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Emerging Meso- and Macroscales from Synchronization of Adaptive Networks
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We consider a set of interacting phase oscillators, with a coupling between synchronized nodes
adaptively reinforced, and the constraint of a limited resource for a node to establish connections with
the other units of the network. We show that such a competitive mechanism leads to the emergence of a
rich modular structure underlying cluster synchronization, and to a scale-free distribution for the

connection strengths of the units.
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From interacting populations of animals to the cells of
our body, many social, biological, and man-made systems
can be represented as an ensemble of dynamical units
coupled via complex architectures. The analysis of such
systems has revealed that, despite the intrinsic differences,
their structure is characterized by two unifying properties
[1]: (i) a power law (scale-free) scaling in the network
connectivity, and (ii) the presence of modules (community
structures) at a mesoscopic scale. While no model exists
yet able to reproduce at once these two features, their
interplay is believed to be the basis of the systems’ general
functioning and performance.

In this Letter, we consider a generic model of networked
phase oscillators, with an initial topology set up by a
random assignment of neighbors. The coupling is directed
and time varying, and the temporal evolution of the link
weights is coupled to the dynamics of the oscillators.
Numerical and analytical studies of the synchronization
properties (both at a local and a global scale) allow us to
conclude that a competitive adaptive mechanism not only
enhances synchronization, but also yields the simultaneous
emergence of a mesoscale of communities and a scale-free
distribution in the connection weights. The mechanism
through which the dynamics reshapes the network struc-
ture is governed by the competition between the following
two principles: (a) the connections between synchronized
units are enhanced; (b) the available resources per unit to
sustain interactions with the rest of the ensemble are
limited. Principle (a) is known to be relevant in neuronal
plasticity, or spreading in sociology, under the terms of
Hebbian learning [2] and homophily [3], respectively. The
limitation in the associative capacity given by principle (b)
is known to play a relevant role in neuroscience under the
term homeostasis [4], while in social systems it is related to
the Dunbar’s number [5]. Neuroscience is, indeed, the field
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in which more efforts have been put into elucidating
the role of adaptive mechanisms, and various studies on
neuronal plasticity (based on specific forms of competitive
adaptation that underlie memory and learning abilities)
reported the emergence of one or the other of the main
features that we will describe in our model. Examples are
the experimental and numerical evidence of an enhance-
ment of synchronization of neurons originally spiking at
different rates [6], and the emergence of synchronized
clusters of different sizes allowing for the storing of infor-
mation [7].

The model consists of a Kuramoto type ensemble of N
phase oscillators. Each node i is characterized by its phase
¢;, and interacts with K randomly selected neighboring
units, that form the set N';. The dynamics of the network is
given by

o, =w;, + A Z wijsin(e; — @), (1)
JEN;

where w; are randomly assigned natural frequencies (uni-
formly distributed in [ — 7, 77]), Wi is the weight of the
link connecting node j to i, and A is a coupling strength.
Initially, the phases are randomly selected in the interval
[ —a, 7], and all weights are set to 1/K. The adaptive
evolution of the weights w;; in Eq. (1) is governed by

Wi = pij — ( Z pik)wijJ (2

KEN,

where the quantity p;; denotes the average phase correla-
tion between oscillators i and j over a characteristic mem-
ory time 7, and is defined as
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It follows from (2) that the normalization condition
ZJEN’,W,-J- =1 holds at all times; i.e., the sum of the
weights of all incoming connections at each node is con-
served. Notice that the first and the second term in the
right-hand side of Eq. (2) account, respectively, for
homophily and homeostasis. Global synchronization can
be quantified through the time dependent Kuramoto order
parameter (1) = | 3N ¢'¢i| [8]. For a generic choice
of A and 7, our results consistently show that the system
evolves into an asymptotic state after some time f,, where
the weights w;; take well-defined values, with small and
stationary fluctuations. Then, we can define a time aver-
aged order parameter r as

1 t,+ AL N o ,
r= lim — el | dr,
At—oo AN /ts z:zi

At being a suitably long time interval, to be later specified.
Furthermore, we denote by r;; the time average of the

pairwise synchronization between connected units, 7;; =

limp,—co 15 | f§S+A' lei)=¢;)]gf| and define the local
synchronization measure [9] as the ensemble average
(over all N nodes) of the weighted average of r;;

1 N
rnnk=ﬁZ Z Wijlij-
i=1

=1jeN;

Intuitively, this measure quantifies the average synchroni-
zation between connected nodes in the network. Even
though both r and ry;, are close to O (1) for very low
(high) couplings, other dynamical regimes are observed
where ry;, is large while r is still small, corresponding to a
high local synchrony before global order is obtained.

We consider a system with N = 300 and K = 20 and
explore the structural and dynamical features as functions
of A and T. First, the system is integrated without adapta-
tion (i.e., at fixed values of w;; = 1/K) during 200 time
units. Then, at an instant defined to be t = 0, the adaptation
mechanism is activated; i.e., Eq. (2) is incorporated, and
the network dynamics is integrated for another ¢, = 2000
time units (such a period is at least 1 order of magnitude
larger than that typically needed to reach the stationary
state). Time ¢, marks the beginning of the period of moni-
toring the global and local synchronization features in the
network, which, in our simulations, is performed along an
interval of Az = 1000 time units [10]. Finally, all reported
values result from a further ensemble average over 30
independent integrations of the system [11].

Figure 1(a) shows r as a function of A and 7. At
relatively large values of T, r depends almost exclusively
on A, featuring a quasilinear dependence up to A = 4, and
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FIG. 1 (color online). Global and local synchronization indi-
cators. r [(a), see text for definition] and ry;, (b) in the (T, A)
parameter space. The color coding is reported in the right
columns. (¢) r(r) for T=15 and A € {0.05,1.50,2.50,
3.80, 4.20} (specific values indicated by the arrows) for the
nonadaptive (¢ <0) and the adaptive (1 = 0) evolution of the
network.

then rising up steeply into its saturation plateau r ~ 1. This
phase transition can be understood by referring to the
classical Kuramoto model. Denoting, indeed, the natural
frequency distribution by g(w), the critical coupling of the
Kuramoto model is A, = 2/7g(0), which turns out to be 4
in our case [8]. We expect that, with increasing A, a higher
and higher synchronization level sets in the network, caus-
ing the p;; to approach the value of 1. Thus, the w;; will
remain close to their initial value 1/K [see Eq. (2)]. At high
enough A, therefore, the system is almost indistinguishable
from a modified Kuramoto model in which N(N — 1)/2 —
NK links have been pruned. By monitoring r(z) for T = 15
and several A values [see Fig. 1(c)] one observes that r(z) is
already large at the preadaptive stage of the dynamics for A
close to A.. Figures 1(a) and 1(c) show that the adaptive
mechanism has the effect of generically enhancing global
synchronization in the network to a remarkable extent
already for coupling strengths below the critical value.
Figure 1(b) shows rj;, as a function of A and 7. For a
given T, the local synchronization is a nonlinear, concave
downwards function of A, with, again, a sudden rise at A =
A., that has the necessary amplitude to make ry;,, identi-
cally equal to one within our numerical accuracy. The
growth of ry;, with A is, however, much faster than that
of r, which delimits (for A <1 and 7 > 1) a wide region
where the ratio rj,/r is always higher than 3 (and for the
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FIG. 2 (color online). Emergence of mesoscale structures.
(a) MC (see text for definition) in the (7, A) parameter space.
The color coding is reported in the right column. (b) Distribution
of the effective frequencies w.g, as a function of A, for 7 = 15.
The gray code (see column at the right of the panel) indicates the
number of oscillators in the network displaying each specific
value of w,g.

highest 7 and lowest A values it can be even greater than 6),
which is the hallmark of the emergence of modular
(cluster) synchronization.

Further insight on such a modular structure can be
obtained from Fig. 2, where we report [Fig. 2(a)] the
modularity cohesion of the network in the parameter space,
defined as

Z%ﬂ Zi,jECH Wij

1
MC = = _
1}1:1:1 Zy=1 Ziecwjec, Wij N

M=

Z Wij»
i,j€C,

where C,, runs over the M graph’s communities (obtained
by the optimization procedure described in [12] followed
by the fast algorithm described in [13]). MC measures the
fraction of the total network’s wiring which is used to
connect nodes belonging to the same community. It eval-
uates the degree of modularity of the partition, and takes
values in [0, 1] (MC = 1 if the network is split into dis-
connected components). The striking result is that our
network appears to be very well separated into components
in the entire region where r is relatively low.

Figure 2(b) shows the distribution of the effective fre-
quencies w.g (the average frequencies of the oscillators in
the stationary regime) vs A, for a typical realization using
T = 15. Starting from the uniform distribution at A = 0
(where w.s are all equal to the natural frequencies), in-
creasing the coupling has the effect of producing a rich
scenario of mesoscale patterns, forming different numbers
of distinct synchronized communities at certain intervals of
the A axis. Eventually, at A = A, all oscillators coalesce
into a single synchronous module.

This change in the modularity with increasing
coupling strength is also reflected in the associated weight
distribution (i.e., the topology resulting from the competi-
tive adaptation mechanism), as demonstrated in Fig. 3 for
T = 15. For A = 0.05, there is no preferred scale and the
bulk of the distribution seems to follow closely a power-
law scaling, p,(w) o« w™? with y = 1.215 £ 0.030 [14].
In other words, adaptation produces here a complete

FIG. 3 (color online). Emergence of macroscale structures.
(Left panels) Weight distribution for 7 =15 and A €
{0.05,2.00, 3.00, 4.20} (specific values indicated inside the
plots). The red line in the upper plot (A = 0.05) is the distribu-
tion of Eq. (4) calculated at A = 0. (Right panels) Visual sketch
of the corresponding network topologies, obtained by applying
attractive forces between nodes proportional to the correspond-
ing link weights.
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redistribution of the weights, leading eventually to a highly
heterogeneous topology. As A increases, a local maximum
appears in the distribution, and the network segregates into
more and more distinct modules. The formation of three
communities at A = 2, and of two communities at A = 3,
have visible dynamical counterparts in Fig. 2(b). At large
coupling strengths (A > A,), the maximum is shifted
toward 1/K = 0.05 (i.e., the initial condition), and be-
comes more prominent. This is a direct consequence of
the fact that for A > A, the network is able to synchronize
even without adaptation [see Fig. 1(c)], and therefore the
redistribution of weights is negligible.

The weight distribution can be derived analytically for
A= 0. It turns out, indeed, that this is useful for the
estimation of the weight distribution not only for strictly
vanishing A, but also in the limit A—0, as
one could expect from heuristic continuity arguments. In
such a case, the phases are uncoupled and evolve as ¢; =
w;t + go?. Plugging this evolution into Eq. (3), one obtains

0 L = L(w; —

N e
in p; ]) highlights that we are in the uncoupled limit. Let us
define L(A) = [1 + T2A%]~'/2, This function takes values
in [0, 1], and, as L(A) = L(—A), it has no unique inverse.
As in the uncoupled limit each node forms a closed sub-
system with its neighbors, we can focus on the subsystem

), where the superscript

centered around a generic node i. Now, A j= wj — w;are
independent identically distributed (i.i.d) random variables
with conditioned probability density function (pdf)
ij(Ajla),-) uniform in [-7—w; 7T—w;]. Al
L(w; — w;) such that j € IN; are also i.i.d. random vari-
ables. We denote them by L j» and designate indistinctly as
L(A);) or L; the values they take. The pdf of L ; conditioned
on w; is

1

P[,.(Lj|wi) = Z PA (A jlwi)
' AE(L; 1}|
_ #{AIL(A) = Lj}ﬂ[—w —w;, T~ w]

27| L3741 — L2
_ 1
2 — 72
27| L3741 - L]

0 ifL;=1

2 if L(7m — o) <L; <1

1 if L(7r + |o;|) <L; < L(7 —
0 if L; = L(7 + |w,]).

|wi|)

The expectation value and the variance of L;

conditioned on ; are given by
(Lj(w,;)) = 5i=[arcsinh(T(—7 — w;)) + arcsinh(T (7 +
;)] and var[L(w;)] = ﬁ[arctan(T(—ﬂ' - w;))

+ arctan(T (7 + w;))] — (L ;(w;))*, respectively.

By Eq. (2), the Weights have an asymptotic stable value
(0) — p l/ L./’
Y=

random variable G = ¥ ;¢ N,-\{;’}ﬁk- As both the expecta-

given by w;; . Let us then define the

tion value and the variance of L ; are finite and independent
of j, we invoke the central limit theorem for the sum in G
and assert that it converges (in the limit of large K) to a
Gaussian random variable with (G) = K(L(w;)), and
var[G] = Kvar[L ;(w;)].

The pdf of w;; = I:j/(ﬁj + G) conditioned on o,
can be obtained by introducing the joint pdf for the
independent variables L ; and G: p i G(L' Glw;) =
p[j(lewi)pGA(Gla)i). By definition, P(w <w; +
{L, G)lw;; = L/L—lG = w;; + Aw;;}. This set can be reex-
{L OG5, ~VL=G=(— DL}

Such a parametrization allows one to rewrite

pressed as

1 (1/wi;—=1L;
L
0 (1/w;;+Aw;—1)L;

./

; 1
=~ Aw.. dL-—] ~(L:lw:; A(<__1)L, )
szj:) jwlszLj( jla)z)PG Wij /lwl

T POy <wi;+Aw;;)—P(v;;)
= hmAWU__,O+ i A Wy ,

then

As Pw,-j(Wij|(Ui)
one has

Pwij(Wij): /; pw,-/-(wijlwi)pd),-(wi)dwi
1
_ﬁ[ da)jdL sz(Llw)

x pG((Wij - 1)L ,|w,.), (4)

which provides the analytic expression for the weight
distribution in a generic closed subsystem, and thus in
the whole network, at A = 0. Figure 3 shows py, (w;;)

(as a red continuous line) superimposed to the numerically
obtained weight distribution for A = 0.05. The fit is strik-
ingly good, even though the central limit approximation for
K = 20 is only mildly justified. Notice that the analytical
curve in the uncoupled regime reproduces almost perfectly
the numerical results for A = 0.05, thus suggesting that
Eq. (4) is a good approximation to the weight distribution
in the regime of small A.

In conclusion, we have shown how a network competi-
tive adaptation leads to the emergence of those meso- and
macroscale features which are commonly observed in real
neural systems [15,16] and networks of social relations
[17]. Our results indicate, therefore, that competitive
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adaptation can be a general principle for the formation of
heterogeneous structures in large ensembles of interacting
units, with relatively segregated modules supporting highly
synchronized dynamics.
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