and ff
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A simple deterministic diffusive map

continue the previous map on the unit interval by a lift of degree
one, Ma(x + 1) = Ma(x) + 1, where a denotes the slope:

Grossmann/Geisel/Kapral et al. (1982)

a

x

M  (x)a

0 1 2 3

1

2

3 three questions:

Does this map exhibit
diffusion?

If so, can one calculate the
diffusion coefficient?

And if so, is there any relation
between this coefficient and
dynamical systems quantities?
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Escape rate formalism, Step 1: diffusion equation

solve the ordinary one-dimensional diffusion equation

∂n
∂t

= D
∂2n
∂x2

with n = n(x , t) distribution function at point x and time t ; D
defines the diffusion coefficient

solution for absorbing boundaries, n(0, t) = n(L, t) = 0:

n(x , t) =

∞
∑

m=1

exp
(

−
(πm

L

)2
Dt

)

am sin(
πm
L

x)

with am determined by the initial density n(x , 0)

Q: do we get the same for our deterministic chaotic model?
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Escape rate formalism, Step 2: FP equation

solve the Frobenius-Perron (Liouville) equation

̺n+1(y) =

∫

dx ̺n(x) δ(y − Ma(x))

for the probability density ̺n(x) of Ma(x)

• basic idea: construct FP-operator as transition matrix T (a)
applied to column vector ̺

n
of the probability density ̺n(x):

̺
n+1

=
1
a

T (a) ̺
n
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example: construction of T for a = 4

a

x

aM  (x)

Markov partition

T (4) =





















...
...

· · · 1 0 · · ·
2 1
1 2

· · · 0 1 · · ·
...

...





















topological transition matrix

From normal to anomalous diffusion 1 Rainer Klages 14



Outline Chaotic maps Deterministic diffusion End

• solve the FP-equation: let T (4) |φm(x) >= χm(4) |φm(x) > be
the eigenvalue problem of T (4) with eigenvalues χm(4) and
eigenvectors |φm(x) >

|ρn+1(x) >= ̺
n+1

by spectral decomposition:

|ρn+1(x) > =
1
4

L
∑

m=1

χm(4) |φm(x) >< φm(x)|ρn(x) >

=

L
∑

m=1

exp
(

−n ln
4

χm(4)

)

|φm(x) >< φm(x)|ρ0(x) >

for initial probability density vector |ρ0(x) >

• solve the eigenvalue problem for absorbing boundaries,
̺n(0) = ̺n(L): analytical solution only available in special
cases, as for a = 4
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Escape rate formalism, Step 3: match the solutions

match the largest eigenmodes in the limit of chain length
L → ∞ and time n → ∞

• diffusion equation: n(x , t) ≃ exp
(

−
(π

L

)2
Dt

)

A sin
(π

L
x
)

• FP-equation: ρn+1(x) ≃ exp (−γ(4)n)Ã sin
(

π

L + 1
k
)

k = 1, . . . , L , k − 1 < x ≤ k ,

where γ(4) = ln 4
χmax (4) is the escape rate with

χmax (4) = 2 + 2 cos π
L+1 as the largest eigenvalue of T (4)

• match: D(4) =

(

L
π

)2

γ(4) →
1
4

(L → ∞)

exact method to calculate D(4); value is identical to random
walk solution

From normal to anomalous diffusion 1 Rainer Klages 16



Outline Chaotic maps Deterministic diffusion End

Escape rate formula for diffusion

establish relation between diffusion coefficient and dynamical
systems quantities: it was

D = lim
L→∞

(

L
π

)2

γ

with
γ = ln |M ′(x)| − ln χmax

cp. with escape rate formula derived previously:

γ = λ(RL) − hKS(RL)

general result:

D = lim
L→∞

(

L
π

)2

[λ(RL) − hKS(RL)]

escape rate formula for diffusion

Gaspard, Nicolis, Dorfman (1990ff)
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Parameter-dependent deterministic diffusion

result for the parameter dependent diffusion coefficient D(a):

D(a) exists and is a fractal function of a control parameter

slope a

di
ffu

si
on

 c
oe

ffi
ci

en
t D

(a
)

compare diffusion of drunken sailor with chaotic model:
∃ fine structure beyond simple random walk solution

R.K., Dorfman (1995)
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Physical explanation of the fractal structure

blowup of the initial region of D(a):
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local extrema are generated by specific sequences of
correlated microscopic scattering processes
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From Deterministic Chaos to Anomalous Diffusion

book chapter in:
Reviews of Nonlinear Dynamics and Complexity , Vol. 3

H.G.Schuster (Ed.), Wiley-VCH, Weinheim, 2010

based on 6-hour first-year PhD course
lecture notes available on
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From normal to anomalous diffusion 1 Rainer Klages 20


	Outline
	Setup
	Random walk

	Chaotic maps
	Deterministic chaos
	The open system
	Diffusive map

	Deterministic diffusion
	Escape rate formalism 1
	Escape rate formalism 2
	Escape rate formalism 3
	Pm dependent diffusion

	End
	Reference


