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yesterday:

@ Normal deterministic diffusion:
some basics of dynamical systems theory for maps and
escape rate theory of deterministic diffusion

reference:
R.Klages,

From Deterministic Chaos to Anomalous Diffusion
book chapter in:
Reviews of Nonlinear Dynamics and Complexity , Vol. 3
H.G.Schuster (Ed.), Wiley-VCH, Weinheim, 2010
http://www.maths.gmul.ac.uk/"klages
today:
@ From normal to anomalous deterministic diffusion:
normal diffusion in particle billiards and anomalous
diffusion in intermittent maps
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‘ idea: study more physically realistic models of deterministic diffusion

moving point particle of unit mass
with unit velocity scatters
elastically with hard disks of unit
radius on a triangular lattice

only nontrivial control parameter:
gap size w

X paradigmatic example of a chaotic

Hamiltonian particle billiard:
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Lorentz (1905) (Bunimovich, Sinai, 1980)
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‘ How does the diffusion coefficient D(w) look Iike?‘
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diffusion coefficient D(w) = lim
t—oo 4t
simulations:
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DIfoSIOﬂ coeff|C|ent for the perlodlc Lorentz gas

< (x x(0))?
diffusion coefficient D(w )—tllm (x(®) g (0) from MD
—00
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Jirregularities on fine scales (R.K., Dellago, 2000)

‘ Can one understand these results on an analytical basis’?‘
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map diffusion onto correlated random walk on hexagonal lattice:
rl

GO

DW) = 7 (12(0)) + 5= D ((x0) - (xn)}

T: rate for a particle leaving a trap; j(xn): inter-cell jumps over
distance / at the nth time step 7 in terms of lattice vectors £,3,,..
R.K., Korabel (2002)
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TGK formula can be evaluated to

D (W) —+— Z p(apy...)e L(aBy...)
oz,(%/
p(afy...): probability for lattice jumps with this symbol
sequence

first term: random walk solution for diffusion on a
two-dimensional lattice, calculated to (Machta, Zwanzig, 1983)

w(2 +w)?
7[v3(2 4+ w)2 — 2]
other terms: higher-order dynamical correlations;
for time step 27: Dy(w) = Do(w) + Do(w) [1 — 3p(2)]
3r: Da(w) = Dy(W) + Do(w) [2p(22) + 4p(Ir) — 2p(1l) — 4p(I2)]

Do(w) =
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open problem: conditional probabilities p(a/j~ . ..)
analytically? Here results obtained from simulations:

D(w)

0.1l »x—x simulation resultsfor D(w) H
— random walk approximation
1st order approximation
--- 2nd order approximation

3rd order approximation

1st order and coll.less flights

% o1 o0z = 03
w
variation of convergence as a function of w indicates presence

of memory due to dynamical correlations
e approach was incorrectly criticized by Gilbert, Sanders (2009)
e theory can be worked out exactly for one-dimensional maps
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Diffusion in the ﬂower-shaped billiard

hard disks replaced by simulation results for the
flower-shaped scatterers diffusion coefficient and
with petals of curvature &: analysis as before:

0.2

0 01f

" num. exact results ——
- Machta-Zwanzig ----

00— 7% 3 4 5 6 7
K
Harayama, R.K., Gaspard (2002)

Jirregular diffusion coefficient  due to dynamical correlations
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Outlook: molecular diffusion in zeolites

zeolites: nanoporous crystalline solids serving as molecular

example: unit cell of Linde
type A zeolite; periodic
structure built by silica and
oxygen forming a “cage”

Schdring et al. (2002): MD :
simulations with ethane yield
non-monotonic temperature
dependence of diffusion coefficient
_ 2
Ds(T) = lim < [x(t) = x(0)]* >

t—oo 6t

in Arrhenius plot; explanation R T
similar to previous TGK expansion 1000 K/T

Dgin 10 ms™
\om

R
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Polygonal bi iafd channels”

instead of convex scatterers, look at polygonal ones:
@ (o)

(d)

e weak chaos: dispersion of nearby trajectories A(t) grows
weaker than exponential (Zaslavsky, Usikov, 2001)

e pseudochaos: algebraic dispersion A ~t”, 0 < v
(Zaslavsky, Edelman, 2002); above: special case v = 1

¢ highly non-trivial diffusive and ergodic properties (Artuso,
19971f; Cecconi, Cencini, Vulpiani, 2000ff; Rondoni, 2006)

3 review about pseudochaotic diffusion in book by R.K., 2007
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Intermittency in the Pomeau-Manneville map

consider the nonlinear one-dimensional map
‘an:M(xn):anraxﬁ mod1l,z > 1‘ , a=1

1

0.8

M 05 - X,

@ ‘ \ ‘ % 100 200 3000 400 50000
0 0.5 1 n
X
phenomenology of intermittency : long periodic laminar
phases interrupted by chaotic bursts; here due to an indifferent
fixed point, M’(0) = 1 (Pomeau, Manneville, 1980)
= map not hyperbolic (AN > 0 s.t. ¥x¥Vn > N |(M")'(x)| # 1)
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Infinite invariant measure and dynamical instability

e invariant density of this map calculated to

o(x) ~ X177 (x — 0)
Thaler (1983)

is non-normalizable for z > 2 yielding an infinite invariant
measure

1
1) = [ dyaly) = o0 (x )
X
e dynamical instability  of this map calculated to

AXn ~ exp (nﬁ> (z>2)
Gaspard, Wang (1988)

stretched exponential instability  yields A = 0: defines a
second big class of weakly chaotic dynamics (sporadic)
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From ergodlc to |nf|n|te ergodlc theory

choose a ‘nice’ observable f(x):

eforl <z <2itis "0 f(x) ~n(n— o)

Birkhoff's theorem : if M is ergodic then £ "1 (f(x) =< f >,
e but for 2 < z we have the Aaronson-Darling-Kac theorem

1 n—1
= > f(x) 4 Mo <>, (n— )
n .

M,,: random variable with normalized Mittag-Leffler pdf
forMitisa, ~n®, o :=1/(z — 1); integration wrt to Lebesgue

measure m suggests
n—1

1
n_a < (%) >m~< f(X) >,

=0
note: forz <2, a= 1 3 absolutely continuous invariant
measure u, and we have an equality; for z > 2 F infinite
invariant measure, and it remains a proportionality
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Defining weak chaos quantities

This motivates to define a generalized Ljapunov exponent
AM) = lim Mﬂ; < In|M’(x)] >
o= N—o0 na e | m
i=

and analogously a generalized KS entropy

. N1l+a)
hks(M) := Am == > u(w)inp(w)
we{W"}
For a piecewise linearization of M one can show analytically
hks(M) = A(M)
cf. Rokhlin’s formula , generalizing Pesin’s theorem to
intermittent dynamics (Korabel, Barkai, 2009; Howard, RK, tbp)

open question: Does there exist an anomalous escape rate
formula for the open system?

note: conference on Weak Chaos, Infinite Ergodic Theory, and
Anomalous Dynamics (MPIPKS Dresden, 2011)
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continue map by M(—x) = —M(x) and M(x + 1) = M(x) + 1:
(Geisel, Thomae, 1984; Zumofen, Klafter, 1993)
deterministic random walk on the

line; classify diffusion in terms of
the mean square displacement

<X2>:K n*(n — o)

if « # 1 one speaks of anomalous
diffusion ; here one finds

1, 1<z<2
(0] — 1

1 < 1, 2<z
focus on generalized diffusion
-2- coefficient K = K(z,a)
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Weakly chaotic map

Korabel, R.K. et al., 2005
@ d fractal structure
@ K (a) conjectured to be discontinuous (inset) on dense set
@ comparison with stochastic theory, see dashed lines

From normal to anomalous diffusion 2 Rainer Klages 17



Outline c map CTRW theory
g @000

CTRW theory I: Montroll-Weiss equation

Montroll, Weiss, Scher, 1973:
master equation for a stochastic process defined by waiting

time distribution w(t) and distribution of jumps A(x):
o] t
o(x,1) = / X A(X — x’)/ dt’ w(t — t') o, t')+
—00 0
H(L — [y dt'w(t’))s(x)

structure: jump + no jump for particle starting at (x,t) = (0, 0)
Fourier-Laplace transform yields Montroll-Weiss eqn (1965)

s 1—-w(s 1
o(k,s) = (s) N
S 1— Ak)Ww(s)
with mean square displacement <x2(s)> = —%
k=0
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CTRW theory IlI: application to maps

apply CTRW to maps (Klafter, Geisel, 1984ff): need w(t), A(x)
e continuous-time approximation for the PM-map
Xnt1 —Xn =~ = ax?, x <1

solve for x(t) with initial condition x(0) = Xq, define jump as
x(t) = 1, solve for t(xp) and compute w(t) ~ gin(Xo) ‘% by
assuming uniform density of injection points, gi,(Xo) ~ 1
¢ (revised) ansatz for jumps:

A(x) = 50(|x| =€) + (1 = p)d(x)
with jump length ¢, escape probability
p:=2(3—X), M(xc) :=1
CTRW machinery ... yields exactly

a”%l, y>1

, 7v=1/(z-1),z>1
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Anomalous random walk solution

define average jump length ¢ :=< [M(X) — X| >, =1:
for z = 3 we get K (a) ~ a%/?

20% //f’ —
101 .

ol | | \
10 20 a 30 40 50

CTRW yields anomalous drunken sailor solution , which
correctly describes the coarse scale behaviour of K (3, a)
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compare CTRW approximation (blue line) with simulation
results for K(z, 5):

\
15+ \

0,51

3 full suppression of diffusion

due to logarithmic corrections
< X% >~

n/lnn,n < ng and ~n,n > ne,
n/lnn,

na/lnn n < Ngand ~ n% n > Ny,

V4
z=2
z>2
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Reference

ADVANCED SERIES IN
NONLINEAR DYNAMICS
VOLUME 24

Rainer Klages

World Scientific

see Part 1 of this book
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