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Outline

yesterday:

@ From normal to anomalous deterministic diffusion:
normal diffusion in particle billiards and anomalous
diffusion in intermittent maps

note: work by T.Akimoto
today:
© Anomalous diffusion:

generalized diffusion and Langevin equations, biological
cell migration and fluctuation relations

From normal to anomalous diffusion 3 Rainer Klages 2



( Mmuw Weakly chaotic map migration Fluctuation relations Conclusions

Remlnder Intermlttent map and CTRW theory
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I/ from CTRW theory
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Time-fractional equation for subdiffusion

For the lifted PM map M(x) = x + ax* mod 1, the MW equation
in long-time and large-space asymptotic form reads

=B i2h = e - )
LHS is the Laplace transform of the Caputo fractional derivative
oo _ {% =1

T |y fodt't—t)2 0<y<1

sY5—s7~

transforming the Montroll-Weiss eg. back to real space yields

the time-fractional (sub)diffusion equation

Do(x,t) _\ T(1+a) Po(x.t)
o 2 Ox2
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Interlude What is a fractlonal derlvatlve’)

letter from Leibniz to LHG6pital (1695): ddxl% =7
one way to proceed: we know that for integer m, n

dm Xl’l — n! Xn—m — r(n + 1) Xn—m.

Gl (n —m)! Mn—m+1) '
assume that this also holds form =1/2, n=1

1/2
= d—x — ixl/2
dx1/2 VT

fractional derivatives are defined via power law memory
kernels, which yield power laws in Fourier (Laplace) space:

d”

S5 F () < (k) F (k)
3 well-developed mathematical theory of fractional calculus ;
see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro
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Deterministic vs. stochastic density

initial value problem for fractional diffusion equation can be
solved exactly; compare with simulation results for P = o, (x):

10°

Log P

@ Gaussian and non-Gaussian envelopes (blue) reflect
intermittency

@ fine structure due to density on the unit interval
r = on(X) (n > 1) (see inset)
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Escape rate theory for anomalous diffusion?

recall the escape rate theory of Lecture 1 expressing the
(normal) diffusion coefficient in terms of chaos quantities:

2
D= lim <5> [A(RL) — hks(Ry)]

L—oco \ T

Q: Can this also be worked out for the subdiffusive PM map?

© solve the previous fractional subdiffusion equation for
absorbing boundaries: can be done

@ solve the Frobenius-Perron equation of the subdiffusive
PM map: ?? (3 methods by Tasaki, Gaspard (2004))

© even if step 2 possible and modes can be matched: 3 an
anomalous escape rate formula ???

two big open questions...

From normal to anomalous diffusion 3 Rainer Klages 7



Anomalous cell migration
000

Motivation: biological cell migration

Brownian motion
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_ _ _ single biological cell crawling on
3 colloidal particles of radius a substrate (Dieterich, R.K. et
0.53um; positions every 30 al., PNAS, 2008)
seconds, joined by straight Brownian motion?

lines (Perrin, 1913)
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Our cell types and how they migrate

MDCK-F (Madin-Darby
canine kidney) cells

two types: wildtype (NHE ™)
and NHE-deficient (NHE )

movie: ‘NHE+: t=210min, dt=3min‘

note:

the microscopic origin of cell migration is a highly complex
process involving a huge number of proteins and signaling
mechanisms in the cytoskeleton, which is a complicated
biopolymer gel — we do not consider this here!
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Measurlng cell migration

image processing e

http://www.amiravis.com
(~100-1000 MB)

Fluctuation relations Conclusions

perimeter, area,
structure index
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Theoretlcal modellng the Langevin equatlon

Newton’s law for a particle of mass m and
velocity v immersed in a fluid

myv = Fq4(t) + E ()
with total force of surrounding particles
decomposed into viscous damping F 4(t)
and random kicks F , (t)

suppose F4(t)/m = —kv and F(t)/m = \/C {(t) as Gaussian
white noise of strength /C:

vV + kv =+/C{(t)| Langevin equation (1908)

‘Newton’s law of stochastic physics’: apply to cell migration?

note: Brownian particles passively driven, whereas cells move
actively by themselves!
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Solving Langevin dynamics

calculate two important quantities (in one dimension):

1. the diffusion coefficient|D := tIim mszci(t)

with msd (t) :=< [x(t) — x(0)]? >; for Langevin eq. one obtains
msd(t) = 2vZ (t — k71(1 — exp (—xt))) /x with vZ = KT /m
note that msd (t) ~ t? (t — 0) and msd(t) ~ t (t — o0) = 3D
2. the probability distribution function P(x, v, t):

e L angevin dynamics obeys (for x > 1) the diffusion equation
oP  _9°P
ot ox2
solution for initial condition P(x,0) = §(x) yields position
distribution P(x,t) = exp(—4X—th)/\/47rDt
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Fokker Planck equatlons

o for velocity distribution P (v, t) of Langevin dynamics one can
derive the Fokker-Planck equation

oP =K 0 —V +V, 82 P
ot o tha 2
stationary solution is P(v) = exp(—5 )/\/27rvth

e Fokker-Planck equation for posmon and velocity distribution
P(x,v,t) of Langevin dynamics is the Klein-Kramers equation

P 0 o,
E——a—X[VP]—Hﬂ[WV +Vthm:| P

the above two eqgns. can be derived from it as special cases
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Experlmental results I: mean square dlsplacement

e msd(t) :=< [x(t) — x(0)]? >~ t? with 3 — 2 (t — 0) and
B — 1 (t — oo) for Brownian motion; 3(t) = d Inmsd(t)/d Int
¢ solid lines: (Bayes) fits from our model

AT |; dataiNHE"
data NHE~
§1°°° ' FKK modelNHE" —— ! - .
= FKK modelNHE™ —_~ b N:E
= : >
T 100
€
10 F
| I 11
1
2.0
& 1.5
1.0 : :
1 10" time [min] 100

anomalous diffusion if 5 # 1 (t — oo): here superdiffusion
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Experlmental results II posmon dlstrlbutlon functlon

a —_— —
t=120 t=480m|n§
e P(x,t) — Gaussian
(t — oo) and kurtosis /V\ ik
L <X4 (t ) > 10 -100)( [Sm] 100 -ZODX [Sm] 200
k(t) == =2 3(t—o00) -
for Brownian motion (green -
lines, in 1d) &
e other solid lines: fits from ' i1‘0 ‘ [6 ]‘ ic; 100 [6 ]160 - 5o [0 ]200 -
X [um; X [um] X [um]
our model; parameter values ¢ s
8 ata &
as before % 1) ol
2 2L FKK model NHE* —— |
3 4 FKK model NHE™ —
3
2k n n =
0 100 200 300 400 500

time [min]

= crossover from peaked to broad non-Gaussian distributions
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The generahzed model

e Fractional Klein-Kramers equation  (Barkai, Silbey, 2000):

oP d o=« 0 , 07
ot~ ox VPl g [8_vv *Vthm} P
with probability distribution P = P(x,v,t), damping term &,
thermal velocity vZ = kT /m and Riemann-Liouville fractional

derivative of order 1 — «
for « = 1 Langevin’s theory of Brownian motion recovered

e analytical solutions for msd(t) and P(x,t) can be obtained
in terms of special functions (Barkai, Silbey, 2000; Schneider,
Wyss, 1989)

e 4 fit parameters vy, a, k (plus another one for short-time
dynamics)
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P033|ble phyS|caI interpretation

e physical meaning of the fractional derivative?

fractional Klein-Kramers equation can approximately be related
to generalized Langevin equation of the type

v+fodt’ k(t —t V(") = /&)
e.g., Mori, Kubo, 1965/66

with time-dependent friction coefficient x(t) ~t=«

cell anomalies might originate from soft glassy behavior of the
cytoskeleton gel, where power law exponents are conjectured
to be universal (Fabry et al., 2003; Kroy et al., 2008)
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Possible biological interpretation

¢ biological meaning of anomalous cell migration?

experimental data and theoretical modeling suggest slower
diffusion for small times while long-time motion is faster

compare with intermittent optimal search strategies of foraging
animals (Bénichou et al., 2006)

) Non reactive —

) ((E========== * 1 {
<N &

| / w |
/| /

AAN A |

i//‘ \\I\ ""//\‘ vl‘.

z fa] = R i
Reactive Reactive

note: 3 current controversy about Lévy hypothesis for optimal
foraging of organisms (albatross, fruitflies, bumblebees,...)
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Fluctuation relations

system evolving from an initial state into a nonequilibrium state;
measure pdf p(W;) of entropy production W; during time t:

In

transient fluctuation relation  (TFR)

—

p(—Wr)
Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

© generalizes the Second Law to small noneg. systems

@ yields nonlinear response relations

© connection with fluctuation dissipation relations (FDR)
example: check the above TFR for Langevin dynamics with
constant field F; W; = Fx(t), p(W;) ~ p(x,t) is Gaussian
TFR holds if < W; >=< 0§, > /2 (FDR1)

for Gaussian stochastic process: | FDR2 = FDR1 = TFR|

From normal to anomalous diffusion 3 Rainer Klages 19




Outline aotic map atio Fluctuation relations Conclusions
: oe 0o

An anomalous fluctuation relation

check TFR for the overdamped generalized Langevin equation
x =F +£(t)

with < £()E(t) >~ |t —t'|7?, 0 < 3 < 1: no FDT2

p(Wy) is Gaussian with < Wy >~ t, < og, >~ t*"7: no FDT1

and superdiffusion _ _
experiments on slime mold:

I g = oW 2l /e
0<pB<1) 2
anomalous TFR Ll
Chechkin, R.K. (2009) 7 Afm

Hayashi, Takagi (2007)
note: we see this aTFR in experiments on cell migration
Dieterich, Chechkin, Schwab, R.K., tbp
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Summary

nonequilibrium conditions

equilibrium nonequilibrium nonequilibrium
steady states non-steady states
. ; . ergodic microscopic chaos
microscopic dynamical systems hypothesis strong weak
- ' Gibbs complexity
l statistical mechanics ensembles fractal SRB measures infinite measures
macr oscopic thermodynamics thermodyr_lamic CEEAMTIEHSHETS (o
properties normal anomalous

:> generdl theory of nonequilibrium statistical physics

starting from weak microscopic chaps?
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