From normal to anomalous deterministic diffusion Part 2: From normal to anomalous

Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

Sperlonga, 20-24 September 2010

Outline

yesterday:

Normal deterministic diffusion: some basics of dynamical systems theory for maps and escape rate theory of deterministic diffusion

reference:

R.Klages.

From Deterministic Chaos to Anomalous Diffusion book chapter in:

Reviews of Nonlinear Dynamics and Complexity, Vol. 3 H.G.Schuster (Ed.), Wiley-VCH, Weinheim, 2010 http://www.maths.gmul.ac.uk/~klages

today:

From normal to anomalous deterministic diffusion: normal diffusion in particle billiards and anomalous diffusion in intermittent maps

The periodic Lorentz gas

idea: study more physically realistic models of deterministic diffusion

moving point particle of unit mass with unit velocity scatters elastically with hard disks of unit radius on a triangular lattice only nontrivial control parameter: gap size w paradigmatic example of a chaotic

Hamiltonian particle billiard:

- ∃ positive Ljapunov exponent;
- ∃ diffusion in certain range of w (Bunimovich, Sinai, 1980)

How does the diffusion coefficient D(w) look like?

Diffusion coefficient for the periodic Lorentz gas

diffusion coefficient $D(w) = \lim_{t \to \infty} \frac{\langle (\mathbf{x}(t) - \mathbf{x}(0))^2 \rangle}{4t}$ from MD simulations:

Diffusion coefficient for the periodic Lorentz gas

diffusion coefficient
$$D(w) = \lim_{t \to \infty} \frac{\langle (\mathbf{x}(t) - \mathbf{x}(0))^2 \rangle}{4t}$$
 from MD simulations:

∃ irregularities on fine scales (R.K., Dellago, 2000)

Can one understand these results on an analytical basis?

Taylor-Green-Kubo formula for billiards

map diffusion onto correlated random walk on hexagonal lattice:

rewrite diffusion coefficient as Taylor-Green-Kubo formula:

$$D(w) = \frac{1}{4\tau} \left\langle \mathbf{j}^2(\mathbf{x}_0) \right\rangle + \frac{1}{2\tau} \sum_{n=1}^{\infty} \left\langle \mathbf{j}(\mathbf{x}_0) \cdot \mathbf{j}(\mathbf{x}_n) \right\rangle$$

au: rate for a particle leaving a trap; $\mathbf{j}(\mathbf{x}_n)$: inter-cell jumps over distance ℓ at the *n*th time step τ in terms of lattice vectors $\ell_{\alpha\beta\gamma...}$ R.K., Korabel (2002)

TGK formula can be evaluated to

$$D_n(w) = \frac{\ell^2}{4\tau} + \frac{1}{2\tau} \sum_{\alpha\beta\gamma...}^{n} p(\alpha\beta\gamma...) \ell \cdot \ell(\alpha\beta\gamma...)$$

 $p(\alpha\beta\gamma...)$: probability for lattice jumps with this symbol sequence

first term: random walk solution for diffusion on a two-dimensional lattice, calculated to (Machta, Zwanzig, 1983)

$$D_0(w) = \frac{w(2+w)^2}{\pi[\sqrt{3}(2+w)^2 - 2\pi]}$$

other terms: higher-order dynamical correlations;

for time step
$$2\tau$$
: $D_1(w) = D_0(w) + D_0(w) [1 - 3p(z)]$

$$3\tau$$
: $D_2(w) = D_1(w) + D_0(w)[2p(zz) + 4p(Ir) - 2p(II) - 4p(Iz)]$

open problem: conditional probabilities $p(\alpha\beta\gamma...)$ analytically? Here results obtained from simulations:

variation of convergence as a function of w indicates presence of **memory** due to dynamical correlations

- approach was incorrectly criticized by Gilbert, Sanders (2009)
- theory can be worked out exactly for one-dimensional maps

Diffusion in the flower-shaped billiard

hard disks replaced by flower-shaped scatterers with petals of curvature κ :

simulation results for the diffusion coefficient and analysis as before:

Harayama, R.K., Gaspard (2002)

irregular diffusion coefficient due to dynamical correlations

Outlook: molecular diffusion in zeolites

zeolites: nanoporous crystalline solids serving as molecular sieves, adsorbants; used in detergents, catalysts for oil cracking

example: unit cell of Linde type A zeolite; periodic structure built by silica and oxygen forming a "cage"

Schüring et al. (2002): MD simulations with ethane yield non-monotonic temperature dependence of diffusion coefficient

$$D_{S}(T) = \lim_{t \to \infty} \frac{\langle [\mathbf{x}(t) - \mathbf{x}(0)]^2 \rangle}{6t}$$

in Arrhenius plot; explanation
similar to previous TGK expansion

Polygonal billiard channels

instead of convex scatterers, look at polygonal ones:

- weak chaos: dispersion of nearby trajectories $\Delta(t)$ grows weaker than exponential (Zaslavsky, Usikov, 2001)
- pseudochaos: algebraic dispersion $\Delta \sim t^{\nu}$, $0 < \nu$ (Zaslavsky, Edelman, 2002); above: special case $\nu = 1$
- highly non-trivial diffusive and ergodic properties (Artuso, 1997ff; Cecconi, Cencini, Vulpiani, 2000ff; Rondoni, 2006)
- ∃ review about pseudochaotic diffusion in book by R.K., 2007

Intermittency in the Pomeau-Manneville map

consider the nonlinear one-dimensional map

$$x_{n+1} = M(x_n) = x_n + ax_n^z \mod 1, \ z \ge 1$$
, $a = 1$

phenomenology of intermittency: long periodic laminar phases interrupted by chaotic bursts; here due to an indifferent fixed point, M'(0) = 1 (Pomeau, Manneville, 1980)

 \Rightarrow map not hyperbolic ($\exists N > 0$ s.t. $\forall x \forall n > N | (M^n)'(x)| \neq 1$)

Infinite invariant measure and dynamical instability

invariant density of this map calculated to

$$\varrho(\mathbf{x}) \sim \mathbf{x}^{1-\mathbf{z}} \ (\mathbf{x} \to \mathbf{0})$$
Thaler (1983)

is non-normalizable for $z \ge 2$ yielding an **infinite invariant** measure

$$\mu(x) = \int_{x}^{1} dy \varrho(y) \to \infty \ (x \to 0)$$

• dynamical instability of this map calculated to

$$\Delta x_n \sim \exp\left(n^{\frac{1}{z-1}}\right) \ (z > 2)$$

Gaspard, Wang (1988)

stretched exponential instability yields $\lambda = 0$: defines a second big class of weakly chaotic dynamics (*sporadic*)

Outline

From ergodic to infinite ergodic theory

choose a 'nice' observable f(x):

- for $1 \le z < 2$ it is $\sum_{i=0}^{n-1} f(x_i) \sim n \ (n \to \infty)$ Birkhoff's theorem: if M is ergodic then $\frac{1}{n} \sum_{i=0}^{n} f(x_i) = \langle f \rangle_{\mu}$
- but for $2 \le z$ we have the **Aaronson-Darling-Kac theorem**,

$$\frac{1}{a_n}\sum_{i=0}^{n-1}f(x_i) \stackrel{d}{\to} \mathcal{M}_{\alpha} < f >_{\mu} (n \to \infty)$$

 \mathcal{M}_{α} : random variable with normalized *Mittag-Leffler* pdf for M it is $a_n \sim n^{\alpha}$, $\alpha := 1/(z-1)$; integration wrt to Lebesgue measure m suggests

$$\frac{1}{n^{\alpha}} \sum_{i=0}^{n-1} \langle f(x_i) \rangle_m < f(x) \rangle_{\mu}$$

note: for z < 2, $\alpha = 1$ \exists absolutely continuous invariant measure μ , and we have an equality; for $z \ge 2$ \exists infinite invariant measure, and it remains a *proportionality*

Defining weak chaos quantities

This motivates to define a generalized Ljapunov exponent

$$\Lambda(M) := \lim_{n \to \infty} \frac{\Gamma(1+\alpha)}{n^{\alpha}} \sum_{i=0}^{n-1} < \ln |M'(x_i)| >_m$$

and analogously a generalized KS entropy

$$h_{KS}(M) := \lim_{n \to \infty} -\frac{\Gamma(1+\alpha)}{n^{\alpha}} \sum_{w \in \{W_i^n\}} \mu(w) \ln \mu(w)$$

For a piecewise linearization of M one can show analytically $h_{KS}(M) = \Lambda(M)$

cf. Rokhlin's formula, generalizing Pesin's theorem to intermittent dynamics (Korabel, Barkai, 2009; Howard, RK, tbp)

open question: Does there exist an anomalous escape rate formula for the open system?

note: conference on Weak Chaos, Infinite Ergodic Theory, and Anomalous Dynamics (MPIPKS Dresden, 2011)

An intermittent map with anomalous diffusion

continue map by
$$M(-x) = -M(x)$$
 and $M(x+1) = M(x) + 1$: (Geisel, Thomae, 1984; Zumofen, Klafter, 1993)

Weakly chaotic map

deterministic random walk on the line; classify diffusion in terms of the mean square displacement

$$\left\langle x^{2}\right\rangle =K\ n^{\alpha}\ (n\rightarrow\infty)$$

if $\alpha \neq 1$ one speaks of **anomalous** diffusion: here one finds

$$\alpha = \begin{cases} 1, & 1 \le z \le 2\\ \frac{1}{z-1} < 1, & 2 < z \end{cases}$$

focus on generalized diffusion coefficient K = K(z, a)

Parameter dependent anomalous diffusion

K(z=3,a) for $M(x)=x+ax^3$ from computer simulations:

Korabel, R.K. et al., 2005

- ∃ fractal structure
- K(a) conjectured to be discontinuous (inset) on dense set
- comparison with stochastic theory, see dashed lines

CTRW theory I: Montroll-Weiss equation

Montroll, Weiss, Scher, 1973:

master equation for a stochastic process defined by waiting time distribution w(t) and distribution of jumps $\lambda(x)$:

$$\varrho(\mathbf{x},t) = \int_{-\infty}^{\infty} d\mathbf{x}' \lambda(\mathbf{x} - \mathbf{x}') \int_{0}^{t} dt' \ w(t - t') \ \varrho(\mathbf{x}', t') +$$
$$+ (1 - \int_{0}^{t} dt' \ w(t')) \delta(\mathbf{x})$$

structure: jump + no jump for particle starting at (x, t) = (0, 0)Fourier-Laplace transform yields Montroll-Weiss eqn (1965)

$$\hat{\varrho}(k,s) = \frac{1 - \tilde{w}(s)}{s} \frac{1}{1 - \hat{\lambda}(k)\tilde{w}(s)}$$

with mean square displacement $\langle x^2(s) \rangle = -\frac{\partial^2 \hat{\varrho}(k,s)}{\partial k^2} \bigg|_{k}$

CTRW theory II: application to maps

apply CTRW to maps (Klafter, Geisel, 1984ff): need w(t), $\lambda(x)$

• continuous-time approximation for the PM-map

$$x_{n+1}-x_n\simeq \frac{dx}{dt}=ax^z, \ x\ll 1$$

solve for x(t) with initial condition $x(0) = x_0$, define jump as x(t) = 1, solve for $t(x_0)$ and compute $w(t) \simeq \varrho_{in}(x_0) \left| \frac{dx_0}{dt} \right|$ by assuming uniform density of injection points, $\rho_{in}(x_0) \simeq 1$

(revised) ansatz for jumps:

$$\lambda(\mathbf{x}) = \frac{p}{2}\delta(|\mathbf{x}| - \ell) + (1 - \mathbf{p})\delta(\mathbf{x})$$

with jump length ℓ , escape probability

$$p := 2(\frac{1}{2} - x_c), M(x_c) := 1$$

CTRW machinery . . . yields exactly

$$K=
ho\ell^2egin{cases} rac{a^{\gamma}\sin(\pi\gamma)}{\pi\gamma^{1+\gamma}}, & 0<\gamma<1 \ arac{\gamma-1}{\gamma}, & \gamma\geq 1 \end{cases}, \quad \gamma:=1/(z-1)\,,\; z>1$$

Anomalous random walk solution

define average jump length $\ell := <|M(x)-x|>_{\varrho_0=1}$: for z=3 we get $K(a)\sim a^{5/2}$

CTRW yields anomalous drunken sailor solution, which correctly describes the coarse scale behaviour of K(3, a)

Dynamical phase transition to anomalous diffusion

compare CTRW approximation (blue line) with simulation results for K(z,5):

∃ full suppression of diffusion due to logarithmic corrections

$$<$$
 $x^2>\sim egin{cases} n/\ln n, n < n_{
m cr} \ {
m and} \ \sim n, n > n_{
m cr}, & z < 2 \ n/\ln n, & z = 2 \ n^{lpha}/\ln n, n < ilde{n}_{
m cr} \ {
m and} \ \sim n^{lpha}, n > ilde{n}_{
m cr}, & z > 2 \end{cases}$

Reference

Outline

see Part 1 of this book