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Outline

focus on deterministic random walks on the line

two lectures:

1 Normal deterministic diffusion
two methods for two maps: Taylor-Green-Kubo and escape
rate approach

2 Anomalous (deterministic) diffusion
subdiffusion in a weakly chaotic map: CTRW theory and a
fractional diffusion equation; fluctuation relations for
anomalous stochastic processes
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Pomeau-Manneville map

brief reminder: xn+1 = M(xn) = xn + axz
n mod 1 , z ≥ 1
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weakly chaotic dynamics with stretched exponential instability
and infinite invariant measure for z > 2

model deterministic diffusion with this map - two questions:
Which type of diffusion do we get?
How to quantify with respect to parameter variation z, a?
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A subdiffusive intermittent map

lift map subdiffusively
Geisel, Thomae (1984); Zumofen, Klafter (1993)
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if α 6= 1 anomalous diffusion

here:

α =

{

1, 1 ≤ z ≤ 2
1

z−1 < 1, 2 < z

goal: calculate the generalized
diffusion coefficient K = K (z, a)
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Parameter dependent anomalous diffusion

K (z = 3, a) for M(x) = x + ax3 from computer simulations:
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Korabel, RK et al. (2005)
∃ fractal structure
K (a) conjectured to be discontinuous on dense set (?)
comparison with stochastic theory, see dashed lines
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CTRW theory I: Montroll-Weiss equation

Montroll, Weiss, Scher (1973):

master equation for a stochastic process defined by waiting
time distribution w(t) and distribution of jumps λ(x):

̺(x , t) =

∫

∞

−∞

dx ′λ(x − x ′)

∫ t

0
dt ′ w(t − t ′) ̺(x ′, t ′)+

+(1 −
∫ t

0 dt ′w(t ′))δ(x)

structure: jump + no jump for particle starting at (x , t) = (0, 0)
F̂ourier-L̃aplace transform yields Montroll-Weiss eqn (1965)

ˆ̺̃(k , s) =
1 − w̃(s)

s
1

1 − λ̂(k)w̃(s)

with mean square displacement ˜〈

x2(s)
〉

= −∂2 ˆ̺̃(k , s)

∂k2
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CTRW theory II: application to maps

apply CTRW to maps: need w(t), λ(x) (Klafter, Geisel, 1984ff)

sketch:

• w(t) calulated from w(t) ≃ ̺(x0)
∣

∣

∣

dx0
dt

∣

∣

∣
with density of initial

positions ̺(x0) ≃ 1 , x0 = x(0); for waiting times t(x0) solve the
continuous-time approximation of the PM-map
xn+1 − xn ≃ dx

dt = axz , x ≪ 1 with x(t) = 1

• (revised) ansatz for jumps:
λ(x) = p

2δ(|x | − ℓ) + (1 − p)δ(x)
with average jump length ℓ and escape probability p

CTRW machinery . . . yields exactly

K = pℓ2

{

aγ sin(πγ)
πγ1+γ

, 0 < γ < 1

aγ−1
γ , γ ≥ 1

, γ := 1/(z − 1) , z > 1
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Anomalous random walk solution

define average jump length ℓ :=< |M(x) − x | >̺0=1:
for z = 3 we get K (a) ∼ a5/2
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CTRW yields anomalous drunken sailor solution , which
correctly describes the coarse scale behaviour of K (3, a)
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Dynamical phase transition to anomalous diffusion

compare CTRW approximation (blue line) with simulation
results for K (z, 5):
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∃ full suppression of diffusion due to logarithmic corrections

< x2 >∼


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n/ ln n, n < ncr and ∼ n, n > ncr , z < 2
n/ ln n, z = 2
nα/ ln n, n < ñcr and ∼ nα, n > ñcr , z > 2
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Time-fractional equation for subdiffusion

For the lifted PM map M(x) = x + axz mod 1, the MW equation
in long-time and large-space asymptotic form reads

sγ ˆ̺̃− sγ−1 = − pℓ2aγ

2Γ(1 − γ)γγ
k2 ˆ̺̃ , γ := 1/(z − 1)

LHS is the Laplace transform of the Caputo fractional derivative

∂γ̺

∂tγ
:=

{

∂̺
∂t γ = 1

1
Γ(1−γ)

∫ t
0 dt

′

(t − t
′

)−γ ∂̺

∂t ′
0 < γ < 1

transforming the Montroll-Weiss eq. back to real space yields
the time-fractional (sub)diffusion equation

∂γ̺(x , t)
∂tγ

= K
Γ(1 + α)

2
∂2̺(x , t)

∂x2
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Deterministic vs. stochastic density

initial value problem for fractional diffusion equation can be
solved exactly; compare with simulation results for P = ̺n(x):
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fine structure due to density on the unit interval
r = ̺n(x) (n ≫ 1) (see inset)
Gaussian and non-Gaussian envelopes (blue) reflect
intermittency (Korabel, RK et al., 2007)
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Motivation: Fluctuation relations

Consider a particle system evolving from some initial state into
a nonequilibrium steady state.
Measure the probability distribution ρ(ξt) of entropy production
ξt during time t :

ln
ρ(ξt)

ρ(−ξt)
= ξt

transient fluctuation relation (TFR)

Evans et al. (1993/94); Gallavotti, Cohen (1995)
why important? Of very general validity and

1 generalizes the Second Law to small noneq. systems
2 yields nonlinear response relations
3 connection with fluctuation dissipation relations
4 can be checked in experiments (Wang et al., 2002)

From normal to anomalous (deterministic) diffusion 2 Rainer Klages 12



Outline Weakly chaotic map CTRW theory Fluctuation relations End

Fluctuation relation and the Second Law

meaning of TFR in terms of Second Law:

ξ

ρ(ξ  )

t1

t2
t3

t

t
ξ t−ξ t
t1 < t2 < t3

ρ(ξt) = ρ(−ξt) exp(ξt) ≥ ρ(−ξt) (ξt ≥ 0) ⇒ < ξt >≥ 0

goal: sample specifically the tails of the pdf...
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Fluctuation relation for Langevin dynamics

check TFR for the overdamped Langevin equation

ẋ = F + ζ(t) (set all irrelevant constants to 1)

with constant field F and Gaussian white noise ζ(t).

entropy production ξt is equal to (mechanical) work Wt = Fx(t)
with ρ(Wt) = F−1̺(x , t); remains to solve corresponding
Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

̺(x , t) = 1√
2πσ2

x

exp
(

− (x−<x>)2

2σ2
x

)

not difficult to see:
TFR holds if < Wt >= σ2

Wt
/2

and ∃ fluctuation-dissipation relation 1 (FDR1) ⇒ TFR

see, e.g., van Zon, Cohen, PRE (2003)
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TFRs for anomalous dynamics

FRs widely verified for ‘Brownian motion-type’ dynamics; only
specific violations (Harris et al., 2006; Evans et al., 2005)

goal: check TFR for three fundamental types of anomalous
diffusion
First type: Gaussian stochastic processes defined by the
(overdamped) generalized Langevin equation (Kubo, 1965)

∫ t

0
dt ′ẋ(t ′)K (t − t ′) = F + ζ(t)

with Gaussian noise ζ(t) and a suitable memory kernel K (t)

examples of applications: generalized elastic model (Taloni,
2010); polymer dynamics (Panja, 2010); biological cell
migration (Dieterich et al., 2008)
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TFR for correlated internal Gaussian noise

split this class into two cases:

1. internal Gaussian noise defined by the FDR2

< ζ(t)ζ(t ′) >∼ K (t − t ′) ,

which is correlated by K (t) ∼ t−β , 0 < β < 1

ρ(Wt) ∼ ̺(x , t) is Gaussian; solving the generalized Langevin
equation in Laplace space yields subdiffusion

σ2
x ∼ tβ

by preserving FDR1 which implies
< Wt >= σ2

Wt
/2

for correlated internal Gaussian noise ∃ TFR
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TFR for correlated external Gaussian noise

2. consider overdamped generalized Langevin equation

ẋ = F + ζ(t)

with correlated Gaussian noise defined by

< ζ(t)ζ(t ′) >∼ |t − t ′|−β , 0 < β < 1 ,

which is external, because there is no FDR2

ρ(Wt) ∼ ̺(x , t) is again Gaussian but here with superdiffusion
by breaking FDR1 :

< Wt >∼ t , σ2
Wt

∼ t2−β

yields the anomalous TFR

ln
ρ(Wt)

ρ(−Wt)
= Cβtβ−1Wt (0 < β < 1)

note: pre-factor on rhs not equal to one and time dependent
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Relations to experiments

ln
ρ(Wt)

ρ(−Wt)
=

Cβ

t1−β
Wt (0 < β < 1)

experiments on slime mold:

Hayashi, Takagi,
J.Phys.Soc.Jap. (2007)

computer simulation on
glassy lattice gas:

Sellitto, PRE (2009)

⇒ anomalous fluctuation relation important for glassy dynamics
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TFR for other anomalous stochastic processes

• consider the Langevin equation
ẋ = F + ζ(t)

with white Lévy noise ̺(ζ) ∼ ζ−1−α (ζ → ∞) , 0 ≤ α < 2 ,
breaking FDR1 ; solving a space-fractional Fokker-Planck eq.
yields (cf. Touchette, Cohen (2007))

lim
w→±∞

gt(w) = lim
w→±∞

ρ(Wt = wF 2t)
ρ(Wt = −wF 2t)

= 1

i.e., large fluctuations are equally possible

• consider the subordinated Langevin equation
dx(u)

du = F + ζ(u) , dt(u)
du = τ(u)

with Gaussian white noise ζ(u) and white Lévy stable noise
τ(u) > 0, which preserves a generalized FDR2
by solving the corresponding time-fractional Fokker-Planck eq.
the conventional TFR is recovered
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Anomalous fluctuation relations: summary

TFR tested for three fundamental types of anomalous
stochastic dynamics :

1 Gaussian stochastic processes with correlated noise:
FDR2 ⇒ FDR1 ⇒ TFR

TFR holds for internal noise, mild violation for external one

2 strong violation of TFR for space-fractional (Lévy) dynamics

3 TFR holds for time-fractional dynamics

same results obtained for a particle confined in a harmonic
potential dragged by a constant velocity
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Back to the beginning

ergodic
hypothesis

Gibbs
ensembles

dynamical systems

statistical mechanics

thermodynamics

equilibrium nonequilibrium
steady states

microscopic chaos

complexity

nonequilibrium conditions

thermodynamic
properties

microscopic

macroscopic

theory of nonequilibrium statistical physics
starting from microscopic chaos?

infinite measures

deterministic transport

weakstrong

fractal SRB measures

normal anomalous

nonequilibrium
non-steady states
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Some open questions

Irregular diffusion coefficients in billiards C1 but not C2?
real experiments?

Escape rate theory for anomalous diffusion?

Exact method for calculating parameter-dependent
anomalous diffusion coefficient?

Check superdiffusive Pomeau-Manneville map

Discontinuous diffusion coefficient for PM map?

Anomalous fluctuation relations ↔ weak chaos ↔
nonlinear response ↔ fluctuation-dissipation relations ↔
experiments?
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